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CHAPTER 1

MOTIVATION AND FORMULATION OF THE PROBLEM:
| ’ IDENTIFICATION OF BILINEAR SYSTEMS

1.1 Motivation.

Linear models are frequently utilized to approximate the dynamical
behavior of non-linear systems. Despite their convenience, linear
approximations are often inadequate. So control, realization, estimation

and detection problems have been studied for one particular class of

non-linear systems(‘[ 6] through [12]))these systems have a Lie Group

for their natural state space and they have been called "Bilinear"

-
because their nonlinearity consists of a multiplicative control term
appearing in the equation of their internal dynamics i_n such a way that they
are linear in either, control or state, if one is held fixed. Practical
problems of this kind include FM and AM demodulation, frequency
stability?: gyroscopic analysis, etc., Also of this__kind and very common
in nature is any problem that obeys the law of mé,ss action such as the
population of species process oOr chemical reactions in which a catalyst is
involved. Also cellular processes with enzymes producing bilinear
control, tran.sfer between organs with variable diffusivity of membranes
causing bilinear control, temperature regulation of the human body with
vasomotor . control of circulation producing bilinear control, and
regulation of carbon dioxide in the lungs. Bilinear nuclear fission, heat

transfer, reactor control in the Nuclear and Thermal Control Processes,

area and urban dynamics of Socioeconomic Systems can be effectively

described with a bilinear model [137.




1.2 Discussion of the Mathematical Model Used.

We will not dwell in this study in too many philosophical qﬁe stions
of the nidentification problem'. It is rathe; a straightforward approach
that will leave up to the person that chooses to apply the methods and
results obtained here, the establishment of his own goals and accuracies.

The first pertinent question to answer in the study of " on the
Identification of BilinearProcesses'is indeed: Qhat is a bilinear system?
What makes this question such a valid one is the fact that one can see
two basically different approaches to the study of Bilinear Systems: the

‘approach that searches for the least linear ambient in which bilinear
equations can be~embedded 4] and the approach that prefers to study
system theory on group manifolds and coset spaces f141. |

It is a natural consequence of the first approacvh to desire to extend
séme of the interesting results obtained for linear systems (i.e.
decompo‘ﬁition of the system into sub-systems of which only one influences
the inpuf;;output behavior) tothe class of bilinear systems.

Some progress is possible towards the accomplishment of this goal,
especially when the bilinearity is considered to be produced by the
presence of a multiplicative control action besides the additive one. The .
following equations describe a discrete bilinear system that fits the above
descripﬁon without loss of generality

x(k +1) = (F + u(k)G) x(k) +b u(k)

y(k) =H x(k) x(0) =x (1. 1)

where



y(k), u(k) are scalars
x(k), beR™
F, Ge R
H'e ]Rlxn

On the other hand, the approach which prefers to view bilinear
systems as a special case of systems which evolve on differentiablé
manifolds prefers to employ the more differential geometric tec‘hniques
needed since linear algebra no longer suffices. Although we will make
use of the mathematical model that does not contain the additive linear
term (for reasons that will become apparent in the next parégraph) it will
not be necessary for the purposes of this work to go deep into the re&atvion—
ship between this model and Lie Algebras, We will stress the pertinent
consequences on the forms of the system that are relevant to the
identification problem.

Begause some of the major distinctions between linear and
bilinear systems occur mainly when there is noAiin_éar term in the
mathematical model, the system with additive control will be called
'""homogeneous in fhe state'.  But any inhomogeneous bilinea_tr system
can be reduced to a2 homogeneous in the state by adding an extra component
to the state vector [ 2 ]. I.e. An input-output map of an inhomogenequs
bilinear system which can be realized by -

z(k +1) =(F + u(k)G) z(k) + b u(k)
y(k) = H z(k)

can be realized by one of the form



x(k +1) = (A +u(k)B) x(k)

y(k) = C x(k) (1. 2)
WHere -
1 O : 0 0
Az[o F] Bz[b G

C =(0O H) xTz(l zT)

This will be the mathematical model for bilinear systems that we

will use. It helps to avoid notational complexities and the results

obtained with it are easily extended to the case of multiterminal systems.

The discussion as to whether the initial condition of the system is

an equilibrium state or not will be deleted until "controllability" is”

discussed. An equilibrium state is one for which Ax(k) =0. They come

in a natural way in the definition of equivalent realizations. When the

system- starts from 'rest' the initial condition is an equilibrium state.

1.3 The Problem of Identification.

One can think of a particular approach to the identification problem

for each circumstance and motivation.

-

We will basically discuss the situation, where one is able to

perfoi'm experiments on the system in order to obtain input-output data.

In order for these experiments to provide information in a cummulative

manner it will be necessary to be able to reset the system every time
a new experiment is conducted to the same initial state. This is an
assumption which helps in the mathematical formalism of the problem.

Otherwise the problem should be treated statistically.




The goal of the identification problem will be that of producing a
model that performs in a fnanner to minimize the value of a performance
critgerion. r‘l‘ha’c' is, the model is to be compared to the original process
and the performance criterion will be a function (in general) of the
deviation of the output of the model from the output of the plant (under
study) gi;Jen the same intput to both of them. The following diagram should

clarify things

u = plant >y

model

Y

€

Fig. 1.1 output erro’r'
Our goal is basically to minimize the output error of this diagram.

W}(i:én discussing generalities of System Identification the model is
usually characterized by nonparametric representations (impulse
responses, tranéfer functions, Volterra Series) and by parametric
representations ( 2 state space description of the model). )

For bilinear systems both characte rizations are useful, Volterra
Series have been used to find regions of stability of non-linear
differential equations since the convergence properties of the series are
directly related to stability and boundedness of response of a given system

[ 17]. They .also have been used, in discrete time, to successiully

analyze and synthesize interconnections of linear constant systems and



and zero memory nonlinearities (i57. They are related to the
G-functionals of Wiener's methods for the analysis of nonlingar problems [16].
The state spage representation has been extensively used in the study of
algebraic properties of the system from which very important and ﬁseful
observations are produced [2].

