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Abstract: Now that modern infrastructure systems are moving toward an increased use of
automation in their day-to-day operations, there is an emerging need for new approaches to the
formal analysis and validation of system functionality with respect to correctness of operations.
This paper describes a compositional approach to the multi-level behavior modeling and formal
validation of large-scale distributed system operations with hierarchies and networks of finite state
automata. To avoid the well-known state explosion problem, we develop a new procedure for
viewpoint-action-process traceability, thereby allowing parts of a behavior model not relevant to a
specific decision to be removed from consideration. Key features of the methodology are illustrated
through the development of behavior models and validation procedures for polite conversation
between two individuals, and lockset- and system-level concerns for ships traversing a large-scale
waterway system.

Keywords: model-based systems engineering; infrastructure; distributed system; behavior model;
formal verification; automation; modeling; waterways operations

1. Introduction

1.1. Problem Statement

One of the important outcomes of remarkable advances in computing and communications
over the past few decades is the way in which they have opened doors to the replacement of
aging infrastructure with new types of infrastructure comprising physical networks connected to
cyber components (data, information, software) for decision making [1]. In order for these so-called
“next-generation infrastructure systems” to serve as enablers of long-term economic growth, they will
be required to provide superior levels of performance, new forms of functionality and agility, and good
economics over long time horizons. While end-users applaud the benefits that these technological
advances afford, systems engineers are faced with a multitude of new design challenges that can
be traced to the presence of heterogeneous content (multiple disciplines, and types of data and
information), network structures that are spatial, multi-layer, interwoven and dynamic, behaviors and
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control that are distributed and concurrent, and interdependencies among coupled subsystems that
are not always well understood.

In a decentralized system structure no decision maker knows all of the information known
to all of the other decision makers, yet as a group, they must cooperate to achieve system-wide
objectives. Communication and information exchange are important to the decision makers because
communication establishes common knowledge among the decision makers which, in turn, enhances
the ability of decision makers to make decisions appropriate to their understanding, or situational
awareness, of the system state, and its goals and objectives. While each of the participating disciplines
may have a preference toward operating their domain as independently as possible from the other
disciplines, achieving target levels of performance and correctness of functionality nearly always
requires that disciplines coordinate activities at key points in the system operation. And even if
the resulting cross-domain relationships are only weakly linked, they are nonetheless, still linked.
When part of a system fails, there exists a possibility that the failure will cascade across interdisciplinary
boundaries, thus making connected systems more vulnerable to various kinds of disturbances than
their independent counterparts [2]. To complicate matters, the introduction of automation into a
system’s operation expands the range of design concerns that need to be addressed. For example,
a new fundamental question is: How do we know that an automated management system will always
do the right thing? A second question is: If part of the system fails unexpectedly, what assurances do
we have that the system will handle and recover from disruptions in a manner that is both sensible
and timely?

Established approaches to infrastructure systems development are concerned with the design of
large-scale physical networks to support flows of people, goods, energy and potable water. To keep the
complexities of development in check, design procedures strive for independence in subsystem-level
operations. Analysis procedures favor estimation of performance and cost over correctness of
functionality. As a case in point, waterway systems provide cost effective transport of bulk and
containerized goods to support global trade. Vexing problems that need to be managed include:
(1) Traffic demands on canal systems that have far exceeded initial expectations; (2) Increases in the
prevalence and severity of delays caused by aging infrastructure; (3) Locks that are too small for modern
ships and barges; and (4) Competition from alternatives such as intermodal freight transportation [3,4].
Sophisticated approaches to performance analysis [5,6] are justified by the adverse economics of poor
system throughput. Looking forward, it is now evident that in order for waterway systems to remain
economically competitive well into the 21st Century, modernization efforts will need to improve
traffic flows through replacement of aging infrastructure with systems that make increased use of
automation to: (1) Expand the range of environmental conditions within which a system can safely
operate; (2) Support and enhance human performance; and (3) Improve the ability of a system to
quickly recover from unexpected disruptions [7,8]. These new requirements make waterway systems
design a lot more difficult than it used to be.

1.2. Mechanisms for Systems Development

Experience [9–12] tells us solutions that overcome these barriers are likely to employ a combination
of the following mechanisms:

1. Formal Models. To help prevent serious flaws in design and operation, design representations
and validation and verification procedures need to be based on formal languages having precise
semantics, logic and reasoning.

2. Abstraction. Abstraction mechanisms eliminate details that are of no importance when
evaluating system functionality, system performance, and/or checking that a design satisfies a
particular property.

3. Decomposition. Decomposition is the process of breaking a design at a given level of hierarchy
into subsystems and components that can be designed and verified almost independently.
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4. Composition. Composition is the process of systematically assembling a system from subsystems
and components. We seek, in particular, methods that allow for the systematic assembly of
behavior models for complex systems from behavior models for simpler systems and components.

Simplified views of the traditional and desired way of dealing with systems design and
management are shown in Figure 1. Both approaches to system development begin with an informal
specification (i.e., what we expect the system to do). In the traditional pathway of development, we say
the system is correct based upon sequences of actions and task completion. Engineering analysis and
simulation play a central role in verifying system functionality and attainable levels of performance.
By making logic and formal approaches to process modeling the main tool for system construction,
we hope to be able to say that a system operation will be correct by construction (i.e., the system does
exactly what it is supposed to do) based on sequences of truth during the system operation.

Engineering Analysis, 

Informal
Specification

Detailed 
Design

Implementation
Running
System

Traditional Pathway of Development

Desired Pathway of Development

Formal
Specification

Informal
Specification

Implementation
Running
System

Proof / Test

Simulation and Test

Figure 1. Traditional and desired pathways of system development.

1.3. Scope and Objectives

Our first steps [7,8] toward understanding these issues focused on the use of finite state processes
for the top-down synthesis and analysis of behavior models for waterway management systems,
and development of a methodology for the incremental transformation of informal operations concepts
into lockset-level behavior models that are formal enough for automated validation. The contributions
of this article are as follows:

1. We investigate the behavior modeling problem from top-down (decomposition) and bottom-up
(composition) perspectives, and system operations that are of sufficient size that naive approaches
to composition will fail because the composed models are beyond the capabilities of modern
desktop systems.

2. We propose a new, but simple, framework for the formal evaluation of system functionality
associated with a stakeholder viewpoint (or design concern). The framework is supported by a
new procedure for systematic construction of minimum detail behavior models.

3. We explore the extent to which sequences of targeted abstraction (i.e., systematic removal of
actions from behavior models) can be applied to behavior modeling and formal validation of
behaviors likely to occur in automated infrastructure systems.

Over the past twenty five years the vast majority of research [13] in compositional behavior
modeling and formal approaches to validation has been targeted to software and hardware systems.
This article, in contrast, explores opportunities for adapting these techniques for the analysis and
design of behaviors in large-scale infrastructure systems. While there are similarities in these domains
(e.g., many concurrent behaviors) there are also important differences. For example, on the physical
side of the problem, low-level concurrent behaviors in infrastructure systems only interact with other
processes that are geographically co-located. This observation opens the door to the design of process
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hierarchies for behavior modeling, and simplification of validation procedures through sequences of
formal validation on behavior model modules.

