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ABSTRACT

Title of Thesis: On the Controllability of Bilinear Systems
with Delay

Luther Pearson Hampton III, Master of Science, 1975

Thesis directed by: Professor John S. Baras

In this thesis we investigate systems of the type

p
ax A+ > u.(t)B x (t) + Cx(t-7)
dt . i i
i=1
where x(t) Rn, u, = l1,...p are scalar functions, measurable
and bounded on finite intervals, and A, Bi' Cc, = 1l...p are

nxn matrices. In particular we devise criteria for local
accessibility, controllability of more general nonlinear
systems with delays and a "Bang-Bang" theory for these
systems. These results generalize those existing for bi-
linear systems without delays and for linear delay differ-

ential systems.
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CHAPTER 1

INTRODUCTION

I.1 Motivation and Generalities

Recently bilinear systems have received a great amount of attention
in the literature. This is mainly attributable to two factors. First,
there is hope that this type of variable structure systems will prove to be
more adequate in handling certain phenomena in the field of non linear systems.,
Second, this class lies in between linear and non linear cases and it is
therefore believed that through its study some light can be shed on the

theory of non linear systems.

Bilinear systems are systems which are linear in the control and
linear in the state but not linear in the control and state jointly, a

typical example would be of the form

- P
x(t) = A(t) + }: Bi(t)ui(t) x(t) + Cu(t) (1)
1
x(0) = X,

where x(t) € Rn,ui(t) scalars, and the matrices A,B;,C of the appropriate

dimensions.



ON THE CONTROLLABILITY OF BILINEAR SYSTEMS WITH DELAY



Another class of systems, that of delay systems, has attracted the
interest of researchers from the early days of system theory. This has been
due to a variety of examples involving hereditary behavior. Most of this

work has been done on linear systems with delays, that is systems of the form

x(t) = A(t) x (t) + B(t) x (t-7) + C(t) u(t) 2)

x(8) = 0(6);0€[r- ,0]

where x(t) €R™, A(t), B(t), C(t) matrices of the appropriate dimension,
u(t) €RP and ¢ (t) € C{ [— T,O] s Rn} » the continuous functions mapping
[—T,O] into RM™. As an elementary example of this form of control system

consider the following network

y(t-1) IDEAL DELAY
t = Isec

—> y(1)

y(t)

the relationship between u(t) and y(t) is given by
L]
y(t) = -y (t) -y(t-1) + u(t)
and clearly in order to predict the behavior of this system from some time

t = t, onwards it is necessary to know the output y(t) for tEZ[to—l,to] hence

this is a system of the form (2).

-2- if/L//



As an example of this form of system consider the following voltage

regulator

Choosing as states the voltage across the capacitor Xy =V, C and the

current through the inductor xj = i\ff', and letting w =+/LC the equations

become
[
Li = -Vy + u(V - Ri)
CVy = 1
or
R s
Xq 0 -w T Xq _
d_ = + u u
dt | x, w 0 0 X9 0

which is in the form of the equation (1).

A great amount of literature is available on bilinear systems, see.for
example Brockett [1], Hermes [2], Jurdjevic and Sussman [4] - [6] and Bruni

et al [7].



As has been previously mentioned the literature in this field is

varied and rich, see for example Weiss [8], Popov [9], Banks [11], Hale [13],

and Delfour and Mitter [14].

display both hereditary behavior and bilinearity.

example.

L
n

RC=1

There are however a variety of practical problems where the dynamics

Here is a representative

0 V(1)

IDEAL DELAY
7 sec
R
WAAAY RC = ¢
IL
1
= R
N NN -
s
—
- B R,
F——NAAﬁw——— U=0
R N e
AN/ VVVV N
B BaRjp —

Consider the problem of controlling the output v(t) of the operational

amplifier by manipulating the switches ul(t), uy (t).

if so how would this be done?

2

V(t) = Av(t) + Cv(e-7) + 3 Byu (t) v(t)
1

The equation for this system is:

Is this possible and



1.2 Objectives

In this thesis systems of the form

P

x(t) = Ax(t) + Y Bj uy(t) x (t) + Cx(t-7)
1

%(8) = o(9); 0 €[r-7,0]

will be studied
where x(t) € R, uj(*) bounded and measurable on any finite interval and

A, B., C matrices of the appropriate dimensions.

i,

The objectives of this thesis are:

(1) to reach a definition of the state consistent with accepted
definitions,

(2) with respect to this idea present sufficient conditions for
complete controllability of systems of this form

(3) to examine various properties of the trajectories of these
systems.

(4) Also, certain properties of the sets attainable from any
particular initial function will be studied and a theorem on compactness of
the attainable set will be presented. This will lead to a "bang-bang".
Theorem for these systems. These will hopefully pave the way in later papers

for solutions to optimal control problems in systems of this form.



I.3 Previous Work and Mathematical Background

In order to summarize previous material several notions are needed.