In linear systems, with scalar inputs and scalar outputs (the
importance and weight of the assumption is by no means negligible)}
the simplicity of the canonical reprevsentation together with the well
known prqperty of equivalence of realizations allows a very straight-
forward approach for the identification of a parametric model 18].
Least Squares Identification is even possible with certain nonlinea:' :
systems that retain linearity with respect to their pa:rameters rsl
But bilinear systems do not exhibit either linearity on their parameters
nor a canonical form amenable to identification. (Brockett [2] has a
theorem that explains that every bilinear realization of the form
. | m | )
x(t) = (A + .}__:lui(t)Bi) x(t); y =Cx(t) where x is an n-tuple vy is an
m-tuple arté A, {Bi? and C are matrices of appropriate dimension, is
equiyalent to one in which the A and Bi matrices are in block triangular
form with the diagonal blocks being irreducible. Moreover, it continues, i
if (A, B.i,-'C) and (F,. Gi’ H) are two equivalent realizations in block
triangular form with irreducible blocks on the diagonal then there is a
permutation 1 and non-singular matrices Pk such that the diagonal
1 -1

block e related b A = ; =
ocks are related BY PididPi TFrnmno ’ Dl kT S’

We understand by a block being irreducible if there exists no nonsingular



P such that

pap”! =|:"§‘11 e

v AZlAZZ

~1
B 0
pB.P ) :[ A 5
' B, B
where A . and B! are square matrices, all of the same dimension.)

11 11

The present computer capabilities and existing numerical methods
compel us to discuss very superficially at this point a possible solution
to the problem of direct identification of a parametric model for discrete
bilinear systemé. Because the equation déscribing the system's

dynamics is of the form

x(k + 1) = (A + u(k)B) x(k)
one can substitute

o xR = (A u(k-1)B) x(k-1)

and so on until we get an expression of the form -

k k -1_2
x(k+l) = A on +u(0)A on +u(l)Ak 1B X, +

eee +u(®u(l) ... u(k)B X * (1. 1)
the input-output map can then be expressed

F(k +1) = C x(k+l)

K4l 12
=CA +x0 4 u(O)CAkao +u() cAX g Xy +

et ul0)u(l) ... u(k) cgk+1x0

and an algorithm can be provided to determine the components of

matrices A, B and C that would minimize a performance criterion of the



form F(y(k+l), ¥(k+l)).

We will not dwell on this formulation of the problem any further
mainly becaﬁse'a realization of a state variable model has been
produced parting from a representation via kernels of the input-ouput
map [1]. This representation is closely related to the classical
Volterra Series Expansion of non-linear input-output maps. Identification
of these kernels is then important per-se and also because a parametric
model can be obtained from them if so desired. The rest of our work
deals with the identification of these kernels in a deterministic and a
stochastic situation. A chapter on the realization theory applicable to
the identification problem at hand follows in order to provide a -

selfcontained treatment and to adjust the existing theory to our needs.

.&‘:



CHAPTER II

. REALIZATION THEORY AND ITS RELATIONS TO THE
IDENTIFICATION PROBLEM OF BILINEAR SYSTEMS

L J

2.1 The nonparametric model via kernels.

As it was mentioned earlier, very recently an abstract realization
theory was obtained for input-output maps, characterizing bilinear
systems [1].

Our approach to the identification problem will be the identification
of the kernels in the repre sentation of the input-output map data to a
certain degree 6~f accuracy. The aforementioned realizafion theory will
be used subsequently for the construction of a parametric model fr/c‘S'fn
these kernels. We will also examine the advantages Iand disadvantages
between obtaining a parametric model in this indirect way and a-direct
identification of a paramétric model. Question concerning the order of
the mod;I as it relates to the order of the system will have to be resolved.
The order is not specified explicitly in nonparanﬁetric representations and
because nonpbarametric representations are intrinsically infinite dimentional
it is (in principle) possible to obtain a model whose outpuf agrees exactly
with the process output. Moreover, the results should be interpreted
very carefully.

Understanding,clarifying,and adapting to our needs the realization
theory will answer many of these questions. Therefore, our first step

is to develop completely the realization theory for homogeneous in the

state bilinear systems. This involves adaptation of the realization theory
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of Isidory [1] tQ our problem. We would like to note that the realization
theory described here generalizes slightly and simplifies (especially the
nc;tation) that of [1] . The state space model we use is repeated for
convenience.
x(k+1) = (A +u(k)B) x(k) (2.1
y(k) = C x(k) x(0) =xO

where
y(k), u(k) e R
x(k) ¢ R
A,Be R
cer™™® ; | t

The first difference that must be noted between this model and (1.1)

is the fact that the initial condition cannot be the zero vector. Zero is

an isolated state of the system: Xc R"- {o} .

A very simple expression for the input-output map can be developed

departing from (2.1). Let PO =%, and generate:recursively

P, =(AP ; BP, ) i=12,... (2.2)

i i-1~’ i-1

i+1
also generate the 2" x 1 vectors

Yo :[ ul(O)]
el '
YT [u(i) ui_l] (2.3)

and observe



Notice that the 0 are related to the Volterra Series Expansion kernels

(for more on that see referencel4]).

It is because of this relation that we believe it is justified to call
the Wyrg in our representation kernels. Therefore knowledge of the
kernels wk , k=0,1,2,... provides a complete description of the model

via (2.6). By a nonparametric model of bilinear system we understand

the description given in equation (2.7).

2.2 Minimal realizations.

Let us recall that when identifying a certain model of a Plant one

of the major concerns is whether the model is unique. For linear systems,

L

)

it is a well known fact that only the completely controllable and completely
observable part of the system is identifiable via input-output observations
and this guarantees a minimal model which is unique modulo a cjhoice of
basis of the state space. It is not hard to show that a similar result can
be produlcj':'ed for bilinear systems described by (2.1) provided an appropriate
'controllability' condition is satisfied. The ‘cerrﬁ ""reachability'' has been
preferred to " c'ontrollability” ‘and is mainly concerned with whether the
associated state space is spanned by the states reachable from a given
initial state [2].

We will then call the bilinear system reachable if and only if the
réachable set is not confined to a subspace. "It has been proved [2]
that the reachable set of (2.1) is confinéd to subspace if and only if there

exists T nonsingular such that
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T A o0
TAT™ - 11
| 21422
. B
TBT = ~H }
B, Baz
— -
. =] 0 ] (2. 8)
0 L xo .

where the zero blocks are all of the same dimension.
The definition of observability used in connection with bilinear
systems is not different from the definition by which we understand the

concept in linear systems. A system is said to be observable if none
e .