The mathematical formalisms underlying our work are state machines known as labelled
transition systems (LTS). Each component of a system specification is defined in terms of the
set of states a system may be in, sets of action labels, and all of the transitions it may perform.
We employ a process algebra notation (FSP) for concise description of component behavior in text.
The computational implementation and visualization of labeled transition systems is handled by LTSA
(Labelled Transition System Analyzer), a tool for validating communication and sequencing among
entities in systems containing concurrent behaviors. LTSA performs compositional reachability analysis
to exhaustively search for violations of the desired properties [14–16]. Finally, we exercise the proposed
approach through development of behavior models and validation procedures for polite conversation,
and lockset- and system-level concerns for ships traversing a stylized model of the Panama Canal
System. To deal with the large number of concurrent behaviors and distributed system operations,
the second application area is organized into a process modeling hierarchy, with each level having its
own set of design concerns and viewpoints. The systematic application of viewpoint–action–process
traceability results in process models that are orders of magnitude smaller than naive approaches
to process composition. Finally, we note that state-of-the-art approaches to verification of behavior
functionality rely on simulation and trial-and-error testing, both of which can be very time consuming
and costly. Thus, a second key benefit of this work is progress toward a replacement procedure where
mathematically rigorous approaches to verification prove functionality is correct.

2. Background and Related Theory

The driving tenet of our investigation is that specifications for functional system behavior can
be assembled and formally analyzed in compositional (hierarchical) manner. Initially developed in
the early 1990s, process algebras have emerged as an important mathematical basis for assembly and
reasoning about system structure and behavior in a compositional way.

2.1. Background to Compositional Behavior Modeling

In each decade since the 1960s, remarkable advances in computer and networking technology
have allowed for expanded expectations of computing which, in turn, have driven the need for new
software development environments, tools and programming languages. One important aspect of the
advances has focused on the modeling of systems having concurrent behaviors. State-of-the art design
procedures correspond to a top-down specification of behaviors using visual modeling languages such
as SysML [17], and rely on “threads of control” (e.g., lightweight processes) and operating system
mechanisms (e.g., semaphores, monitors, mutual exclusion) for the synchronization and constrained
scheduling of dependent processes. A good system design will achieve the dual objectives of avoiding
deadlock and guaranteeing that “something good” will eventually happen.

The central problem with traditional approaches to software validation is that they rely on testing
for the detection of errors. Although humans are quite adept at reasoning about small numbers of
concurrent physical processes in their day-to-day life, identifying all of the possible interleavings
among many concurrent system processes can be exceedingly difficult [18,19]. These weaknesses
have led to the design of a new generations of languages that can efficiently handle the bottom-up
dynamic assembly of component and software systems behavior through scripting and composition
mechanisms [20–22]. Instead of starting with highly nondeterministic mechanisms (e.g., threads)
and relying on the system developer to prune nondeterminacy through the addition of constraints,
the basic idea is to start with deterministic composable mechanisms and introduce nondeterminism
only where it is needed.

Figure 2 shows, for example, a process modeling framework for the systematic assembly of a
transportation (canal) system and its interaction with the surrounding environment. A reasonable
approach for representing canal system behaviors is to assume that each subsystem (or component)
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has behavior that can be modeled as finite state machine and will be implemented as a finite state
process. Architecture-level models of behavior will be viewed as a network of interacting finite state
machine processes, and will be synthesized through a bottom-up composition of subsystem- and
component-level behaviors.

Automated Composition

User−Supplied

Commands

System Response

Constraints

Sensors

Traffic Environment

Model of Traffic Demand

Canal System

Continuous
Components

DiscreteControl

Distributed System Model

Subsystems

Inputs,  Constraints

Figure 2. Automated assembly and behavior modeling of reactive processes in a canal system and
traffic environment.

2.2. Finite State Automata

Automata are simple, but useful, models of computation where behavior includes the notions
of state, transitions between states, and start and end states, but removes from consideration notions
of memory, variables, commands and expressions. From a systems modeling point of view, the use
of automata in behavior models is attractive because sophisticated models of behavior can be
systematically assembled into networks and hierarchies of interacting processes, each defined by
a simplified finite state machine representation (or automata). This strategy of model assembly works
because automata constructions operate on automata yielding new automata and, in fact, provide
closure under the operations of union, intersection, complement and concatenation [13]. For example,
a product construction takes two deterministic finite state automata (DFAs) and generates a single
DFA that conceptually runs its two component machines in parallel on the same input string.

2.3. Labeled Transition Systems

Definition 1. A labeled transition system (LTS) process, P, contains: (1) All of the states that a process may
reach; and (2) All of the transitions it may perform. In mathematical terms, a LTS process consists of a quadruple
(S, A,4, q) where,

1 S is the set of states;
2 A = aP [ {t}, where aP is the communication alphabet of P which does not contain the internal action t.
3 4 ✓ S ⇥ A ⇥ S denotes a transition relation.
4 q is a state in S which indicates the initial state of P.

Process behavior is defined through sequences of actions (or transitions) a process may perform.
The set of actions relevant to the behavioral description of a process P is called its alphabet, and it is
denoted aP. We use the symbol p to represent an error state against which safety property violations
may be tested (details to follow). A process that transitions into an error state may participate in no
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further transitions (i.e., the process deadlocks). The labeled transition system (LTS) for process
P = (S, A,4, q) transits into another LTS of P

0
=

⇣
S, A,4, q

0
⌘

with an action aA if an only if
⇣

q, a, q
0
⌘

2 4 and q
0 6= p where p is an error (or deadlock) state. Mathematically we can state

(S, A,4, q) a!
⇣

S, A,4, q
0
⌘

if and only if
⇣

q, a, q
0
⌘
2 4 and q

0 6= p.
Composition of Labeled Transition Processes. Given two labeled transition systems P1 and

P2, we denote the parallel composition P1kP2 as the LTS that synchronizes actions common to both
processes and interleaves the remaining actions. By extension the architectural-level behavior model is
defined by:

Behavior Model = P1kP2kP3k · · · kPn (1)

where Pi is the finite state model for the i-th component among n interacting components. Joint
behavior is the result of all LTSs executing asynchronously, but synchronizing on all shared message
labels. At the component level, the nodes of a labeled transition system represent states the component
can be in. At the architecture level, labeled transition system nodes represent system-level states which,
in turn, correspond to specific combinations of component-level states.

Table 1 provides a formal definition of parallel composition of processes and their corresponding
algebraic properties. The alphabet for P1kP2 is given by the union of alphabets for P1 and P2.
Equation (5) through (10) define the transitional semantics of the parallel composition operator.
The composition operator is both commutative and associative, as indicated in Equations (9) and (10).
Finally, it is important to note that the rules require that a composite process be trapped in an error
state p if any of its constituent processes is trapped.

Table 1. Translational semantics for restriction and composition operators. The notation P " L.
represents the process projected from P in which only the actions in the set L are observable.

