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Abstract

A number of studies within the building domain have
independently considered knowledge representation and
reasoning (KRR) and machine learning (ML). This paper
explores opportunities for how these artificial intelligence
(AI) technologies can be combined to provide synergic
assistance in intelligent building systems. A case study is
used to demonstrate the construction of semantic knowl-
edge from weather and utility ontologies. That knowledge
is used as a semantically annotated training set in cluster-
ing algorithms that identify consumption patterns, and the
results of clustering are stored in ontologies for further
inference. This paper presents a roadmap to intelligent
building monitoring techniques that uses both historical
data and the underlying semantic knowledge.

Introduction

Problem Statement. In 2016 the building sector in
the U.S. consumed approximately 40% of the total en-
ergy consumption (EIA ), suggesting that with advances
in technology over the past few decades, positive op-
portunities exist. One opportunity resides in addressing
challenges associated with buildings-to-grid integration
(EERE 2018). First, there is currently an unprecedented
amount of metered building energy and sensor data that
are not being effectively used to optimize energy perfor-
mance of buildings. Second, building energy management
systems (BEMS) are used in only approximately 40% of
commercial buildings (typically large commercial build-
ings), but there is an interest in utilizing sensors and data
storage in all buildings. Present-day expectations are that
deployment of sensors in support of connected devices
and systems will grow 80% annually (Jiron, 2018 ). Cur-
rent buildings under-utilize the available sensor data and
do not efficiently integrate with the smart grid. Our work
is driven by the belief that these limitations stand in the
way of improvements to energy consumption in the build-
ing sector.

Scope and Objectives.This paper takes a first step to-

ward enabling modern technologies by using judicious
combinations of knowledge representation and reasoning
(KRR) and machine learning (ML) to provide new ap-
proaches in management of energy in buildings. We envi-
sion that KRR and ML formalisms will work side-by-side,
providing complementary and supportive roles in the col-
lection and processing of data, identification of events and
automated decision making.
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Figure 1: AI for enhanced energy monitoring.

Figure 1 is a high-level architectural schematic of the
KRR/ML components and their interactions. The seman-
tic (KRR) side is defined by domain and meta-domain
data, ontologies and rules that can dynamically respond
to events. The KRR encapsulates the data and represents
it with reduced dimensionality. The ML side will clas-
sify data into collections and learn about cause-and-effect
relationships embedded in the data. ML can also be devel-
oped for the identification of anomalies (faults) in system
performance, thereby acting as a trigger for the activation
of KRR diagnostic procedures. With this approach, the
knowledge of cause-and-effect relationships embedded in
the data revealed by ML algorithms can provide verifica-
tion for the effectiveness of rules developed for KRR.

The design of a path from what “seems like a good idea”
to a “prototype implementation” requires that three impor-
tant challenges be addressed: (i) gathering of knowledge
about the physical building environment, (ii) design of an
efficient means for dealing with large volumes of hetero-



geneous streaming data (e.g., occupancy, utility, weather,
building architecture, sensor and equipment), and (iii) use
of the knowledge and data as a source of semantically
annotated training sets in machine learning algorithms.
Since the goals of the current study are just to demon-
strate that the KRR-ML interaction is advantageous, we
deliberately keep the data analysis simple.

Background

This section presents related work in knowledge model-
ing with ontologies and rules, and supervised and unsu-
pervised machine learning.

Ontology Modeling and Representation.The work in
(Lee E.A. 2003), presented an extension to the World
Wide Web (WWW) named the Semantic Web. The Se-
mantic Web is capable of automatically handling Web
data without human knowledge interpretation and input.
In the context of the Semantic Web, data retrieval is based
on semantic relationships between data categories and
classes, not just numeric values. This improves knowl-
edge sharing and integration of homogenous data sources.
In KRR, an ontology is a key element to formally and ex-
plicitly describe the main concepts or classes of the do-
main that stores data for and the relationships between
those concepts. One common language to describe on-
tologies is Web Ontology Language (OWL). Other lan-
guages, such as Semantic Web Rule Language (SWRL),
can express rules and logic in a model. Rules are mecha-
nisms to infer implicit knowledge based on explicit facts
in the ontology. Semantic Web technologies have been
adopted in research efforts in computer science over the
past two decades (Liu X., Li Z. and Jiang S. 2016).

Supervised and Unsupervised Machine Learning.ML
techniques learn about a system’s behavior and support
decision-making and predictions. These methods are be-
ing used to solve complex engineering applications that
entail a large number of independent parameters and non-
linear interdependencies that cannot be easily modeled
from first principles. For our purposes, understanding
building energy consumption patterns is among these ap-
plications, where outdoor weather, building occupancy,
and performance of mechanical systems are the features
that influence the building energy performance.

ML algorithms can use supervised or unsupervised learn-
ing. Supervised learning typically encompasses two steps:
(i) training and (ii) predicting. Datasets are also divided
into training datasets and testing datasets. The training
step allows identification of the decision model that pro-
vides the dependency of the target (predicted variable) on
the features (impacting variables). In the next step, the de-
cision model is applied to the testing datasets; the effec-

tiveness of the prediction performance of the model can
then be calculated. Supervised learning such as the near-
est neighboring algorithm, requires labeled datasets (e.g.,
the data are labeled with the correct answer), a process
that can be very expensive. This algorithm makes predic-
tions on new data points based on their proximity to the
points in the training set.