A

of its states are indistinguishable. We understand by x_ being

0

indistinguishable from x,  if for all inputs u, the response y is the same [2].

1
By a realization of an input-output map in bilinear systems we
understand the construction of the triple of matrices plus the initial

condition {A,B,x , C} respective by nxn, nxn, nxl, lxn from an

0
infinite sequence of row vectors { wo, wl, . .(.Uj, ...}, respectively
1x Zj, in such a way that (2.6) holds for all j.

Two realizations will be called equivalent if they have the same
input-output map. A realization is minimal if and only if the associated
state space is both reachable from any initial condition (except x = 0)
and observable. These minimality conditions can be checked by the
algebraic criteria developed below (see also f17). To this éna observe

that { A, B} can be simultancously tringularized if and only if one can

simultaneously tringularize the associative algebra { A, B}AA’ where by
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associative algebra we understand the set of matrices that can be
expressed as pi-oducts and sum of products of the matrices A and B [3].

Denote the least subspace of R" invariant under {A, B} containing X4 by

>

gen{A B) (xo) .
Observe that (2.8) and the above comments about the associative algebra
imply
gen{A B}(XO) =gen{A B} (xo)
2 ) .A..A.
With the p"s as previously defined (equation (2. 2)) construct the n x 2" .1
i

matrix

® =[P :P :P :....: P

n - 0 1 2 n-1

A\

the following lemma has been proved [4]:

The least subspace of R” invariant under {A, B} and containing XO

can be expressed as

(x) =R(G )

en
& n

{A, B}

e

Where f{(@n) is the range of the matrix @n' Hence

gen{A, B}, ,(x)) =R(Q)

Since the associative algebra is a larger set containing all linear
fzombinations; products of any two elements, products of products, etc., -
’ we knqxv because of the Cayley-Hamilton Theorem that this genera’;io.n of
linearly independent elements ’cerminaf\:es once fA,B} start appearing at
the power of their order in the elements of {a, B]AA. These comments
produce a very important observation: if the system is of order n and

we express x(n) as a function of the initial condition X and of the inputs
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-1 -2
+u(0)A” Bx +u()A" " BAx,. + ...

n
x(n) = A xQ 0 0

B 'A%+ w(0)u(l) ...u(n-1)B™x

~eeetu(l)...u(n-1) 0 0

we see that x(h) is given by x_ multiplied by linear combinations of

0
elements of the associative algebra { A, B}AA where the n-th power
already appears. This implies that if one is going to reach n linearly
indepehden’c states one will be guaranteed to have done so in n-1 steps

(if the system is of order n and non-zero controls have been used).

The following theorem can now be proved:

Theorem 2.2.1: A bilinear system (represented by(2.1))of order
n has a reachable set which is not confined to a subspace of Rr" iff
rank @ =n .
n
Proof: Necessity, assume rank @n =n form D‘n with u.'s
i

previously defined

r_' —
. 1
Sk
%o
v‘ n - ul
un-Z
%‘-’ - -

examine the product @n W i

= : T eee o 1

@n_ \)‘n [PO Pl Pn-I] u ]
0

L un-Z__

:PO + PluO + qul o0t Pn—lun—Z

:xo + x(1) + x(2) + ... + x(n-1)
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This vector belongs in the span of reachable states. Therefore rank
@n =n implies the reachable states span RrR” .

Sufficiency: Assume the reachable set spans R" or in otherwords

L J

that we can reach n linearly independent states. Recall that this can be
done in the first n - 1 steps. This implies that these states are in the’

range of @n . Therefore rank @n =n,

Theorem 2.2.1 provides a very useful algebraic criterion for
reachability of bilinear systems. Notice that the initial condition is

T

~ incorporated in the criterion. Similarly a dual observability criterion

can be developed. To this end let Qo = C and generate recursively

. Q o
i-1 ] . “ .
- =1,2,3,¢Aaoc0-o
Q [ Q. . B ’
i-1
now form
= o 7
Qn Q0
Q1
S .
L_Qn'L

Theorem 2.2.2: The bilinear system (4) has no indistinguishable
states iff rank @n =n.

Proof: Necessity; assume rank @n =n . Observe that

-
y = v ) Q%

define the functional
- @n( \')‘n) : IRn + R by
T -
XiH D‘n @ n Xi - Q i

1
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n
ui has the form Qi =z yi(k) (the i in Y reflects the dependence on
k=1 4
x,) suppose now that xi, xj are indistinguishable. Then}'.&i = ‘Aj , 1.e,
i

T T

\)‘x; ani B U‘n anj
T

W Qe - %) =0

W @ e - 0) =0

Since \'\‘n is arbitrary the only vector that is orthogonal tp every
other vector is the zero vector. @ n(xi-xj) =0 . So (xi-xj)e ker @ n'
But since it has been assumed that rank @n =n the nullity of Qn =0., xizxj.
Sufficienc;y: Let X denote the subsPa;:e of all indistingﬁsl1able
states. Because a state x is indistinguishable 'even after we let ;he
system propagate with zero control or with any control u (i.e. Ax,
(A +uB)x, etc. are indistinguishable also)Xq is the largest subsface of

R"” invariant under {A, B} and contained in the kernel of C (anihilated

~ by the row vector C).

Denote X =gen (C)
q &"(a, B)
now that

Q x:d for xeg X "
n q :

is obvious from the construction of Qn therefore Xq C ker @n to

show ker @ 0 c Xq notice that @ n X is the multiplication of x by linear

combinations of elements of the associative algebra {A, B}AA up to the

t
n h power of A and B premultiplied by C. Again, the Cayley-Hamilton

theorem indicates that any element of the associative algebra containing *
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th
A or B tothe (n+i) power for i=0,1, 2... can be expressed as linear
combinations of the elements containing A and B to the n-1 power (this
indicates that f a state is not distinguishable in n steps it will not be so

in n +i steps fori=1,2,3,.. o) . Therefore

—

gen () B (C) =kernel (Qn)

and clearly, observability implies dim Xq = 0 and therefore rank

Q -n.