First notice that given the system
i(t) = [ A+ }: Biui } X (t) + Cx(t-7) (1)

it is impossible to uniquely specify a solution from any particular starting
time t, without first specifying an initial function on [}o -7, to] . Were
this not given the value of x(t-7) would be unknown on [to,to + r]. It
would be impossible to proceed. Thus in keeping with the accepted definition
of the state as the minimum amount of information necessary to predict the
behavior of the system from any time forward we consider, as usual [13], the
state as a function which is defined on [to-f, to] and consider the system
in this manner. As will be shown later, in order to guarantee existence and
uniqueness the initial state or function will be assumed continuous. Thus
the state space can be C{lﬁ—T,O];Rn} the Banach space of continuous func-
tions mapping [—1,0} into R™ and the state at time t] will be the trajectory

of the system on [tl -7, ty }.

These same arguments naturally apply for the linear system with delays

x(t) = A(t) X (t) + C(t) u(t) + B(t) x(t-7) (2)

x(6) <p(e);ec[r—r,o] .



In some problems it is only desired to know certain properties of the
set of attainable points in R®. This leads to the following set of

definitions.

Let x(t;to,w,u) be the solution of system (1) or (2) starting at t,
with initial condition @EZC{ [to—r’to:]; Rn} and using control u.

For a fixed t define
Xt(é) = X(t + 6; to,‘P,U)

then xt(é) is an element of C{[}— ,O} ;Rn} for 66:{—1,0] and in keeping
with the above arguments can be defined as the state of the system (1) or (2),

see Hale [13].

Definition I.3.1: The linear system (2) is said to be completely controllable

to HC:CI{ [—T,O:];Rn } (where cl is the subspace of continuously differentiable
functions) at time ty if given any function VW€ H and any initial condition

¥ there exists an admissible control u(t) such that
xep (8) = ¥(5)36€[=7,0] .

Definition I.3.2: The linear system (2) is completely euclidean controllable

at time tj if given any y € RD and any ¢ € C then there exists an admissible

control u such that

x(ty5ty,0u) = y

For convenience we let C = C {[—T,o:];Rn}




Definition I.3.3: The linear system (2) is pointwise complete if the range

of the map

g:cg[—r,o] ;Rnf—-»Rn

) I—>X(t;to’¢’,0)

is R® for every tzto.
For t2>t define
t1

W(totp) = [ K(s,£1)C(8)CT ()X (s, tp)ds (3)

to

where K(s,t) is the matrix valued solution to the equations

5"3— K(s,t) = -K(s,t)A(s)-K(s+7,)B(s+7), t < s<tm7 ()
% K(s,t) = -K(s,t)A(s), t-r<s<t (5)
K(t,t) = I (6)
K(s,t) = 0 elsewhere 7

For t2t,, t,<s<t, define

V(t

o
O—T’to) = [_TK(S+T,t)B(s+T)BT(S+T)KT(S+7,t)dS (8)
o]



Theorem I,3.4: (Ono and Yamasaki [18])

The system (2) is completely euclidean controllable at time ty if and only if

(I) rank V(to—r,to) = n

(II) Rank W(tg,t;) = n

Theorem I.3.5: (Ono and Yamasaki [18])

System (2) is controllable to any ¥ €H (the subspace of continuously
differentiable functions on [to—f,to:]>if and only if (I) and (II) hold at
t1~7 and also given ¢ € C then with u[tgy,ty-7] such that x(tl‘T;to,¥%u[tost1‘fj) =0

the equation
(III) c(t)u(t) = \z(t—tl+to) -A(E) Y (e-ty+t )
=B(t)x(t-7;tg,0,ult ,t1-7]); t€[ty-7,t;]

has an admissible solution for all ¥y €CH

Define the operator ad, for two nxn matrices by
adAB = [A,B]
where [A,B] = AB - BA, the lie bracket, and inductively define

K -
ad ,B = [A,adK AlB]



DR MRl btk £ £

Theorem I.3.6: (Brockett [1])

Consider the dynamical system

M
X(t) = z:LH(t)Bi X(t); X(t) an nxn matrix
1
given time t,>0 and given two nonsingular matrices X1 and X2, there exist
piecewise continuous controls which steer Xj to X9 if and only if X7X; belong
to {exp {Bi}’A.}G’ the lie group generated by exponentiating the smallest lie

algebra containing the set B;.

Theorem I,3.7.: (Brockett [1])

Consider the dynamical system
v

i(t) = (A + %;ui(t)Bi)X(t), X(t) an nxn matrix, and suppose that
[adzBi’Bj] =0 fori, j=1, 2, ve.v., vand k = O,l,...,nz—l. Then given
time t_ >0 and two nxn matrices X7 and X, there exist controls which transfer
the system from X; at t = 0 to X, at t = t, if and only if there exists L€ H
(H the linear subspace of R™™ patrices spanned by adl;Bi for 1 =1, 2,
v and k = 051,...n%-1 such that

GAta L

-10-
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CHAPTER II

EXISTENCE AND UNIQUENESS OF SOLUTIONS

II.1 Existence and Uniqueness of Solutions; Dependence on

Initial Conditions.