Rules on Restriction

P a!P
0

P"L a!P0 "L

⇣
a 2 L, P

0 6= p
⌘

(1)

P a!p
P"L a!p

(a 2 L) (2)

P a!P
0

P"L t!P"L

⇣
a /2 L, P

0 6= p
⌘

(3)

P a!p
P"L t!p

(a /2 L) (4)

Rules on Parallel Composition
P a!P

0

PkQ a!P0 kQ

⇣
a /2 aQ, P

0 6= p
⌘

(5)

P a!p
PkQ a!p

(a /2 aQ) (6)

Q a!Q
0

PkQ a!PkQ0

⇣
a /2 aP, Q

0 6= p
⌘

(7)

Q a!p

PkQ a!p
(a /2 aP) (8)

P a!P
0

Q a!Q
0

PkQ a!P0 kQ0

⇣
a 2 aP \ aQ, P

0 6= p, Q
0 6= p

⌘
(9)

P a!P
0

Q a!Q
0

PkQ a!p

⇣
a 2 aP \ aQ, P

0
= p _ Q

0
= p

⌘
(10)
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Systematic Removal of Detail from Behavior Models. From a modeling and design standpoint,
the alphabet of a behavior model needs to achieve the dual objectives of supporting the required
decision making, while also working to keep a model’s size tractable. Thus, a key aspect of alphabet
design is to ignore actions and properties not immediately relevant to a particular activity (or set
of activities). Observability of actions in a process can be controlled by a restriction operator ".
In particular, the notation P " L. represents the process projected from P in which only the actions in
the set L are observable. Equations (1) through (4) in Table 1 define the transitional semantics of the
restriction operator. As a case in point, Equation (1) should be read as follows: Suppose that process
P transitions into P

0 through the application of action a. If action a belongs to the set of observable
actions in L (i.e., a 2 L) and P

0 is not a deadlock state (i.e., P
0 6= p), then action a will transition P " L

into P
0 " L.

2.4. Model Checking and Property Validation

Model Checking. Given a finite-state model of a system and a formal property, model checking
procedures [23] systematically check whether the property holds for that model. Model checking
begins with two activities that can occur concurrently.

As shown along the left-hand side of Figure 3, informal requirements are transformed into formal
specifications describing properties that any acceptable system implementation will satisfy. A property
is an attribute of a process that is true for every possible execution of that process. Typical properties
are of a qualitative nature (e.g., will the system ever reach a situation for which there is no pathway
forward?). Then as illustrated on the right-hand side of Figure 3, a finite state process model for
behavior of the engineering system is assembled.

To answer the above-mentioned questions in a precise and unambiguous manner, the system
behavior model must be sufficiently detailed, but for computational purposes, not too complex. Model
checking procedures examine property specifications with respect to process models. Three outcome
are possible:

1. The property specification is satisfied,
2. The property specification fails,
3. The model checking procedure fails because of insufficient computer memory.

When a property specification fails, the result is accompanied by a counter example. In most
cases, the underlying cause can be identified through detailed analysis (i.e., simulation) of actions in
the counter example. Generally this will lead to refinement in one or more of the model, the design or
the property. The only practical way of dealing with “insufficient memory” is to reduce the size of
the model and try again. Iterations of model checking continue until all of the property specification
violations have been repaired.

Framework for Compositional Validation of System Behavior. A good system design satisfies
safety properties and exhibits liveliness (or progress). Safety violations in behavior modeling
correspond to undesirable sequences of actions. For example, two systems should not simultaneously
attempt to acquire a shared resource. A safety violation will also occur if a state becomes blocked and
cannot make further progress (i.e., it becomes deadlocked). Liveliness/progress concerns include the
ability of a process to eventually terminate and/or reach a critical state (or outcome) in its execution.

Safety properties are specified in FSP as deterministic property automata. Each property
automaton specifies the set of feasible execution sequences over the actions (transitions) that correspond
to a safety property of interest.

The upper diagram in Figure 4 shows, for example, a property where action a must be followed
by action b which, in turn, can be followed by a sequence of action c or action d. LTSA creates an
image automaton that captures the prescribed property automaton and adds to it possible violations
leading to an error state. Now suppose that action a has just completed. If the behavior model
allows for any action other than b (i.e., the set of actions {a, c, d}), then the property automaton
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will transition to the error state. Next, we note from Table 1 that the (error) p state is preserved by
both the restriction and composition operators. This property allows for a validation procedure that
is remarkably straightforward. All that we have to do is compose the property automaton with the
system description process—see, for example, the upper half of Figure 5—and look for the existence of
p (an error state) in the global LTS. If the composed process contains an error state, then the safety
property is violated. Otherwise, the safety property is satisfied. For a mathematical treatment of
property automata and safety operations, we refer the interested reader to Austin and Johnson [24]
and references therein.

Property Specifications.

Requirements

Formal Representation

Property Specification

Process

Process Modeling

Selection of Model

Model Checking

counter example
Not satisfied plus

Simulation

Location of error

Memory
Insufficient 

Property Satisfied....

Create Finite−State Process Model for
Engineering System Behavior.

Transform Requirements into

Figure 3. Model checking procedure and outcomes.

Progress Properties and Analysis. As already noted, a progress property asserts that it is always
the case that an action—usually, a desirable action—is eventually executed.

Progress analysis begins with a search for sets of terminal states; that is, sets of states where
every state is reachable from every other state in the set via one or more transitions, and, there are
no transitions from within the set to any state outside the set. Given fair choice, each terminal set of
states represents an execution where each transition is executed infinitely often. With this framework
in place, checking that a progress property holds reduces to the problem of checking that the progress
actions are part of each terminal set [25].
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Deterministic Finite State Machine

Property

translation

a b

c
d

a b

d
c

{ b, c, d }

{ a, c, d }

{ a, b }

−1 0

0

1

1

2

Figure 4. Procedure for definition of property automata in LTSA.

3. Targeted Abstraction and Viewpoint-Action-Process Traceability

The well known difficulty in using exhaustive search techniques for validation of concurrent
system behaviors is that size of the state space expands exponentially with increasing numbers of
underlying processes (and actions therein). This occurs because interleaving models for asynchronous
system behavior allow concurrent events to be ordered arbitrarily and, as such, events are interleaved
in all possible ways. For a model where n transitions can occur concurrently, and are primarily
autonomous, there are ndifferent orderings and 2n different system states. Only minor reductions in
the size of composed processes will occur through constraints associated with synchronized actions.

For the behavior modeling and verification for distributed systems operations, the central
challenge is not composition of the behaviors, but design of strategies that:

1. Use decomposition to organize design concerns, viewpoints, and processes into a hierarchy, and
2. Employ abstraction to eliminate details of a behavior model that are of no importance when

evaluating system functionality with respect to a specific set of design concerns.

To this end, our goal is to support decision making with process models and verification
procedures of minimal size.

3.1. Related Work in State Graph Reduction

Techniques for reducing the size and complexity of processes can be classified into two
broad categories:

1. Reduction by partial ordering, and
2. Reduction by compositional minimization [26–28].

Strategies for partial order reduction are based on the dependency relations that exist between the
transitions of a system, and the observation that two interleavings can be regarded as equivalent if one
can be obtained from the other by swapping adjacent, non-conflicting (independent) execution steps.
Algorithms for partial order reduction explore at least one trace from each (so-called Mazurkiewicz)
equivalence class [29]. Thus, partial order reduction provides a full coverage of all behaviors that
can occur in any interleaving, even though it explores only a subset of traces. Simplified exploration
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of the state space can also occur through consideration of only those process interleavings that are
relevant to a specific property being validated [23,30–33]. Solution strategies include use of bounded
and context-dependent searches [34,35], modified semantics and/or identification of dependencies
among transitions [28,36]. Recent advances include dynamic approaches to partial ordering [37,38] and
use of annotations in the analysis of trace spaces. While the general state space exploration problem is
NP complete, Chatterjee et al. [39] have shown for acyclic trace structures, it is possible to explore the
state space with polynomial effort.