Having verified these minimality conditions the 'que.sﬁion of
equivalence stili requires the verification of tbe following: “‘the reanable
sets are reached from respective equilibrium states of the models under -
investigationt’ Since we do not want to introduce additional re strictions
in the identification problem we will not require the initial state (which
will be if}entified along with matrices A, B and C) to be an equilibrium
state. 'fo establish equivalence it will be then necessary to allow the
system to propagate uncontrolied until it reaches an equilibrium state
from the initial condition identified. This realization is equivalent to
any other one of the same input-output map that satisfies the minimality

conditions from its respective equilibrium state, i.e.

(A, B,C,x)) =23 (8,B,C,x) ~(F,GH, )
where '
-1 -1
A =PFP C =HP
-1
B =PGP x =Pz
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2.3 A realization algorithm.

We pro.cede to describe the Hankel Matrix for bilinéar systems
modeled by(2.1)and to describe the criteria and the algorithm with \\'rhich
we caﬁ obtain a realization, given the kernels that desc.ribe the input-output
map. The development parallels completely Isidoris' development (13,
the difference being that Isidory obtains, a biliﬁear realization which
contains a linear term (an additive control) énd whose initial state is the
origin of the state space whereas our realization assumes an arbitrary
but non-zero initial condition and contains no linear term (we gain a
little generality)lWe will then prove only the 'Realization Lemma“‘t}iat:
shows that the difference in essence is that an nxl linear term coefficient:
has been replaced by an nxl initial state vector. The proofs of the rest

of the theorems are then straight-forward with the appropriate

substitution, and can be found in [1]. Begin by letting

57

i=1,2,3,...
i 5 ¥5a1 J

and construct S,j(i =2,3,..., j=1,2,...) recursively: Partition
i

Sy, 541 2° -
1 2 .
=[s
Sicn, 5417 VS, g1 Sion g

‘where both blocks on the right hand side have the same number of

célumns. Form then

1

— i"l: J'il

ij 2
Sio1, j+



notice that Si’ are 21-1 x 23-1 matrices. The infinite block Hankel matrix

is formed from these

The finite Hankel matrix bM'M is the blockwise M!' x M submatrix in

1
the upper left hand corner of 5 this matrix is (ZM -1y x (ZM-l) and

contains the same information as the finite sequence of kernels

{w ,u)l,u)z,..., ) M'S M- 2’! .

Now form the following special submatnces

\
§M‘M - take the first half of all the columns

(blockwise) except the first of .%’JM‘, M+l

%
5 - take the second half of all the columns
M'M %
(blockwise) except the first of M, M+t 1

< 5
(et

: Obs;erve' that ém and %“ have the same dimension as % .
M'M M'™M ' M'M

Lemma 2.3.1. (Realization Lemma): The finite sequence

{u)o, U)l, UPYRRRE wM'+M-1} is realized by the quadruplet (A, B, C,xo) if

and only if
_ 0 .
=NV QM' 4 M S
‘,‘;%AIM = @M' A @M (ii)
> @ B (’3 (iii)

MM~ M!

where @ , and @M are previously defined,
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Proof: neces sity:

[s.,S..S . ][wmw...u) ]

1712 T13° 2 M-1
=[ CP0 CP1 CP2 CPM_I]
_ o
=9 JM
{ S,y S50 0 SZM]= CAP CAP, ... CAP |
CBP, CBP, ... CBP,
_ o
=0, ‘3M
S, = AP ...
(S5, 555 S35 S3M] , QIAP, QAP QAP 1
QBP, QBP ... QBP,
= Q @ . T "

2 M

and so on until (i) is verified. Using this result we can write

-Q M+l=[®M,PO@M,Ef.. P ]

M' M+1

-1 € i ! {
=[Q P L@ ap; Q) BP .- & ar, 1@, BP,

R T T ke SR . o T T e T e s

Observe that the submatrix formed from the dotted blocks is by definition

§ . Therefore we have shown that
M'M 1
oY
= X A
2y @M, } 3

Taking the undotted blocks except the first one we can show that

5 .Q 58
M

M'M M!

To prove sufficiency it is only necessary to reverse the above arguments,

Observe that X, and Care respectively the {irst column of @Mand the

first row of @.M,
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The rest of the Theorems are included for the sake of completeness
(with the appropriate substitution) without proof (for proofs see
1.

Theorem (3) (Rank Condition): If for some M' and M

rank §M'M =rank gM',MH = rank §M'+1, M

then the finite sequence .fu)o,w sWo, e, W } admits a partial

1’72’ M'+M-1

bilinear realization.

And the very important theorems concerning minimal realizations:

Theorem 2.3.2; Let {w 0 Wp O } be an arbitrary finite

Z,Q'n’u)MO

If there exist
<.

positive integers M and M' :MO-MH such that the rank condition is

sequence of 1x 2} row vectors (j=12,.. "MO)'

satisfied, then the minimal partial bilinear realization problem has a
unique solution (modulo the choice of basis in the state space). "The

dimension of the realization is equal to rank éM'M and an actual

<5

realization is provided by the quadruplet

T -1 Tol @ T o @ Tl

T -1 T o2 T . T -1
B =( QM’ @M') ®M' M'M @M ( s@M O

5;0 = first column of @M ' .

C =first row of @M'

' v M! M
~where ®M|and@M are (27 -1) xn and nx (2 -1) matrices respectively

such that

Q8 =2

MY "M MM
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Theorem 2.2.3. An arbitrary infinite sequence {w 0’ wl,:wz, oo, wj, eel
of 1 x 27 row vectors admits a bilinear complete realization if and only if
the infinite matrix 5 has finite rank n (i.e. there exist M and M' such

that rank 5

MU', M+ =rank §M‘M =n for all i,j 2 0). The dimension

of the minimal realization is equal to n and an actual minimal realization
is provided by the quadruplet (A, B,xo, C) as expressed in the previous

theoerem.
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CHAPTER III
DETERMINISTIC IDENTIFICATION OF

BILINEAR PROCESS

3.1 Direct Identification of the Kernels of the Input-Ouput Representation

We obtained in the previous Chapter the following input-output

representation of the model portrayed by equation (2.1)

= = 2 s o 30
where u lE 1
. 1
“o\z[ ],
u(0)
u. 1 [
u,:[ - ] i=1,2,3 (3..2)
Yoba ()
Y1
and the W :CPk (3.3)
where
Po =%

P . ={AP. , BP, ] i=12,... (3.4)
i i-1 i-1

The realization theory examined indicated how to obtain the quadruplet

(A,B, x,.,C) from the u)k's such that these matrices depicted the correct

0

order of the model if the 'Rank Condition''was satisfied for all i.