P
%(t) = Ax(t) + Cx(t-r) + 2 Bgus(t) x(t)
1
x(\) = ¢ (), AE[-7,0] ‘

Theorem II.1.1: (Bellman)

If there exists a constant C1>’0 such that

a)u/P
o

ds< w

P
[A + ZBiui(s)J
1

and

S

/ Ce(t-7)dt

(e}

b)|

< Cl s V’SE:[O’T]

then there exists a unique bounded solution to (1) on [0,00 ), furthermore

x(t) is continuous if

s
f(s) = uéﬂ Ce(t-7) dt 1is continuous

11~

(1)



Proof:

let
S

xo(S) =/Cw(t-r)dt

0
S

P
xn+l(s) = xo(s) +/ [A+ZBiui(s)] xn(s)ds
1

(¢}

let [0,t]] be the interval such that
b1

/

(o]

ds<b<l1l

[A + Z: Biui(s)”

If t] > 7 the Liouville Neuman solution obtained by straightforward iteration

is valid via the contraction mapping theorem in [o,7]. If t{<7proceed as follows

let

v, = sup “ xn(t)H , t€ [o,t1]

tl o
Hxn+1(t)HSC1 +vn/ ||A+ Z;Biui(s) l ds
o

< C1 + bvn

Hence if A 4q = C3 + bAy, A, = C; we have vpyq 2Apy

then {An} is monotome increasing and uniformly bounded by
A = Cy/1-b since 0<b<1

Then it follows that each integral in the iteration scheme

-12-



exists and that {1&1} is uniformly bounded in [0,t;]. To establish convergence

write

X1 (B) = x4(¢) =,{f:[A +~é?ciui(s)] [xn(s) - xn_l(s)] ds

and obtain for n2>1

Wpt1 = sup “}cn+l(t) - Xn(t)”

t€[0,t7]
s 1
up
- X A+ D .Bsus:(s)]| ds
S(t [0,¢,] “xﬂ(t) ) ‘[ I+ 2inene >
< an

and the series §§[Xn+l - xn] is uniformly convergent by comparison with the
geometric series 2§bn. Hence {xn}->x(t) bounded. Employing the Lesbesque
dominated convergence theorem we may pass the limit in the iteration and
establish the solution on (0,tj) and then by repeating the process we can
extend the solution to (0,2t;) etc. We see that if U, the set of admissible
controls, is composed of functions measurable and bounded on any finite
interval and wE:C{[}— ,OJ;RH} then if the integrals are taken in the sense of
Lebesque it is possible to extend the solution over any finite interval, thus

the theorem is complete.

The theorem also establishes the uniqueness of the solution.

-13-~



IT1.2 The Fundamental Matrix

Consider the system

P
x(t) = |:A + }:Biui(t)] x (t) + Cx(t-7)
1

x(0) = ¢ (8)0€[-7,0]

Lemma II.2.1:

The solution to the above system is given by

t

x(t) = K(tg,t) ¢ (to) +/ K(s+7,t)C ¢ (s)ds
to-r7
where K(s,t) is defined for tOSsSt, t 20, the matrix valued solution to

the equations

P

2 ®k(s,t) = K(s,t) [A +ZBiui(s):1 K(s + 7,£)C
Is i=1

t, —7<s<t -7
s P
35 K(s,t) = -K(s,t) [A +41\_;=fiui(s)] t-7<s<t
RK(t,t) =1
K(s,t) = 0 elsewhere

Proof: See Bellman and Cocke [19].

14—



Definition IX.2.2: The matrix K(s,t) defined ve is the fundamental

matrix of the bilinear delay differential system II.1(l), corresponding

to controls ui,i =1,---p.

Notice that a more correct (perhaps) notation should be K(s,tju) to

emphasize the dependence of the fundamental matrix on the controls u.

~15-



II.3 The State Of a Bilinear System With Delay

Consider the system

P
;((t) = [A + Z Biui]x (t) + Cx(t-7) ¢D)
1

x(8) = #(9) , OC[—T’O]

Let x(t; ¢ ,u) be defined as the solution of (1) with initial condition

vEC {[—T,O] H Rn} and control u.

The state of system (1) at time t; is defined as the trajectory of

(1) on [ti-7,t1] viewed as an element of C {[—T,O]; Rn}

1 )
T T T

=0 Y' 1‘+ v -r 0

Trajectory of system 1 State of system 1.