3.2. Compositional Reduction Analysis

Procedures for compositional reduction analysis are ideally suited to systems that can be naturally
organized into a hierarchy of behavior modules. The simplification of behavior models occurs through
the hiding of as many internal actions as possible in each subsystem, and through the tendency of
safety properties to be locally checkable. The lower half of Figure 5 shows, for example, a scenario
where behavior of process C corresponds to the composition of processes A and B (i.e., A k B). If process
C is too large (i.e., requires resources beyond the capability of the environment within which it is
executing), then the composition is simplified by removing actions internal to the process module
(i.e., A ! A⇤ and B ! B⇤). Safety properties are then validated against the simplified composition
( A⇤ k B⇤). Progress properties rely on a set of actions being activated at a particular level of detail;
similar reductions in complexity can occur when lower level actions are removed from consideration.

abstraction

C

A B Property Automata for System C

Basic Model Checking Procedure

Modeling Checking with Targeted Abstraction

Property Automata for System C

A B

A* B*

C

abstraction

Figure 5. Visual representation of system C composed from processes A and B, and, validation of
system C via composition with property automata.

Now let us assume that a violation has been detected and that a designer wishes know the cause
of the violation. This task is facilitated if debugging traces show as much detail as possible. These
dual criteria point to a natural tension in the methodology. We wish, on one hand, to simplify models
through removal of details. Yet at the same time, we need to maximize the availability of information
for debugging purposes.
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3.3. Viewpoint-Action-Process Traceability

Viewpoints serve two purposes. First, they motivate the generation of abstractions relative to
a design concern (e.g., safety and progress checks). Their second purpose is one of simplification.
By systematically removing actions that are not related to a design decision, models can be trimmed to
minimize their complexity (e.g., generation of simplified abstractions for “higher-level” modeling).

We propose that process validation procedures can be simplified through: (1) Systematic
organization of design concerns, viewpoints and processes into hierarchies (system decomposition),
and (2) Reduction by compositional minimization (abstraction). In a departure from past work,
modules will have boundaries (i.e., notions of inside and outside) that depend on a design viewpoint
(or family of design concerns). They will be organized into hierarchies; as such, low-level processes of
minimal size can be composed into higher-level processes that will be validated against the concerns
of a specific viewpoint.

To streamline this process we propose the concept of viewpoint-action-process traceability as a
means of representing connectivity between the formal description of a design concern (viewpoint),
sets of actions, and their participating processes. The step-by-step procedure is as follows:

1. For each design concern, identify the set of actions that are part of the associated behavior.
2. Identify the processes that participate in the execution of these actions.
3. Remove from the behavior, actions that are not associated with the design concerns or interactions

among the participating processes.

This procedure lends itself to a tabular display of traceability linkages, as illustrated in Figure 6.
After each application of viewpoint-action-process traceability, we also immediately minimize the
size of all intermediate results. As we will see in the application below, the result is a computational
procedure where process models achieve their required functionality, but may have a size that is orders
of magnitude smaller than in the all-in-one approach to composition.

concern2

Design Concern Actions

processA

processB

processC

processD

processE

processF

processG

Participating Processes

action1

action2

action3

concern1

Figure 6. Schematic for tabular display of design viewpoint-action-process dependencies. A design
concern depends on a set of actions, which, in turn, belong to a set of participating processes.

4. Case Study A: Formal Validation of a Behavior Model for Polite Conversation

To see how compositional approaches to behavior modeling work on a small-scale problem, let us
consider a simple scenario where two people, Jack and Diane, meet for coffee and polite conversation.
The goal is to devise a system-level behavior model where both Jack and Diane talk, but neither party
dominates the conversation. The properties of this behavior model will be formally checked.
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The script of code shown in Table 2 systematically assembles the hierarchy of processes shown in
Figure 7. The key activities in development of the behavior model are as follows:

1. Identify main events, actions and interactions,
2. Identify main component-level processes,
3. Identify and define properties of interest, and
4. Compose component-level behaviors into a model of architectural-level behavior.

The behavior modeling process begins with the definition of a generic PERSON, who can talk and
drink, or simply wait and then drink. LTSA requires that processes operate continuously. Thus, if talk
and drink are actions, and PERSON is a process, then the fragment of FSP code talk -> drink ->
PERSON describes a process that initially engages in the action talk, then the action drink, and then
behaves exactly as prescribed by PERSON. In practical terms, an action might be a communication,
a signal, or perhaps, traditional execution of a task. Jack and Diane are simply labeled instances of the
process PERSON (i.e., with the notation jack:PERSON and diane:PERSON).

The composed process JACK_AND_DIANE_MEET captures all of the possible sequences of actions
that can occur. This under-constrained model allows, for example, for one person to talk and talk and
talk, with the other person not getting a word in edgewise. The keyword minimal minimizes the size
of the composed process from nine states to four states.

Table 2. Systematic assembly of a behavior model for polite conversation.

// =================================================================================
// Behavior Model: Jack and Diane meet for coffee and conversation.
// =================================================================================

// Create a person who: (1) talks and drinks coffee, or
// (2) just waits and then drinks coffee ....

PERSON = ( talk -> drink -> PERSON
| wait -> drink -> PERSON ).

// Jack and Diane meet ....

minimal ||JACK_AND_DIANE_MEET = ( jack:PERSON || diane:PERSON ).

// To learn, conversation needs to be two way ....

TWO_WAY = ( jack.talk -> diane.talk -> TWO_WAY ).

// Define a property for polite conversation ...

property POLITE = ( jack.talk -> diane.talk -> POLITE ).

// Check that the conversation model is in fact polite ...

minimal ||JACK_AND_DIANE_LEARN = ( JACK_AND_DIANE_MEET || TWO_WAY || POLITE ) / {
jack.talk/diane.wait, diane.talk/jack.wait }.

// Check progress properties

progress DIANE_TALKS = { diane.talk }
progress JACK_TALKS = { jack.talk }

// =================================================================================
// End!
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labeled process

JACK_AND_DIANE_MEET TWO_WAY POLITE

jack:PERSON diane:PERSON

PERSON

JACK_AND_DIANE_LEARN

Safety propertyBehavior model

Figure 7. Process hierarchy for behavior model and validation of polite conversation.

To improve the meeting, the TWO_WAY process places a constraint on the conversation, in particular,
that Jack and Diane need to engage in alternate talking. The revised meeting model is,

||JACK_AND_DIANE_LEARN = ( JACK_AND_DIANE_MEET || TWO_WAY ).

However, how do we know that this actually worked? To check that the composed model is in
fact what we want, we can define the property POLITE, i.e.,

property POLITE = ( jack.talk -> diane.talk -> POLITE ).

and then compose POLITE with JACK_AND_DIANE_LEARN. The FSP notation jack.talk/diane.wait
and diane.talk/jack.wait changes (i.e., relabels) the action notation diane.wait to jack.talk,
and jackwait to diane.talk, respectively, thereby simplifying complexity of the behavior model.

Figure 8 shows the LTSs for each of the constituent processes including POLITE. Notice that
POLITE will transition to an error state if Diane talks more than once or, alternatively, Jack talks more
than once. If the composed process

( JACK_AND_DIANE_MEET || TWO_WAY || POLITE )

contains any of these sequences, then it too will also have an error state indicating that our model of
behavior is not polite. As it turns out, the composed process (see Figure 8) is free of error states and
the POLITE property is satisfied. The progress checks generate

Progress Check...
-- States: 8 Transitions: 16 Memory used: 1951K
No progress violations detected.
Progress Check in: 40ms

indicating that hoth Jack and Diane engage in polite conversation.
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Figure 8. LTSs for processes in a behavior model of polite conversation.