Observe from the two last theorems in the previous Chapter that

although they refer to the complete-minimal realization for an infinite

JW,eea, W, 000) of 1x 2} row vectors, if ﬁ has finite

sequence {mo )
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rank n and at this n the rank condition is satisfied, it is only necessary
to obtain MO =M'4+ M -1 row vectors. sM'M is formed from these

such that it contains the minimum M'and M necessary to satisfy

=n for all i, j =0.

rank sM'M = rank §M'+i, M

These are very useful observations for the identiﬁ;zation problem,
whén one has a priori knowledge of the order of the system and of its
bilinearity. This is not a very restrictive assumption. Often one is
faced with a bilinear model of known order, which is the result of the
underlying theories of the process (see also Chapter I). If under these
éircumsténces we are allowed to perform experiments 'then it is
possible with an appropriate selection of inputs to actually obtain the-
kernels from the measurements and the input-output representations that
we displayed in (3. 1). The realization algorithm woﬁld produce;a
canonical model and it wquld be global in the sense that it would serve as
a cano'ni*‘c:al model for the continuation of input-output pairs from k =n on

If we have no such a priori knowledge of tl;le order of the system
and of its bilinearity then we must realize that the rank condition is
impossible to check for all i,j >0 because we require an.infinite
amount of data. It is possible for the 3 matrix to have stationary rank .
"nfor M'+i, M+ j where 0<1i, j<q, a finite number and for this_
rank tc; increas.e‘ for i, j>q . Therefore one should not be mislead to
believe that one has identified the canonical part of a bilinear system

whose order was not known a priorir with the realistically finite amount

of checks and computations possible. We will comment on this problem
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furthgr after we explain how the special purpose inputs can be generated
in order to obtain the kernels exactly. It is necessary to remerﬁber, that
the assumption of previous knowledge of order and bilinearity of the
system provides us automatically with the knowledge of an upper bound
number of kernel vectors needed for the complete nonparametric mod;al
of the system.

We already mentioned this ui)per bound at the beginning of the
chapter but becé.use of its relevance "at this i)oint lets understand how to
obtain this upper bound from the definition of the kernel vectors as they

are obtained from the state space model:

cp <
W™ " x
where PO = XO
P, =[AP. , BP, .]
i i-1 i-1

the comments about associative algebra made in chapter II and the Cailey-
Hamilton Theorem as they were used to prove the ' Controllability' and
observability Theorems (2.2.1 and 2,2.2) should allow us to understand
very clearly that for a bilinear system of order n u " where k2 n - 1],

contains redundant information. To assure ourselves that this information

is included in the matrix §M‘M we should form the k-1 x k-1

block order matrix which has the form

- '
UJO wl U)z e e wk—l
LUl w 2 (03 PP (l)k
wz u) 3 ......
Bl 5 ). eoeovee
k-1 Yy 2k-1
L. -
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An upper :bound in the number of kernels that one mﬁst identify for
a system of known order n is then 2n-1,

It is app?rent from the realization theory that there exists a unique
sequence of kernels associated with a system that we know to be bilinear.
Since our known model may not be canonical the rank of %M'M say q,
will be smaller or equal to its maximum possible rank n. So then
for the first algorithm the assumptions are: a) previous knowledge of order
and bilinearity and b) that it is possible to reset and run the test as many
timeé as necessary. Since for the observation at the 2n-1 vector one
needs to identify a2 1x ZZn-l vector we need 22n—1 runs, The way of
obtaining the co;nponents of the kernel vectors is obviously not unjque
but we propose the following scheme: Arrange the input—outpﬁt map as
indicated in Eq. 3.5 on the next page, where Wy is bthe ith conﬁponent
of the kth kernel vector.

For illustration purposes lets obtain four kernel vectors W W

and w,.

W 3

On your first run let
u(0) =u(l) =u(2) =0

“from (3.5) we obtain -

y(0) =0
y(1) =Wy,
y(2) =0y
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y(0) |
y(1)
y(2)

y(3)

ot

0
u(0)

0

0
u(l)

0

0 0 0 o0 0

0 0 0 0 0
u@)u(l) 0 0 0 0

0 1 w(0) u(l) u(0)u(l)

Equation (3.5)

0 0 0 0
0 "0 0 0
0 0 0 0

u(2) u(2)u(0) u(2)u(l) u(0)ju(l)u(2)
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Now obtain a second run of input-output pairs but this second time

let

u(0)# 0 , u(l) =u(2) =0

Since this is just an illustration, let u(0) =1. We obtain

y(1) :wll + wlZ

y(2) =w,) +w,,

y(3) =wg) w4,

, W,, and w,, one can solve for

Since one already has the values of W’ 21 3]

11

, W and

w 22 32"

12
Obtain a third run of input-output pairs letting u(l) £ 0 (say u(l) =1),

u(0) =u(2) =0 now

y(2) =wp) T3

y(3) =wy, + Wy,
again one can solve for w5 + W35 The fourth time let u(0) £ 0 and u(l) # 0
(say u(0) =u(l) =1) and u(2) = 0

y(2) =wy) FWog iy

y3) =0y ¥ gy Tway,

24
u(0) =u(l) =0

solve for w_ and U The fifth time let u(2)# 0 (say u(2) =1),

y(3) =gy Tw,g

solve for w The sixth time u(0) # 0,u(2) # 0 (say u(0) =u(2) =1) and

35°
u(l) =0

3) =
y(3) w31+w32+w35+w36

solve for w The seventh time u(l) # 0, u(2) £ 0 (say u(l) =u(2) =1)

36°
and u(0) =0
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Y3 =gy t W5ty t Uy
~so.lve for 05
Finally run the tests through an eighth time using all non-zero controls
(say u(0) =u(l) =u(2) =1)
. 3y =
obtain Y(3) =g F W, W bWy, bW W F O, Wy

f .
solve for w 38
It is interesting to make a chart indicating in which running the

components of the kernel vectors were obtained and the values of the

controls at each run

running E controls kernel vector comp.
u(2) u(l) u(0) Z
! 0o 0 9 “or Y’ Y211 Y31
2 0 0 1 Wy, s Wyo s Way
3 0 1 0 W50, Wag
+ 0 kl ! Y24’ Y34
5 1 0 0 Wye
6 1 0 1 Wa e
7 1 1 0 Wy
8 1 1 1 Wyg :

Notice that under the jth running we have j-1 written in binary form. -
The following general observations can be made:

i) The order in which one obtains the kernel vector componcnts:
is not unique but the order that we propose here is sequential in the

sense that on each running one obtains a new set of components using
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data from the previous runnings and is not necessary to wait until all the
runnings have been completed to obtain some of the kernel vectors., As
B . .th
a matter of fact, one obtains the j component of the kernel vector when
' th .
one conducts the j  running.
ii) Obtaining the kernel vector components in the order thatl

proposeAis facilitated because of the existence of binary digital equipment.