That is using the definition of xt(A) as in section II.1

x. (V) = x(t+2)

it is possible to define the state at time t; of a system with trajectory

x(t,to,¢;u)

as xtl(A) ANC[-7,0]

-16-



IT.4 Controllability and Accessibility

Since the subject of this thesis is the investigation of properties

? of the attainable sets, both in R™ and in C {[-1,0];Rn}'the following

definitions are presented here. For the system is again described here

x(t) = [A + f: Biui(t)-J' x (t) + C x(t-7)
1

x(0) = QO(G),OC[-T,O]

The reachable set in R® from initial condition ¢ , at time t>0 will be
denoted by R(t,#), and it is the set of all y€R" such that x(t; o,p,u) =y
for some admissible control u. The reachable set in R® from initial condition

0, in time t>0 will be denoted by |R(t,¢) and it is the set R(t,») = UR(s,¥).
s<t

The reachable set in rR? from initial condition ¢ will be denoted by IR(¥) and

is the set IR(¥) = U IR (t,¥). We have similar notions for function space
t2o

and

reachability. For ease of notation we let C denote C3 [—T,o] RP
Cl denote C1 3[—r,o] ; Rns . Then the reachable set C1 from initial condition
¢, at time t>o, will be denoted by RC(t, ¢), and it is the set of all A€:Cl
such that X\ (8) = xt(o), g€ [-7,0] for some admissible control u. Similarly the
reachable éet.in C1 from initial cohdition ¢, in time t>o, is the set

IRC(t,w) - U<: RC(S,P) and the reachable set in ¢l from initial condition ¢,
o<s

<t
is the set R, (9) = U, Ro(t;9).

We have the following set of definitionms.

Definition II.4.1: Let A(®) = x (¢,0,9,u) be a trajectory of the system. The

system has the local accessibility property along A\, In Rn, at time tq if

there exists an R* - neighborhood of x(tl; 0,¥,u) which is included in R(t1,¢0.

-17-



Definition II.4.2: Let A be as above. The system has the local accessi-

bility properly along A , in function space, at time t; if there exists

a C neighborhood of th which is included in R, (t1,9).

Definition II.4.3: The system is euclidean controllable (resp at time tl’

in time t7) from initial condition ¢ if "R(¥) = R (resp R(ty,9) = R®,

'R(tl,‘P) = Rn) .

Definition II.4.4: The system is function space controllable to a subspace

B Cccl (resp at time tj, in time t;) from initial condition ¢ if H SRc ()

(resp HSRC(tl"P) » H EIRC (t1’¢)

Definition IT.4.5: The system is completely euclidean controllable (at

time tl, in time t;) if it is euclidean controllable (at time t7, in time

tl) from every initial condition ¢.

Definition IY.4.6: The system is completely function space controllable

to the subspace HC C1 (at time tj, in time tl)'if it is function space

controllable to H (at time tq> in time tl) from every initial condition ¢.

Definition 1I1.4.7: The system has the euclidean accessibility property

from ¢ (resp the accessibility property in function space if [R(¥) (resp.

|RC(¢)) has non empty interior in R" (resp in C).

-18~




Definition II.4.8: The system has the euclidean accessibility property

(resp the accessibility property in function space) if it has the euclidean
accessibility property (resp the accessibility property in function space)

from every initial condition ¢ .

Definition II.4.9: If we replace IR(¥) (respIRc(¥))with R(t,p) (resp Re(T,p))

for some t> 0 in Definition II.4.7 and I1I.4.8 we have the strong euclidean
accessibility property, (resp strong accessibility property in function space)

from initial condition v . Similarly for every v.

-]19-



CHAPTER III

ACCESSIBILITY PROPERTIES

III.1 Preliminaries

In this section certain conditions guaranteeing the accessibility
property in bilinear systems with delay will be presented. These conditions
will be dependent on the existence of controllability of linearized systems
derived from the bilinear systems. The method used in the primary theorem
of this section is based on a method used by Weiss [8] to derive certain

controllability properties for general nonlinear systems.

We will only provide sufficient conditions. It is a consequence of
the definitions given in the last section of the previous chapter that the
system has the strong euclidean accessibility ( resp. strong accessibility
property in function space) from initial condition ¢ if and only if it has
the euclidean accessibility property (resp.in function space) along all tra-
jectories emanating from ¢ at some time t>t,, the same for all trajectories.
It may helP to note that whether we are in R™® or in a function space if the
system has the local accessibility along some trajectory at ty, it certainly
has the local accessibility property along the same trajectory for all
to>ty. So conditions guaranteeing the local accessibility progﬁrty also
imply strong accessibility. Now local accessibility is very strongly re-
lated to controllability of linearized systems. The main thrust behind
all of these ideas is that in some cases the accessibility property implies

controllability, and that it is easier to check for accessibility. Of course

note that controllability implies accessibility.

70—




III.2 Local Accessibility via Controllability of Linearized

Equations

In this section we make precise the relation between local accessi-
bility and controllability of linearized equations. The method is a
variation of a method previously used by Weiss [8]. Consider the general

non-linear differential-delay system
X(t) = £(t,x(t),x(t-7),u(t)) L

where x(t) €RT, u(t) €RP, and u bounded and measurable on any finite inter-
val, f is continuously differentiable in all its arguments and £(t,0,0,0) = O.