5. Case Study B: Compositional Behavior Modeling and Validation of Waterway
System Operations

We now exercise the proposed methodology by working step-by-step through the model-based
design and formal validation of behaviors for collections of ships traversing a simplified model of
the Panama Canal, an 80 km passageway that joins the Atlantic and Pacific Oceans at one of the
narrowest saddles of the isthmus [40]. A ship passing through the canal will ascend through a set of
locks, traverse Lake Gatun, and then descend through the lock system on the other side.

Solutions to this problem are complicated by the large number of concurrent processes
(e.g., ship operations, pumps, gates, lockset scheduler) defining component- and system-level behavior.
Part of this problem can be solved through hierarchal decomposition of processes, with each level in
the hierarchy dealing with a specific set of design concerns. Decomposition does not solve the problem
completely, however, because naive approaches to the parallel composition of processes quickly
become computationally intractable. To overcome these limitations, we apply viewpoint-action-process
mechanisms, thereby abstracting from the composition, actions and groups of actions that are irrelevant
to decisions associated with a particular viewpoint. Our goals is to devise strategies where:

1. Behavior models focus on the modeling of ship movements, and
2. The size of the canal system processes models remains constant, regardless of the number of ships

waiting to traverse the canal system.

Constraints on behavior will ensure that when ships arrive at a lockset they are handled on a
first-come, first-served basis. Complete details of the input files for these case studies can be found in
the appendices of Austin and Johnson [24].

5.1. Framework for Multi-Layer Behavior Model Development

The step-by-step procedure for design, implementation and validation of behavior for Panama
Canal operations is simplified through a top-down decomposition of concerns (i.e., requirements and
design specifications) followed by a bottom-up assembly of process models and testing/validation.
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Figures 9 and 10 show the two-level V-model of system development assumed for this study,
and an elevation view of the lockset, and component- and lockset-level process architectures. In an
extension of the procedure described in Case Study A, behavior models are organized into a two-level
process hierarchy. For the lockset-level behavior, localized control will be employed for the safe,
fair, and efficient scheduling of ship transit operations. A scheduler process will receive east- and
west-bound transit requests and schedule transit operations in a manner consistent with the task
planner. The scheduler will also communicate permission for a particular ship to access the canal
system to the passageway controllers. These lower level processes will be responsible for synchronizing
low level activities such as incremental ship movements with pump and gate operations. At the
system level, the primary design concerns include provision for: (1) Adjustment of operations
during emergency and/or /maintenance events and; (2) Cooperation of asynchronous lockset-level
behaviors to ensure efficient transit of ships through the canal system. Because emergency and/or
maintenance events will be detected at the lockset level, but controlled by a system-wide manager
process, system-level canal behavior will be defined by a network of partially synchronized processes.

Lockset- and Canal-Level Requirements. The functional requirements associated with lockset-level
concerns are as follows:

1. At any point in time, the scheduler must assign no more than one ship to a lockset;
2. All ships must request transit before they can acquire access to a lockset. They must acquire access

to the lockset before they depart.
3. Flooding must be prevented. A gate must not open until water levels on both sides of the gate

have been equalized; and
4. All ships that request passage through the lockset must eventually depart the lockset.

At the canal system level, functional requirements include:

1. When an emergency or maintenance occurs, all incoming canal traffic must be halted. Traffic can
resume after the emergency (or maintenance) has been cleared (or repaired).

2. All east- and west-bound ships must be guaranteed to reach the Atlantic and Pacific Oceans respectively.

Scheduler

Test

Verify the system

Validate the systemRequirements Design

Requirements Design

Implementation and Test

Ship Gate Pump

Reusable Component−Level Processes

Behavior

Behavior

Canal System

Lockset−Level

Canal System

Lockset−LevelLockset−Level

Canal System Canal System

Lockset−Level

Test

Behavior Modeling Definition

Figure 9. Step-by-step procedure for behavior model development, implementation, and testing/validation.



Systems 2018, 6, 2 16 of 28

LOCKSET_SYSTEM

Processes

Traffic−demand

Processes

Lock System Architecture

Processes

Lockset−level

Lock 2

low:Gate high:Gatemiddle:Gatelow:Pump high:Pump
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Component−level
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Figure 10. Elevation view of lockset, and component- and lockset-level process architecture.

Top-Down Specification of System Functionality. In the simplest terms possible, a ship will transit
a two-stage lockset by working through the following step-by-step procedure:

1. Request permission to pass through the lockset,
2. Wait in the arrival area,
3. Acquire permission to enter the lockset,
4. Enter lock 1,
5. Enter lock 2, and
6. Depart.

The execution of Steps 1–6 implies a specific sequencing of messages among ship, ship control,
passageway control and scheduler processes. The key communications among processes are as follows:

1. The Ship sends a message to the ship control requesting permission to transit the lockset. It then
joins a queue of waiting ships in the arrival area.

2. At some point later in time, the scheduler will send a message to the Ship and Ship Control
processes that it may acquire the resources of the lockset.

3. The passageway controller commands the ship to enter lock 1 (i.e., enterlock1).
4. The passageway controller commands the ship to enter lock 2 (i.e., enterlock2).
5. The passageway controller commands the ship to exit lock 2 and depart (i.e., depart).
6. The passageway controller informs the lockset scheduler that the ship has departed lock 2.

Figure 11 provides a graphical summary of this sequence of message passing. The Ship time line
shows that as a vessel moves through the lockset system it will actually progress through four spatial
states; an arrival area, area lock1, area lock2, and a departure area. For a ship ascending the lockset,
lock1 will be the lower lock. For a ship descending the lockset, lock1 will be the upper lock. This subtle
difference in context, coupled with the details of raising/lowering water levels and opening/closing
gates requires the implementation of two passageway controllers – one for ascending the lockset and a
second for descending the lockset.
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Figure 11. Simplified communication among ship, ship control, passageway control and scheduler
processes for a ship transiting the lockset.

Simplified Model of Ship Behavior. The sequence of messages in Figure 11 suggests that basic
ship behavior can be defined by the circular process: SHIP = (request -> acquire -> enterlock1
-> enterlock2 ->. depart -> SHIP). Shipping personnel are certainly involved in the execution
of the actions request, acquire and depart. However, the actions enterlock1 and enterlock2 are
internal to the lockset itself. Hence, a much better solution is to simply define the ship behavior as
SHIP = (request -> acquire -> depart -> SHIP), and then design the scheduler and passageway
control processes (details to follow) to properly sequence enterlock1 and enterlock2 among other
low-level actions for pump and gateway control.

5.2. Bottom-Up Composition of Travel Demand and Lockset-Level Behavior

Figure 10 shows the process architecture for the implementation of lockset-level behavior.
One process hierarchy is assembled for the lockset system itself – it is the composition of scheduler,
passageway control, ship control, gate, pump and lock processes. A second process hierarchy is
assembled for the east- and west-bound traffic demand. The complete model of lockset behavior
corresponds to the parallel composition of lockset and traffic demand process models, i.e.,

|| LOCKSET_BEHAVIOR = ( LOCKSET_SYSTEM || TRAFFIC_DEMAND ).