‘The following diagram depicts a possible scheme

S Tt u(k-1)
clock >./counter with |~ lcontrol
series output trigger unit plant —> y(k)
(binary) = :
adjustable RESET .
counting cycle , (c.t.u. receives signal

SIGNAL, that counting process
counting begins begins again) -

3.2 The Formulation of the General Identification Problem for a
Non-Parametric Model.

If one doesn't know the order of the system it is not possible to
assert that any model produced via identification of the kernel vectors is

of the correct rank because of the impossibility to check the 'rank

. condition'' (Ch. II) for the 5 matrix. Instead we suggest to obtain a

model identifying a reasonably large number of kernel vectors. If one

doesn't obtain a model of the correct order then every time we run the

iterations with a different set of inputs we are going to get a different
model. This leads to the question: do we want a different model per

iteration set or should we form a bigger iteration concatenating the runs
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of the smaller iteration sets and produce one model that minimizes the
error with respect to this larger data set?

In the next section we describe how to obtain a model that

L 3

minimizes the error of the bigger data set in the least-squares sense
(deterministic). Here I formalize the problem at hand:
Situation: Order not known

Possibility 1):

,w._ ) from the iteration set {u‘l.(O) ,u%(l),
MO'J j j
2 2 2 2
u, (1),... ,u%(k), u, (k), u.3(k), cee, 'k(k), oo ,u.l(M -I),u, (M, -1),...,
j J J ] J J 0

0 J
M 1 1 2 1 2 3
wZ O -, v 0), v, v S v ) S0 YK, e, yiAK), e
J 0 J I J J J J
1 2 0 . o
LU Y - . E F ) }C . f
Yj (MO)’ Yj (MO)' YJ (MO)} and obtain RJ {A B,XO }_] or each w

iteration set. Each R, models the set of input-output pairs used in that

Obtain {QO, Wsees

particular iteration exactly but Rj # R‘a (including a pbs sible difference
between the order of Rj and Ri, also).
Possibility 2):

Obtain (wo, W from the bigger iteration set

| A u)Mo}unique
formed by concatenating all the input-output pairs of each iteration set of

possibility 1) and obtain a model R such that the error between

u(unique)
the output-sets obtained by running an input set corresponding to the jth .
iteration through Ru and through its repsective Rj is minimized, Notice
that the error between the output sets indicated above can vary if the

orders of the models corresponding to different iteration sets are

different.
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3.3 Least-Squares Identification of Bilinear Processes
Instead of going through the stéps indicated in the last section to

obtain the bigger iteration set we simply form observation vectors like

‘the following

1
y (k)
2
y (k)
Sk
2
y (k)
2k+1
(k)
m
y (k)
! | -
The number of runs m is such that the matrix made up of the controls

in our matrix formulation of the relations y(k) :ug 1 W has more

rows than columns.
The assumption that at each time we can find a set of controls
that prociuce control submatrices of column rank = n, where n, is the

th
number of components of the kernel vector corresponding to the k  time

. k . . . .
(i,e. n, =2 ) will allow us to find a unique solution that minimizes the

k
error between the outputs that make up our observation vector and the
outputs obtained when the same inputs are fed through our model.

The matrix formulation of the problem has the following form -
iﬁdicated on the next page. To obtain a solution we adopt the following

matrix notation

y =U W
~Im mn n



Equation(3. 6)

1 ) 0 0 0 0 0
1 0 0 0 0 0 0
1
0 1 w() O 0 0 0
e
0 1 u () 0 0 0 0
0 0 0 1 u (0) ul(l) ul(O)ul(l)
A m m
0 0 0 1 w0y uy w Som Xy ...

---------------------------------------------

34

e
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where
= 1 m k
m =(k + )mk ( K> )
n=2 -1 -~ (m > n)
‘i.e. y is an m vector, U is an mxn matrix of rank n and ¢ is an
m mn n
n vector.
The Least Squares Estimate Theorem indicates that if y is an
: m
m vector and U an mxn matrix with linearly independent columns,

mn

over

there is a unique n vector { which minimizes ||y - U w_ ||
n m mn n

all w_ (the norm takes as the Euclidean m-space norm). Furthermore

~ T -1 T
w =(U__ U ) U y
n.  mn mn mn °‘m
Notice that the form of Umn allows a conqplef:e decoupling of the ~

estimation of each kernel vector, i.e. we could solve the least-squares
problem for each kernel vector independently forming a partial ’

observation vector

-~ - ~ -1

4 1 1 T

i u . [m.]
y (J) i-1 ;
2 . 2 T
y () v
3. .= 37T
y (J) v
mk. mk T
y () w

.+ R L. J”

We are assured that the columns of the matrix formed with the controls
are linearly independent because they are assumed linearly independent
in the matrix Umn' Denote the matrices in this individual kernel

estimation problem respectively by
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: j
(3)=U_ n,ow, (n, =2
y(J m " ¥ ; )

and obtain a least-squares estimate for each kernel vector

T -1 T
®. =(U n, U ) " U_ "n. y(j)

T
It is then evident that the total error in the e;timation of the complete
observation vector is equal to the sum of the errors of the estimation
of the partial observation.vectors.

One can pose another interesting question at this point: is it
implied that if we estimate more kern;el vectors the error is going to
keep increasiné.’? There obviously is a trade-off between the number of
kernel vectors that one identifies and the error because by increas/in'g
the order of the model one is bound to obtain a model of the correct

order corresponding to the system under identification.