The linearized system about the trajectory xo(t) = x(t;0,¢,uy) is defined as
Y(t) = A(t)y (£)+B(t)y(t-7)+C(t)u(t) (2)
where
A(t) = aix £(t,x,(£) %, (t=7) ug ()
B(t) = 5%;f<t,xo<t),xo<t-r),uo<t)> (3)

c(t) = aiu £(t,x, () ,x,(t-7),u ()

where ¢ is any admissible state, uy€ U, the set of admissible controls and

x_, (t) = x(t-7).

-21-



Theorem III .2.1:

Suppose system (2) is completely function space controllable at t;
along trajectory x(t,0,¢,uy) then the system (1) has the euclidean local

accessibility property along x(t,0,vuy) at tEZ[tl-T,tl]
Proof:

Let x,(t;0,9,uy) = xo(t) and substitute in (1)
x(t) = -z(t) + Xo(t) (3)

where x(t) is any other trajectory of system (1)

Then (1) becomes K

2(t) = -x,(t) + £(t,x(t),x(t-7),u(t)) (4)
then
t
2(t) = —xo(t) + @ (0) + f £(o,x(0) ,x(o~7),u(s))do (5
o

Now introduce a parameter ¢ into (5) by letting
uy (t) + CT(t)KT(t,tl) t,0S t< -7
ut(®) = u (6,8 = Y u (©) + T'(t), where I'(t) is the solution to) (6)
C(t)u(t) = -B(t)z(t-T,0,u*[ty,tq-7]) for -

t1-7<t<ty

~22-



Let the solution of (5) be z(t,0,f() and define
J(t) = .a.a_z (t,0,6)[ £=0 (7

now noting that z(t,0,0) = 0 and u®(t) = ué(t) for t€ [o,t1-7] we have

t
f [A(U)J(U) + B(¢)J(e~7) + C(o) g_‘glé (a)] de (8)
o " §=0

J(t)

Hence j(t) A(t)J(t) + B(t)JI(t-7)

c(e)cT (KT (t,t,) 0<t<e -7
+
-B(£)J(t-J) 5t ~7<t <ty (9)

where K(s,t) is the kernel introduced in II.2

Then (9) becomes

t
J(t) =f R(s,t)C(s)CL(s)K (s,t)ds (10)

(o}

tC [Ostl_r]

However if the system is assumed completely controllable at ty then this

implies
detJ(tl-f)% 0

also, on [tl-.'r,tl] (9) becomes

3(t) = A(t) J(t) (11)



Hence it follows that det J(t) # o on [tl-r,tll.

Consider the map.
g:R! X R? —-RO
3
g(¢,y) = x(t;0,p,u’) -y

Then clearly g(o,X(t,0,¥,u®)) = o, and the Jacobian with respect to § is
of full rank for tEZ[tl;?,tl]. Then by the implicit function theorem
there exists an open neighborhood No of x(t;0,»,u®) in R%, such that

for every open neighborhood of x(t;o,¥,u®) NCN,, there exists a unique
continuous map 7 : N—=RP such that g(=(y),y) = o for all yCN. But

this is precisely the statement of local accessibility property along X,

at t€ [tl—T,tl]

Corollary III.2.2:

Suppose system (2) is completely euclidean space controllable
at t; along trajectory %xo(t). Then the system (1) has the euclidean local

accessibility property along x,(t) at tj.

Proof: Obvious.

=24~



III.3. An Algebraic Condition For Local Accessibility

Consider the bilinear differential delay system

P
x(t) = [A + }:Biui(t)J x (t) + Cx(t-7) (1)
1

x(0) = ¢(0); 6 [~7,0]

Let ko(t) be the trajectory of system (1) with initial condition and

controls Ujgs where usg has at least K continuous derivatives for each 1.

Define
/N
By (t) = [le(t): Bzx(t):....:Bpx(t)}
1}(t) = (ul,uz....up)T

then (1) becomes

/\ aN
x(t) = Ax(t) + B (t)u(t) + Cx(t-7)
then
d AN 1} P A A
‘ 3% [Ax(t) + Bx(t)u(t) + Cx(t—f) | = A + ;luio(t)Bi = A(t) (2)
(%454,
d [Ax(t) +@x(t)/u\(t) + Cx(t—T)J = C (3)
ax-vrl | J Xosllg
9 [Ax(t) + B (£)a(t) + cx(e- || = By (b) (4)
I b °
- X55Uq
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Now proceeding in a panner first used by Buckaloo [16] for linear differemtial " .

delaj systems define

Po(t) = B, (£)

P, () = “A(£)P,(t) + Bo(t)
P (t) = ZA(E)Pyyy (£) + B_q (£

Q. (t,x0,k) = [Po(t):Py(t):.. Pr_1(t)]

Theorem III.3.1

Let xo(t) = x(t;¥,u,) be a trajectory of (1). Suppose 3 t13>0 such that
rank Qc(tl,xa,k) = n. Then the system (1) has the local euclidean accessibility

property along x,(t), at tj. “a

Proof: Notice that if K(s,t7) is the fundamental matrix of the linearized

system, then rank Qc(t,xb,k) = n implies

t
1 ~ A~ T T
rank W(o,t}) = rank;/a K(S,tl)on(s)on(s) K(s,tl)ds =n

o
To see this consider the Wronskian matrix

k-1 ~
M(s,t1) = [K(s,tl)%Xo(s): 9 K(S,tl)/B\xo(S):--. _Q_k 1 K(S’tl)on(S)]

Jds 9 K-

for s E:[tl—f,tl].