Model of Lockset-Level Traffic Demand. Travel demand processes are defined for convoys of east-
and west-bound ships (i.e., processes EASTBOUND_SHIPS and WESTBOUND_SHIPS) and circular queuing
processes to ensure that transit requests are handled in the same order in which they are made, i.e.,

// Simplified model of a single ship passing through the lock system.

SHIP = ( request -> acquire -> depart -> SHIP ).

||EASTBOUND_SHIPS = ( [i:S]:(east:SHIP) ).
||WESTBOUND_SHIPS = ( [i:S]:(west:SHIP) ).

// Create circular queue of east- and west-bound transit requests.

EASTBOUND_REQUESTS = QUEUE1 [1],
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QUEUE1[i:S] = ( [i].east.request -> QUEUE1 [ i%NoShips + 1] ).
WESTBOUND_REQUESTS = QUEUE2 [1],
QUEUE2[i:S] = ( [i].west.request -> QUEUE2 [ i%NoShips + 1] ).

||EASTBOUND_TRAFFIC = ( EASTBOUND_SHIPS || EASTBOUND_REQUESTS ).
||WESTBOUND_TRAFFIC = ( WESTBOUND_SHIPS || WESTBOUND_REQUESTS ).

// Compose models of East- and West-bound traffic ....

||TRAFFIC_DEMAND = ( EASTBOUND_TRAFFIC || WESTBOUND_TRAFFIC ).

The command SHIP = ( request -> acquire -> depart -> SHIP ) defines a single
process for a sequence of actions defining ship behavior. Next, the lines EASTBOUND_SHIPS =
( [i:S]:(east:SHIP) ) and WESTBOUND_SHIPS = ( [i:S]:(west:SHIP) ) create arrays of S ships
traveling in West- and East-bound directions. It is important to notice that from a ship’s point of view,
acquiring access to the lock system is what matters – once that is achieved, the next significant action
is departure from the lock system. Ships do not need to know (or care) about the internal details of
the lock system operations. Finally, the overall traffic demand model is the composition of east- and
west-bound traffic demands.

First-cut Composition of Lockset-System Behavior. In this first-cut implementation we simply
compile the scheduler, west- and east-bound ship control, passage control, and gate and pump system
processes together, then at the last point possible attempt to minimize the process size. As illustrated
in Figure 10, the lockset contains three gates (tagged, low, middle, and high) and two pumps (tagged
low and high). Gate and pump processes open and close gates and raise and lower water levels. Ship
controller processes are shared resources responsible for maintaining order between incoming requests
and access to the lockset.

Design of the passageway control and lockset scheduler processes is the most interesting part
of the lockset behavior model formulation. Passageway control is responsible for sequencing the
ship and lockset actions (e.g., coordination of gate and pump operations) while a ship is inside the
lockset. The lockset scheduler process receives transit requests from east- and west-bound ships
and at some later point issues permission to the ship controllers to begin the transit of a particular
ship. The scheduler process needs to take into account the number of ships waiting to transit the
canal in either direction, and implement an appropriate policy of fairness. Moreover, the scheduler
process should also take the correct action without the forced imposition of physical constraints
(e.g., a constraint that says, at most, only one ship can occupy the lockset).

As illustrated in Figure 12, the scheduler is implemented as a four-dimensional array of processes.
The first and second dimensions keep track of the number of ships waiting for transit in the east- and
west-bound directions (maximum value is NoShips). Variable we = number of east-bound ships waiting
(0..NoShips). Variable ww = number of west-bound ships waiting (0..NoShips). Dimensions three and
four keep track of the current traffic direction (td = East or West) and water level (wl = Low or High).
At a glance it would seem that the ship control processes are not needed because their operations are
completely covered by the scheduler process. The important distinction and, hence, their roles lie in
their view of the ships. Ship controllers track the progress of specific ships by name (e.g., [1].east).
The lockset scheduler’s relationship with ships is more abstract. It simply keeps track of incoming
requests and provides permission for east- and west-bound ships to acquire the locksets resources.

5.3. Preliminary Results

Table 3 summarizes the number of states in the traffic demand and lockset system (and select
lockset subsystem) processes as a function of the number of east- and west-bound ships. On an Apple
Macbook Pro with 4GB of memory, the problem formulation becomes computationally intractable
when three east-bound ships and three west-bound ships are traversing the canal.
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Figure 12. Schematic for process design of the traffic scheduler.

Table 3. No of states in the lockset behavior model for NoShips = 1, 2 and 3. Legend: TD = traffic
demand, LS = lockset system; LB = lockset behavior.

Part 1: Naive composition of lockset-level processes
-------------------------------------------------------------------

No E-W Ship TD SCHEDULER LS LB LB
Ships Model States States States States Minimized

===================================================================
1 [1..1] 9 33 4,096 4,096 4,096
2 [1..2] 324 132 7,680 8,192 8,192
3 [1..3] 6,561 352 11,264 36,864 ...failed!!

===================================================================

To overcome this problem we need to be much smarter in controlling the size of participating
processes by only including those actions (and critical dependencies) that are tied to a particular
viewpoint of system functionality.

5.4. Composition of Simplified Lockset-Level Behavior

The composition of simplified lockset-level behavior models takes advantage of the natural
hierarchy of canal system behavior models, and only considers actions that are directly related to a
specific decision or behavior modeling viewpoint. Viewpoint driven models can be assembled for:
(1) simplified modeling of ship movement (i.e., a minimal version of LOCK_SYSTEM); (2) examination
of passageway safety against flooding (i.e., LOWER_PUMPS and RAISE_PUMPS); and (3) passageway
occupancy (i.e., LOCK_OCCUPANCY). All three viewpoints can be evaluated through the composition of
SCHEDULER, SHIPCONTROL and PASSAGECONTROL processes (and variations thereof) in a manner consist
with the process hierarchy.
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Figures 13 and 14 show abstract and detailed process hierarchy views of: (1) the traffic demands
process interacting with the lockset system process; (2) the lockset system process organized into
lockset control and passageway system process hierarchies; and (3) processes for compositional
validation of lockset behavior properties. We employ white and black dots to show dependencies
between the process hierarchies. The LOCKSET_SYSTEM and TRAFFIC_DEMAND processes are connected
by request, acquire, and depart actions. White and black box notation shows dependencies of the
actions. For example, a ship will request transit of the lock system—the request is the requirement,
the lockset system provides for processing of the request. In the initial formulation, models of lockset
system behavior were defined through an “all-in-one composition” of seven processes (i.e., SCHEDULER,
WESTBOUND_SHIPCONTROL and so forth). Now, assembly of the model occurs over three layers:

1. LOCKSET_CONTROL is the composition of scheduler and east- and west-bound ship controls,
2. PASSAGEWAY_SYSTEM is the composition of ascend and descend passageway processes, plus

processes for the pump and gate systems, and
3. Gate and pump systems are defined through the composition of individual pump and gate

processes (these details are not shown in Figure 14).

Model of Lockset Behavior

[1..NoShips].{east, west}.acquire
TRAFFIC_DEMAND LOCKSET_SYSTEM

[1..NoShips].{east, west}.request

Abstract View

[1..NoShips].{east, west}.depart

Processes for Validation of System Properties

LOCK_OCCUPANCYLOWER_PUMPS RAISE_PUMPS

Figure 13. Schematic for development of simplified models of lockset system behavior. White dots
represent requirements. Black dots represent provisions.