Lets remember that for a bilinear system of order n, Oy where

k 2 n-1, ::cl:ontains redundant information. The Least Square Error should
be interpreted carefully because if one has alreédy identified more
kernel vectors than the order of the system one is adding redundant error
to the estimate. It is convenient therefore to obtain a state space
realization each time that one chooses to identify more kernel vectors

. to see if the state space model increases in order. If the order of the
state space model reaches a stationary point the error in the Least
Squares Estimate should be taken to be the sum of the errors of the least
squares estimate of the minimum amount of kernel vectors necessary to

obtain such realization. Recall, however, that this stationing in the order *
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order of the state space model implies that the rank of §M'M is also
stationary and if we don't know the order of the system a priori it is
impossible to assert that the rank condition is satisfied for all i, A lot of

judgement has to be used when deciding to adopt a particular model for

a system.

3.4 Insufficient Runs.

If in a particular circuinstance it is not possible to run sufficient
set of controls through a system for the purpose of making the 2)
necessary observations to identify the j first kernel vectors then the
columns of the matrix made up by the controls are obvioﬁsly not going
to be linearly independent. This implies that when we try to calculate |
T . .' . : .
w., (U U ) is not going to be an invertible matrix.
j m.n, m.n, :

AR
The Least Squares Theory tells us that under those circumstances

the u)j 'that solves the least-squares problem is not unique. All the
e n,

w. under those circumstances form a linear variety of E ). Since in
every linear variety there is always a vector of smallest norm, in
order to provide our problem with a unique solution we are going to
'defvin'e this particular G)j. But before we indicate what the form of
the solution is, some important observations concerning least-squares
theory are at_hand.

From the vector space point of view, given y = Ax where y is an
m vector, A is an mxn matrix and x is an n vector, if m>n and A has

T

. . A -1
linearly independent columns, Ax =A(A A) ATy is the perpendicular

projection of the vector y on the space spanned by the columns of A,
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The error which is minimum is the difference between y and this projection.
Therefore, from this vector space point of view, the situation m <n
iréiplies that it is possible to find a linear combination of the n x vectors
that fits y.exactly (that is if out of these n x vectors these are at least
m linearly independent). Assuming that a set of controls can be found
to form a control matrix that has at least column rank then the least
square solution that produces a vector of minimum norm is given by

a T T -1

x =A (AA ) vy .
Zero error is evidenced when we substitute in the error expression

e=(ly-v|

S|

T . T.- | o
Iy - aaTaah)yty =0 :

One might inquire whether it is not advantageous to obtain this zero
error? The disadvantage lies in the restrictiveness of the soiuiion.
The model obtained is only good to handle the limited amount of data
that was used to determine it. This is in sharp contrast with the larger
data handling possibilities provided by models icientified with larger

amounts of data.



CHAPTER IV

STOCHASTIC IDENTIFICATION OF
BILINEAR PROCESSES

L 4

4.1 Identification of Bilinear Systems via Kalman Filtering

One of the advantages of presenting a least-squares solution for the
identificaf.tion of the kernel vectors is the fact that 1-:he proBlem can very
easily be imbedded in a probabilistic framework.

This becomes apparent when we exarr_xine Kalman's filtering theory.

A dynamical model of a random process consists of
i) A vector difference equation
x(k+1l) =  x(k) + v(k)
y(k) = C x(k) + e(k)
where {v(k), k=1,2,...} and {e(k), k=1,2,...} are sequencesr of
independent‘faqually distributed random vectors with zero mean values and

covariance matrices R, and R respectively.

1 2

ii) An initial random vector x(0) together with an initial estimate
%(0) having covariaﬁce E[(ﬁ(O)—x(O))(;c(O)-X(O))T] = RO. In addition it is
. assumed that the random vectors x(0), v(j) and e(k) are uncorrelated for
j=0, k20,

The estirﬁation problem is .that of obtaining the linear minimum-variance
estimate of the state vector x from the measurements y .

From the vector space point of view %(k|j), which is the optimal estimate

of x(k) given the observations y up to instant j, is the appropriate projection

of x(k) onto the space generated by the random vectors y(0), y(1),..., y(j).
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We will be concerned exclusively with the case k =j +1in &(k/j).
Kalman's theorem [ 19] providing a solution to the recursive estimation
problem states that the bes§ estimate of x(k), in the sense of least squares,
given the observed outputs y(l), y(2) ... y(k) of the dynamical model of a
random proceés described above, is given by the recursive equations:
(%(k/k) is denoted 2% (k) for simplicity)

&(k) = ¢ x(k-1) + T(k) [ y(k) - C ¢2(k-1)]

X(0) =m
where

m-= E[x(0)]

T 1

¢
AY

T (k) = S(k) CT[C S(k)C +R2]"
S(k) =6 Pk-1) 4R,

P(k) =S(k) - T'(k) C S(k)

S(0) =R

S(k) is th.e covariance matrix of the a priori estimate of x(k) given
Sr(l), e« y(k-1) and the matrix P(k) is the covariance matrix of the posterior
estimate of x(k) given y(1),..., y(k).

In order to provide a state variable formulation to the kernel vector
problem we will take advantage of the decoupling observed. That is the
fact that each kernel vector estimation can be formulated as a separate’
problem and incorporate each in a state variable model. It will only be
necessary to concatenate them to give a state variable model to the overall

problem.

Since the kernel vectors of the system we are dealing with are assumed
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to be time invariant and deterministic in nature the difference equation

involving a particular kernel-vector can be expressed as

wk(5+1) = mk(j)

and P = )T e T +ed

.th .
will depict the observation at time k obtained at the j running, each of
which is contaminated with white measurement noise (or could very will

be Gaussian (0, ) ) random noise).

The least squares identification problem of the kernel vectors can

. 2
then be stated as a Kalman {iltering problem with & =1, Rl =0 and R2 =A .

Observe that when'dealing with a particular kernel vector the time (k in yJ(k))

is fixed. Updating is provided by each run or iteration (j in yJ(k)).

o~

Substituting our values in Kalmans Filtering and Ricatti equations we

‘obtain.