But then by the defining properties of the fundamental matrix we have
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k(s,t1)8 (s) = K(s,t1)Po(s) ,
[/}

A 5 ~
ﬁ% K(S’tl)BXb<s) = 5;-(K(s,t1)Po(s) = (ﬁ%. K(s,tl)) P (s) +

- R(s,t1YA(s)Py(s) +

+ K(s,tl){’o(s)

+ K(s,t1)P(s) = K(s,t;)P;(s)

and similarly

_ K(s,t7)B () = K(s,t)By 1 (s)
d
S

That is
M(S9tl) = K(S,tl)Qc(S,Xo,k); tl"T_<_ SStl

Clearly though K(s,tj) is nonsingular for sEZ[tl—T,tl] since it satisfies the

differential equation
A
_.(2_. K(Satl) =‘K(S’tl)A
dg
K(tl,tl) =1
Therefore rank M(s,tl) = rank Qc(s,xo,k) for sE:[tl-T,tll. But since

rank Qc(tl,xo,k) =n this implies that the rows of K(s,t;) B, (s) are
[+

linearly independent time functions over [ti-7,t;] and therefore over {o,tl].
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Hence

rank W(o,t7) = n.

Now this condition implies complete euclidean controllability of the
linearized system for (1), and this inturn implies by Corollary III.2.2,
that (1) has the local accessibility property along xo(t), at tj. Notice

that by introducing the operator
(o) = -"A(t)(s) +?1d? O)

we can easily see that

I
Q. (t1sx,5k) = [/B\xo(tl) : I“/B\XO(tl) teeerT on(tl)]
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CHAPTER IV

CONTROLTABILITY -RESULTS

IV.1 A Result For General Nonlinear Systems with Delay

Consider the system
X(t) = Ax(t) )+ B(x(t) )u(t) + Cx(t-T) Q)
x(9) = ©(8); 6€[-T,0]

Consider the linear system

%(t) = Aix(t) ) + Cx(t-T) + B(z(t) ya(t)) (2)

x(8)=w(0); 8€[-T,0]

Where z is some fixed function z€C the Banach space of continuous R™ valued
w

functions on [0,t.]. For each fixed z system (2) is linear and the solution is

given by
0

X(t) = K(0, H0(t_)+ | K(s+7,5)C0 (s) (3)
-T
t

+ j.K(s, t) B(z(s) )u(s)ds
0

where the kernel K(s,t) is as defined before (see II. 2)

Define the controllability grammian G by

H(s,t, z(s)) = K(s, t) B(z(s)) (4)
it T

G(t,2z)= | H(s,t,z(s)H (s,t,z(s))ds (5)
0

We present now the following theorem on controllability which is inspired by

the method used in Kunze [20].
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Theorem IV.1.1: The system

x(t)= A{x(t) + B(x(t)u(t) + Cx(t-T)
is completely euclidean controllable at tf>0 if the following conditions hold:

i) M<® such that ,Ai.:’x}.f'(xf,l Bij(x)t»:< M for alli,j and all x.

w

ii) C such that inf det G(tf, z)>C
zeCllat,] :R™}
Proof: By hypothesis ii) given any z and final point yeRn we may select a

control u which derives the system (2) from the initial condition ® to x(tf)=y.

We may in fact write down the control, it is:

O
u(s, t., o z):BT(z(s))KT(s,tf)G_l(tf, z){y-K(o, t )cp(O)-J K(s+T, tf)CCP(s)ds} (6)

K

This is easily seen by substitution in (3).
Thus define the operator
P:C {[o,t,];R "}~ C{ [o,tf]:Rn}
by P(z):xz(t), where x, is the solution of (2) utilizing control (6). That is P
sends any given function on [ o, tf] into a trajectory of the linear system (2) moving
from ® (o) to y.
We now claim P(z) has a fixed point. First note that P is clearly continuous.
Let M(o, t, ®)=K(o, t) ® (o) + JOK(S + 7,t)Cyp(s)ds. Now note that by condition ii)

-T
of the hypothesis the matrix G—l(tf, z) exists and that

-1
CZ = sup ‘G (tf’ Z)‘ < g

zeC{ [o,tf];an}

Where ] l is the induced matrix nO rmsynow
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sup | |P(z)(t) |
R

P(z)]]

te[ o, tf]

i

sup [|M(o, t, @) + jtK(s,t)B(z(s))BT(z(s))KT(s,tf)
tefo, tf] o

G—l(tf, Z) {Y'M(O:tfs Cp} dS‘ l n
R

By i) M and K(s,t) are bounded on [ o, tf] (compact) hence
E:
Ipellsc +c, [ 11 BaENB (2s) (y-Mlo, t, @) || s
o RP

but by i) this is also bounded hence
HP(Z)H-<—C3<°°Vz€C{[o,tf];IRn} .