EASTBOUND_SHIPCONTROL WESTBOUND_SHIPCONTROL

SCHEDULERLOCKSET_CONTROL

depart

acquire

request

PUMPSYSTEM GATESYSTEM

PASSAGEWAY_CONTROL_DESCEND

PASSAGEWAY_SYSTEM

PASSAGEWAY_CONTROL_ASCEND

LOCKSET_SYSTEM

departAscendCommends DescendCommands

Figure 14. Schematic for development of simplified models of lockset system behavior. White dots
represent requirements. Black dots represent provisions.
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5.5. Application of Viewpoint-Action-Process Traceability

To systematically determine which parts of the behavior model can be omitted without affecting
a pre-defined viewpoint, the process-action dependency is reversed. For each action (or, when
appropriate, group of actions) a list of dependent processes is assembled; an abbreviated example is
shown Table 4. Then, if a viewpoint is defined in terms of critical actions, traceability links can be
established from a viewpoint to dependent actions to dependent processes.

Table 4. Abbreviated list of action-process relationships in lockset system model.

Sets of Actions Dependent Processes
---------------------------------------------------------------------------------
ascend SCHEDULER
resetlow EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

descend SCHEDULER
resethigh WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

[1].west.{acquire, SCHEDULER
request} WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL

[1].east.{acquire, SCHEDULER
request} EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL

... Details of action-process relationships removed ....

[1].east.{ enterlock1, EASTBOUND_PASSAGECONTROL.{1}::east:
PASSAGECONTROL_ASCEND enterlock2, exitlock2 }
---------------------------------------------------------------------------------

As a starting point, the lockset system behavior model is organized into a three layer hierarchy:

1. The lockset control (i.e., k LOCKSET_CONTROL) is composed from scheduler and west- and
east-bound ship control processes.

2. The passageway system (i.e., k PASSAGEWAY_SYSTEM) is composed from west- and east-bound
passageway control processes.

3. Finally, lockset system behavior is assembled from the previously composed models for lockset
control and the passageway system.

The underlying assumption in this model is that the processes LOCKSET_CONTROL and
PASSAGEWAY_SYSTEM will be autonomous and only synchronize through shared actions. However,
PASSAGEWAY_SYSTEM is not fully autonomous and, in fact, only responds to actions instigated by
the scheduler (i.e., a master-slave relationship among processes). Moreover, although the east-
and west-bound passageway processes share common actions (e.g., enterlock1, enterlock2) and
theoretically synchronize on those actions, in practice, the scheduler process ensures that this never
happens—the canal system is handling either an east-bound ship or a west-bound ship, but never east-
and west-bound ships concurrently.

Sample Viewpoint (Composition of Behavior for Ship Movement). This viewpoint is motivated
by the need for a simplified model of ship movement (i.e., a minimal version LOCK_SYSTEM), which
downstream, will be suitable for inclusion in a canal-level model of behavior.

With the above-mentioned observations in place, the fragment of FSP code in Table 5
implements and minimizes two versions of LOCKSET_SYSTEM, one that includes LOCKSET_CONTROL and
PASSAGEWAY_SYSTEM, and a second model based on LOCKSET_CONTROL alone. The PASSAGEWAY_SYSTEM
process only carries forward actions that are critical to communication (i.e., resethigh, resetlow, ascend,
descend), and/or the ship movement model (i.e., [S].east.depart, [S].west.depart). Finally, two versions
of lockset behavior are composed.
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Table 5. Sample composition and minimization of lockset behavior.

minimal ||LOCKSET_CONTROL = ( SCHEDULER || WESTBOUND_SHIPCONTROL || EASTBOUND_SHIPCONTROL ).

minimal ||PASSAGEWAY_SYSTEM = ( WESTBOUND_PASSAGECONTROL || EASTBOUND_PASSAGECONTROL ) @
{ resethigh, resetlow, ascend, descend,

[S].east.depart, [S].west.depart }.

// Lockset system that omits details of the pump and gate operations ....

minimal ||LOCKSET_SYSTEM = ( LOCKSET_CONTROL || PASSAGEWAY_SYSTEM ).

// Viewpoint 1. Composition of Behavior for Ship Movement.

minimal ||LOCKSET_BEHAVIOR1 = ( LOCKSET_SYSTEM || TRAFFIC_DEMAND ) @ {
[S].{east,west}.request, [S].{east,west}.acquire,
[S].{east,west}.depart }.

Scalability of the Lockset Behavior Model. Table 6 shows the size of the constituent processes
as a function of NoShips. Not only are the process sizes several orders of magnitude smaller than in
the initial formulation, but the computational procedure remains computationally tractable. The dual
strategy of only including processes related to a specific decision, and incrementally assembling
minimized processes has a huge impact on the computational feasibility of the analysis.

As a case in point, consider the PASSAGEWAY_SYSTEM model. Pump and gate processes each have
two states. The decision to exclude three pump and two gate processes from the process model
automatically reduces the size of the process model by a factor of 32. Still, when NoShips = 3,
the unminimized PASSAGEWAY_SYSTEM model has 15 ⇥ 15 = 225 states. In contrast the minimized
model has only 4 states and, in fact, this does not change with increasing numbers of ships.

Table 6. No of states in the lockset behavior model for NoShips = 1, 2 and 3. Legend: TD = traffic
demand, LSC = lockset control; PS = passageway system; Min States = minimized states.

Part 2: Processes after viewpoint-action-process abstraction
-----------------------------------------------------------------

No E-W Ship TD SCHEDULER LSC PS
Ships Model States States Min. States Min. States
=================================================================

1 [1..1] 9 33 32 4
2 [1..2] 324 132 48 4
3 [1..3] 6,561 352 64 4

=================================================================
No E-W Ship LOCKSET_SYSTEM1 LOCKSET_BEHAVIOR1

Ships Model Minimized States Minimized States
=================================================================

1 [1..1] 32 12
2 [1..2] 48 48
3 [1..3] 64 108

=================================================================
No E-W Ship LOCKSET_SYSTEM2 LOCKSET_BEHAVIOR2

Ships Model Minimized States Minimized States
=================================================================

1 [1..1] 32 12
2 [1..2] 48 48
3 [1..3] 64 108

=================================================================
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5.6. Formal Validation of Lockset-Level Safety Concerns

As already noted, a safety property asserts that nothing bad happens during the canal operation.
Safety checks are compositional in the sense that if there is no violation at a subsystem level, then there
cannot be a violation when that subsystem is composed with other subsystems. At the lockset level we
need to ensure that:

1. The canal scheduler will not assign more than one ship to a lock, and
2. Floods will be prevented by ensuring that a gate will not open before water levels on both side of

the gate are equalized.

The short fragment of code in Table 7 establishes a validation test for lock occupancy that says:

If a specific ship acquires resources of the lockset, then it needs to depart before another
ship acquires the lockset.

Next, execution of the lock occupancy test is defined through composition of the lockset system
with the lock occupancy property test. If the composed system (i.e., LOCK_OCCUPANCY_CHECK1) contains
an error state (i.e., it fails), then there exists at least one pathway in the lockset system where an
acquire operation is followed by a second acquire and/or a depart action is followed by a second
depart operation. This interpretation of property satisfaction is allowed for via Equation (10) in Table 1.
For our model, however, the composed model is free of an error state and the test passes.