A T .0 A T, . j j T T .
B 6 =8, G0+ TO) TY 0 - () )T (-1

where G)k(O) =E[ U)k(o)]

o e d g Te 3201
TG) =Sy ((w ) S +20) 7
S(j) =P(-1)
P(j) =P(-1) - T() () )" P(-1)
S(0) =R, )

The greatest advantage in using this filtering approach is the fact that one
doesh't have to wait to complete an iteration vector to begin the calculations.
This approach provides the possibility of doing the computation on line which
in turn allows the possibility of weighting the value of further iterations

before one has actually performed them.
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Figure 4.1

Riccati
Equation
V
b= =l
I .
0 o, 1O (D))
kil 2 =
>~Q TV
A A
w (j-1)
= inner . 1 unit
1
product| delay
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Lets remember that the iterations necessary to obtain w, are more than
the necessary to obtain u)q where q<k. Therefore in the process of
obtaining w, one can obtain all the ""previous" w,. The block diagram of

: . i

figure 4.1 explains how the overall identification is accomplished

on line.

4,2 A Correlation Algorithm.

The input-output representation via kernels allows us to develope the
formulation of an algorithm inspired by .the Crosscorrelation Algorithms
which are so popular in the identification of li‘near systems. Crosscorrelation
bavlgorithms allow us to deal with the situation of input measui‘ément error or
for that matter, we can apply them when it is possible to provide stochastic
inputs to the system undergoing identification.

At this point we only attempt to provide a formulatiéﬁ of the problem.
So, in order to maintain certain consistency in this chapter we will again develope
the formulation identifying one kernel vector at the time.

We will adopt the following notation which is m:ore appropriate for the

purpose at hand:

2k
y(k) =0, _u, = .i’:lu(k-l)i Wy s
th )
where u(k 1)i and w, , are the i~ component of the k-1 control vector and

t
k h kernel vector respectively.
With this notation it is clear that y(k) is a weighted sum of all the
controls used up to time k-1 and of products of thesc controls made up of

two, three, etc., up to all k-1 controls. i.e,,
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y(k) =0 +wk2'U(0) + wk3u(1) O, u(0) u(l) +

w, . u(2) +

K5 Yo @

+ Nt w

K2k ¢

u(l) u(2) +w

18 u(0) u(l) u(2)

(0) u(2) +u,,

(0) u(l) u(2) ... u(k-1)

y(k) is quite a non-linear function of the controls and this is why we qualify

the fact that the algorithm presented here is inspired by the '"Modified

Discrete Crosscorrelation Algorithm' [20]and not a straightforward

application of it.

We procede as follows: take y(k) and crosscorrelate it with each one of

the inputs (WhiCh we assume to be a stochastic process) and with all the

input combinations that appear in u

k-1 (notice that the latter ones will be

-~

higher order correlations). We obtain the following matrix equation

r 1L T

ROYGDL e ) b ROy B BO%-127 B RO e B o | Y

Riy(khwy o) | RM e 1y Yoy 2) : Wiz

R(?'(k)’“(k-l)j) - :

hR(y(k), u(k—l)2k~ _R(u(k-l)l, u(k-l)Zk) et eee e R(“(k_;)zk’ u(k—l)Zkz __U)kzk

(4.1) -

where R(u(k-l)i’ u(k-l)j) = E[u(k-l)iu(k-l)j] (4.2)

cand R(y(9, w0 EE[y(k)u(k_l)i.] (4. 3)

Notice that equation (4. 2) warns about the care with which the stochastic

inputs have to be chosen.

Very few stochastic process have high order

correlations expressible in closed form (the Gaussian process is one of them
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but we will not dwell in this particular question). This is of consideravle
importance for computations, and for applications we must have explicit

values for the elements of the matrix of the right hand side of equation (4.1).

The components of the left-hand side of equation (4.1) cannot be
computed exactly but several iterations will allow us to update them in the

following way

M
o) T Y&

M M 1
. =0

) (4.4)
1

(k-1)i

j j * ' th
where yJ(k) and uJ(k-l)i are respectively the k":h output at the j running and

t : .t
the i h component of the u vector used in the j  running.

k-1
Observe that the number of iterations is not established by the number of
components of the kernel vector being identified but by the desired accuracy

of the left hand side of (4.1).

(4.4) .can be written in updating form:

M- M M M-1 M-1 M-1 1 M M
R “1Di) = 2
M-1 M-1 - M-1
expressing eq. (4.1) in the following compact form
M M i}
F(y(k), uk-l) =R(w__ o Pwy (4.6)
we can do the updating directly on (4. 6)
M M M M M-1 M-1 M-1 M-1 1 M M
R » = s — -
(o o Py =R ey (o HAnty (e
M-1 uI\/I—l M-1 M—1] 4.7
k—']. ’ uk-—l wk ( . )
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CHAPTER V
FUTURE RESEARCH

L

The study of bilinear systems is by no means complete., This
first attempt to provide a closed form solution to the identification
prdblem of bilinear systems can provide us with a criterion regarding
the applicability and usefulness of the existing theory.

The main problem encountered with the state space representation
of bilinear system (as far as identification) was the nonlinearity observed-
with respect to the parameters. Identification of a param’étric model
takes the form of a nonlinear optimization prgblem. The known .
canonical forms of the state space representation do»not provide awny
simplification to this problem. The mathematics necessary to understand
the natural ambient of the state space have not been excrutiated enough.

It is known for example that for continuous time representation of bilinear
systems the state space is contained in a Lie Grjoup and that the matrices

v

A and Bi in %(t) = (A + T n(t) B.)X(t) belong to the Lie Algebra associated
1
i=1

with the group but for discrete bilinear representations the differential-
geometric point of view has not been emphasized.

For discrete bilinear systems the state at each time can be
expressed as a line'ar combination of the associative algebra generated
b? A and B (equation (1.l)) and we believe that further understanding of
the representation theory of associative algebras as they apply to
discrete bilinear systems would yicld some of the answers necessary to

simplify the parametric identification problem. Perhaps even a better
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understaﬁding of the numerical techniques in existence would not make
the prbblem appear so forfnidable.

Other representations of input-output maps via non-parametric
models are also necessary., The limitations of the existing Volterra-Series
rei)resentation and treated in this work are apparent: bilinearity cannc.>t
be tested for if unknown and even if known very careful judgement is
necessary to choose the order of the model identified because of the
impossibility of checking the 'rank c.ondition”. Realistic considerations
also render impossible the obtainment of models of order higher
than 8 or‘9 Because of the amount of iterations necessary .(215 or 217
respectively fozl orders 8 or 9). 5

It is hoped that this work will serve as a valuable guideline or

departing point for interested researchers in this field,
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