Consider the convex closed
A=1{zeC {[o,tf];an}H z)| SC3}
P maps the set A into a subset of itself which is compact (easy to see this) hence

by Schauder's theorem P has a fixed point.

We need only note that application of the control (6) drives the linear
system (2) from ®(0) to y for any given y. But for some z*eC{[o, tf];Rn} (the
fixed point of P) this trajectory will be duplicated by the trajectory of the system

under the desired control hence a solution of the original system (1) and we are

done.
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IV.2 Bang-Bang Control

Consider the system
. n
x(t) = [A+ ZBiui(t)] x (t) + Cx(t=-7) (1)
1
x(8) =20} € [-7,0]5 ¢ €C {[-1,01 ;R“}

Let

V(T) = set of all measurable functions defined on [0,T], with
values in the cube {(ul,uz..o.,um)I -1< ujSl,j=i,2,...,m}
VB(T) = {uCV(T)HUi(t)‘= 1 i-= 1,2,0..,111}

VBP(T) = {uC VB(T)| u(t) is piecewise constant}

Lemma IV.2.1 : (Sussman [4]) VBP(T) is weakly demse in V(T) (in the L;

sense) .

It is sufficient to assume M = 1. Since every function can be approximated
in the Ly norm by piecewise constant functioms, it follows that it will be
sufficient to show that every consant function is a weak limit of ele-
ments of VBP(T).

Let u(t) = r<1l, for 0<t<T. We may assume[>0. For each interval

I = [a,b] let the function f; be defined as follows

-1 , a<t<a+l/2(1-r) (b-a) }

£1(t) ={
1 , a+1/2(1-r) (b-a)<t<hb

b

Thenf fI(t) = r(b-a). Now define uyg (for K=1,2,...) by partitioning
a
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[0,T] into K intervals IKl""’ IK of length TK™L and letting
K
uK(t) = f; (t), t CIKi i=1,2,...,K. Then the functions uy belong

Ki
to VBP(T) and their weak limit is u and we are done.

Let u€V(T). Let x(o;@,u)be the solution of (1). The set of all
elements of the form x(Tj¢,u) u €V(T) is the attainable set at time T and
we call it R(T,¢). Similarly we may define the sets RB(T,¢), RBP(T,¥).

Similarly we have the set IR(T,(P) JRB(T,¢) ,JRBP(T, ) .

Lemma IV 2.2:

Let the functions u, converge weakly to u. Then x(.;¢,uk) converges
uniformly to x(;¢ u) for o<t<T.
Proof: For each vEV(T)
t n t

x(t,v,u) =¢(0) +f [A+ Z Bivi(a)] x(o,p,v)do +f Cx(o-7wv)do
1 0

(e}

now since the functions A,B;,C are bounded ¢ is bounded and vi(t)<1

then there exist constants Cl,Cz, such that

t
lIx(ese,w|[ <[] ¢ @ + le |jx(@sem]las
A L

t
+ Cz/ “X(""’W:'V)”d"
o

~33~
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Now if 0<t<7 we have
t t
“x(t;cp,v)”snw(o)n + 01[ ||x(6;«>,v)“ do + C2[ ”W(o-r)” do

t
< D1+C1[ Hx(ﬂ;«o,v)”dd

vhere Dy = |‘¢(o)” + C,7 sup “<P(”)||
UE[—T,O]

Therefore be the usual argument

Hx(t;%V)” < DleClt for all v and 0<t<r

Similarly for r<t<2T7

do +

t
HX(t;«o,V)Hs n«’ (0)” + le ||X(0;*P,V)|
o
+ c2f D;e€1¢ " g,
t
S D, + le ”x(a;<p,v)“ do
(s
with obvicus identification of constants.
So again “x(t;«p,v) “ < Dzeclt for all v and r<t<7 ., By a finite argument

(since T is finite) we deduce

Cit '
“x(t;cp,v)”SDe 1% for all v and 0<t<T.
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thus the functions x(e, V%V(T) are uniformly bounded. Equation (1)

then implies the derivatives of these are uniformly bounded.