Table 7. Composition validation of lock occupancy properties.

property LOCK_OCCUPANCY = ( [j:1..NoShips].east.acquire -> [j].east.depart -> LOCK_OCCUPANCY
| [i:1..NoShips].west.acquire -> [i].west.depart -> LOCK_OCCUPANCY ).

||LOCK_OCCUPANCY_CHECK1 = ( LOCKSET_SYSTEM || LOCK_OCCUPANCY ).

5.7. Composition and Validation of System-Level Behaviors

The Panama Canal System corresponds to a parallel composition of three lockset-level processes
(i.e., the Pacific, Middle and Atlantic lockset systems) plus a control monitor process.

Figure 15 contain birds-eye views of canal-level transit operations and schematics of the process
architecture for the full canal model (white dots represent requirements; black dots represent
provisions). The canal traffic demand model will be a composition of EASTBOUND and WESTBOUND
traffic. East-bound ships will ascend the Pacific and Middle locksets, cross lake Gatun (details not
shown), and then descend the Atlantic lockset. West-bound ships will ascend and descend the Atlantic
and Pacific and Middle locksets respectively. LTSA notation for the system-level traffic demand
model is a straight forward extension of the lockset level behavior model. For example, the action
pac.[S].east.request indicates a request action by an eastbound ship to pass the Pacific Lockset.
Using the strategy described in the previous section, simplified models of canal system behavior can
be composed for a variety of viewpoints (e.g., traffic flow in one direction; behavior of a lockset within
the canal system). Figure 16 shows, for example, ship behavior at the Pacific Lockset when the number
of east- and west-bound ships is one.

The two principle design concerns at the canal level are: (1) ensuring maintenance and emergency
events are properly handled [41,42], and (2) ensuring progress checks at the lockset level propagate
up to the canal level. We assume that emergency and maintenance events will both originate at the
lockset-level (e.g., due to a collision). While emergency events can occur any time, maintenance
can be scheduled to occur only when the lock is vacant. In either case, the lockset scheduler will
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inform the canal monitor of an event. The canal monitor will then mandate appropriate restrictions to
transit operations in the east- and west- directions. Our preliminary implementation assumes that all
incoming traffic will be immediately halted. All outgoing traffic will be allowed to continue onwards
and clear the system.

Breakdown

BreakdownBreakdown

CANAL_TRAFFIC_DEMAND

WESTBOUND_CANAL_TRAFFICEASTBOUND_CANAL_TRAFFIC

CANAL

MONITOR

LOCKSET_SYSTEMLOCKSET_SYSTEMLOCKSET_SYSTEM

ATLANTICPACIFIC MIDDLE

restart

PANAMA_CANAL SYSTEM

restart

restart

Figure 15. Process architecture for full canal model.

Figure 16. Behavior of ships transiting the Pacific lockset.

This policy leads to Figure 17, a schematic of system-level response to maintenance and emergency
events in the Pacific, Middle and Atlantic locksets. Schematics for the Pacific, Middle and Atlantic
locksets are shown in columns 1 through 3 respectively. A shaded box indicates that the canal
system will be shut down. An empty box indicates that the canal system can continue operating.
Now suppose that an accident occurs in the Pacific Lockset, for example. It makes sense to let all
outgoing traffic continue their transit to the Atlantic and to halt all incoming traffic. Eventually
queues of ships in the permissible directions of operation will clear and the system will wait until
the maintenance/emergency is cleared and operation restarts. Figure 18 contains a partial view
of behavior associated with maintenance/emergency operations and, in particular, shows that a
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maintenance/emergency event at the Atlantic lockset will be followed by actions directing the Middle
and Pacific locksets to process only west-bound traffic.

East−Bound Traffic

Pacific Lockset Maintenance / Emergency

Middle Lockset Maintenance / Emergency

Atlantic Lockset Maintenance / Emergency

West−Bound Traffic

West−Bound Traffic

West−Bound Traffic

East−Bound Traffic

East−Bound Traffic

Figure 17. Schematic of system-level response to maintenance events and emergency events in the
Pacific, Middle and Atlantic locksets.

Figure 18. Abbreviated view of behavior associated with maintenance/emergency events.

6. Conclusions and Future Directions

Our work is motivated by the tenet that modern infrastructure systems are a necessary foundation
for the transport of goods and services to support global trade and long-term economic growth.
The unfortunate reality is that too often failures, delays, and accidents in aging infrastructure systems
do little to attract the technical and economic assistance required for modernization. At the same
time, remarkable advances in computing and communication technologies over the past few decades
have opened doors to the development of physical infrastructure networks tightly connected to
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cyber (e.g, data, information, and software) for decision making. We believe that modernization
efforts will be defined by increased use of automation to: (1) Expand the range of environmental
conditions within which systems can safely operate; (2) Support and enhance human performance;
and (3) Improve the ability of a system to quickly recover from unexpected disruptions. From a
design standpoint, increased use of automation in infrastructure operations introduces new challenges
in terms of correctness (assurance and security) of system functionality. From an systems analysis
standpoint, compositional approaches to behavior modeling are an essential element to achieving
required levels of system agility.

This paper takes a first step toward the development of a compositional approach to distributed
system behavior modeling and formal validation of infrastructure operations with finite state
automata. Solutions to this problem are complicated by the large number of concurrent processes
defining component- and system-level behavior. The difficulty of this problem can be mitigated
through hierarchal decomposition of processes, with each level in the hierarchy dealing with a
specific set of design concerns. Decomposition does not solve the problem completely, however,
because naive approaches to the parallel composition of processes quickly become computationally
intractable. To overcome the latter problem, we have proposed a mechanism for process abstraction
via viewpoint-action-process traceability. The repeated application of abstraction and process
minimization leads to behavior models having size that remains almost constant with respect to
problem size (e.g., number of ships traversing the canal system).

There is need for further work in a number of important directions. First, in this study we
have investigated the correctness of system functionality with respect to the sequencing of actions.
The time needed to complete these actions has been abstracted from consideration. We are currently
working on a new behavior model of the canal system represented by networks of timed automata
modeled in UPPAAL [43]. This extension offers the possibility of formally examining the correctness
of canal management operations in terms of delays. Although we have talked about the need for
sensor-enabled control, the lockset model does not explicitly contain sensor processes. A second
generation of process models would place sensors at the center of monitoring activities—to detect
the arrival of ships, monitor water levels, and ensure locks are restricted to single use operations.
An important benefit of this approach is that ships do not need to be modeled as processes. Instead,
they are simply viewed as objects that are directed to pass through the canal system. Finally, we have
been creating formalisms [2,11] for distributed system behavior modeling of urban systems with
ontologies and rules, and exploring ways in which urban networks can interact via message passing
mechanisms.
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Abbreviations

The following abbreviations are used in this manuscript:

p Deadlock state
! Remove actions internal to a process
t An internal action
4 Transition relation
" Restriction operator on observability of actions
A Communication alphabet
L Set of observable actions
P Process
Q Process
q Current state selected from S
S Set of states
DFA Deterministic Finite Automata
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FSP Finite State Process
LB Lockset Behavior
LS Lockset Systems
LSC Lockset Control
LTS Labeled Transition System
LTSA Labeled Transition System Analyzer
MBSE Model-based Systems Engineering
PS Passageway System
SysML Systems Modeling Language
TD Traffic Demand
UML Unified Modeling Language
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