To show that X(e3#,udconverges uniformly to x(¢,u) it is sufficient
to show that every subsequence has a subsequence that converges uniformly
to x(¢,u). By the previous paragraph and the Ascoli Arzela theorem every
subsequence has a subsequence that converges uniformly to some function.
Thus our lemma will be proved if we can show that if vy converges weakly

to v and if x(s,¥,ug) converges uniformly to x(#) then x(¢) = x(o,9,u)
Equation (2) implies

t P
x(t,o,vg) =¢(Q) + (& + DByvg (9)) [x(o,0,vp) - x(0)] do
KX £ i K
(o]

t
+f C(X(O'-T,‘P,VK) —X(U—T))dd

o

t n
+f[[A + LByvg, (@)% (o) + cx(s-n)]do
o
1

using the weak convergence of vK'to v and the uniform convergence of

x(O,w,vK) to x(e) if follows that

x(t)

n
p(0) + f(A +2.Byu; (@) x (o) + Cx(-7) do
(o}

Then

x(t) = x(t; ¢,u) and we are done.
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Corollary IV.2.3: _

The mapping u—=x(e,p,u) is continuous from V(T) with the weak
topology into the space of continuous R® valued functions in [o0,T] with the

uniform topology.

Corollary IV.2.4: The sets R(T,¢) and R(T,p) are compact.

Corollary IV. 2.5: The sets RBP(T,¢), [RBP(T,¢) are dense in

R(T,¥) and R(T,») respectively.

Proof:

The lst Corollary is a restatement of Lemma IV 2.2, Corrollary IV 2.4
follows from lst Corollary and the fact that V(T) is weakly compact. Finally

Corollary IV 2.5 follows from Lemma IV 2.1 and Corollary IV 2.3.

It is clear from the preceding that closedness of the attainable sets
RB(T,¥), (resp RBP(T,¥), RB(T,y) RBP(T,¥) 1is equivalent to
R(T,¢) = RB(T,p), (resp. R(T,y) = RBP(T,¢), IR(T,¥) = [RB(T,¢)R(T,») = RBP(T,¢)

We consider now the reachable sets in function space
Ro(T,¢), RCB(T,cp), RCBP(T,«’) and [Rp(T,¥), iRCB(T,qa), IRCBP(T,w)

and we let xtGp,u) be the state at time t starting at ¢ and using control

u, i.e.,

xt(‘psu) () = x(t+6,0,u), 6 C[-7,0]
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Now suppose that up —-u weakly then x(.)(w,uK) converges uniformly to

x(.)(v,u). Indeed

|| 2oy ®ru0) = %0y @0 || (10, 7150) =

xt(¢5uK) - xt(¢,u)” c =

SUPy ¢ [o,T] ”

sup “ x(t +03%,u,) - x(t +6;30,u)
K , RR

€ [0,T] ( e -7,01

and we are done by the result of Lemma IV 2.2. We have therefore the following

corollaries.

Corollary IV.2.6: The mapping u-—a-x(.)(¢,u) is continuous from V(T) with
the weak toplogy into the space of continuous C valued functions in (o,T)

with the uniform topology.

Corollary IV.2.7: The sets RC(T,w) anleC(T,¢) are compact

Corollary IV. 2.8: The sets RCBP(T,w); R-BP(T,p) are demse in RC(T,w) and

RC(T,w) respectively.
The following theorem provides an instance of & truly"Bang-Bang" result.

Theorem IV.2.9: If all the brackets [Bi’Bj]’ [A,B4], vanish for

all i, j, then RB(T,y) and RB (T,») are closed. More over the sets

RBP(T,w),@{BP(T,¢0]are also closed.
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Proof: ,

Over one delay interval the solution of

P
x(t) = [A + Zui(t)Bi:l x(t) + C v (t-7)
i=1
is
¢ .
. P
x(t) = exp At[qexp Bi./o ui(_a,)d ai'«’(O) +
t P t
+ exp A(t-o) Il exp B; u-(s)ds} Cv(o-1)d
_}C [ 9 1.1[. i

Now by Liapunov's theorem on the range of a vector valued measure [23]
£ -

the set of matrices Bif ui(s)ds where u€ VB[T] is compact for each

g
i and 0. Thus clearly the first component of the right hand side of

the above equation generates a compact set and by Aumann's theorem

[23,p. 24] the second component does also. Therefore RB(t,») and IRB(t,¢)

are closed for o<t<7. Now for 7<t<27 the solution is

P t
x(t) = exp A(t-7) [ I:'{ exp Bi[ ui(a):’da x(7) +
t t
P
+ f exp A(t-0) ] exp Bif ui(s)ds] Cx(o-71)do
T 1 (4

Then by the previous result (i.e, R(7,¢) compact the first component of
the last equation generates a compact set and again by Aumann's theorem
the second does also. For the general case a trivial induction argument
similar to the above arguments establishes that RB(T,¢¥) and RB(T,¢) are

closed. Now to show that RBP(T,¢) and IRBP(T,v) are closed we need only
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replace the use of Liapunov's theorem in the previous case by Halkin's

theorem [21, 22] which establishes that the set of matrices
t

f Biui(s) ds 1is compact for each o, and i whenever u€ VBP(T).
/J .
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