In contrast to supervised learning, the goals of unsuper-
vised learning such as the K means clustering algorithm
are to model and identify the underlying structure or pat-
terns in a dataset when no correct answers (labels) are
provided. Semi-supervised learning methods fall between
the strategies of supervised and unsupervised learning and
employ combinations of labeled and unlabeled data. First,
the unsupervised method is used to identify patterns and
then supervised learning is used to draw the best predic-
tions for the unlabeled data using the labels generated by
unsupervised learning. The prediction decision model is
then tested on labeled data. This semi-supervised tech-
nique can address a wide range of engineering applica-
tions including building energy performance, and proce-
dures needed for fault detection and diagnostic analysis of
building equipment.

Machine Learning for Building Energy. Recently, data
scientists and engineers have applied machine learning
techniques to a variety of problems ranging from fraud
protection to online advertising. Applications in building
performance include mechanical system controls, fault
detection and diagnostics, and building energy monitor-
ing. The K-means clustering algorithm is widely used
to assess the energy performance of buildings (Miller C.,
Nagy Z. and Schlueter A. 2018). This unsupervised tech-
nique categorizes data into subgroups that share similar-
ities. (Heidarinejad, M., Dahlhausen, M., McMahon, S.,
Pyke, C. and Srebric, J. 2014) used K-means cluster anal-
ysis to classify buildings in general into high, medium,
and low energy intensity in order to identify similarities
and differences in the key variables contributing to the en-
ergy use patterns. As a case for the supervised learning,
(Valgaev O. and Kupzog F. 2016) developed a model that
is parameterized automatically and provides a forecast us-
ing only historic building load measurements as an input
based on K-nearest neighbor approach. It was used on a
large sample of simulated mixed-usage buildings of dif-
ferent sizes. Their results show that the model accuracy
is superior to the forecast obtained using individual load
profiles created for each building.

An important consideration, in addition to energy con-
sumption, is the cost of electricity. A flat electricity rate
is common in residential buildings, but utility providers
are beginning to offer programs that provide a balance be-
tween the demand and supply of electricity. Time-of-use
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Figure 2: Proposed architecture for knowledge-assisted machine learning approach to building monitoring and man-
agement.

(TOU) programs calculate the cost of electricity based on
the time of day and date. A common TOU program of-
fers summer and winter rates, and each season could have
up to three rates: on-peak, mid-peak, and off-peak. An-
other example is a voluntary rebate program in which the
resident allows the utility provider to cycle the resident’s
central air conditioner or heat pump over short intervals on
selected summer days. These days are often called peak
savings days and only occur for a short period of time
during the summer. We anticipate that machine learning
techniques will provide valuable insight on the impact of
complex utility rate structures on the electricity consump-
tion of residential buildings.

Proposed Methodology

Figure 2 is the proposed architectural schematic for a
combined semantic modeling and machine learning ap-
proach to building energy monitoring. The semantic mod-
eling and machine learning blocks and their interactions
serve the following purposes:

Block (a). On the semantic modeling side of the problem,
data, ontologies and rules are placed on an equal footing
and are developed for a multiplicity of domains. The goal
is to keep the ontologies small and use object property
relationships and rules to link sources of data needed for
multi-domain reasoning. A key benefit in co-developing
the data models with ontologies and rules for a domain
is that it represents domain knowledge and supports rule-

based decision making. Rules can be developed to infer
new knowledge by combining and reasoning with data
from multiple domains to help with cross-domain deci-
sion making.
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Figure 3: Schematic for ontologies visiting data models.

The ontologies and rules are implemented in Jena
(Apache Jena: 2016), and the data models in Java. The
right-hand side (c) of Figure 2 deals with data sources
and models across the participating domains (e.g., build-
ing occupant, utility, weather, building architecture, fault
detection and diagnostics). The semantic graph models
will be populated with individuals (i.e., instances of real-
world data) by visiting (a mechanism software design pat-
tern: see Figure 3) the relevant data models and gathering
the data and object properties relevant to the application
at hand. For example, the occupant emulator will provide



data to the Occupant ontology; the weather server and data
model will add instances to the Weather ontology.

Block (b). The second purpose of semantic modeling is
to provide support for the executable processing of events
associated with features of the building domain and en-
ergy consumption. As illustrated in the center and left-
hand sides of Figure 2, the domain ontologies and rules
(e.g., Weather.owl and Weather.rules; Utility.owl and Util-
ity.rules) are loaded into the semantic model and gen-
eral purpose reasoner. Semantic graph representations
can listen (Listener software design pattern) for incoming
events – this, in turn, triggers the execution of rules and, if
needed, transformation of the semantic graph. The result
is semantic graphs that dynamically adapt to the conse-
quences of incoming data and events.

Block (c). This study uses K-means cluster analysis and
the nearest neighboring algorithm on residential build-
ing data to classify and predict building electricity energy
consumption. Our prototype software uses TensorFlow
(Abadi M., Barham P., et al. 2016), an open source Python
library, for machine learning purposes. We employ JPype
(JPype 2018) to integrate Apache Jena (Java) (Apache
Jena: 2016) with TensorFlow (Python). It is important to
note that this framework allows us to use semantic infor-
mation as features in learning algorithms (e.g., the results
of the knowledge inference such as the category of utility
rate On-Peak, Off-Peak, or the occupancy schedule).

Data flows among blocks (a)-(b)-(c). Interactions be-
tween the blocks for semantic model representation, ex-
ecutable processing, and machine learning are defined by
two streams of data: (1) the machine learning block uses
the inference results in the ontologies, and (2) results from
machine learning techniques are fed back into the ontol-
goies for further inferencing.

Case Study Problems

Problem Description. The case study exercises a subset
of the vision described by Figure 2, and involves a cou-
pling of semantic modeling and reasoning, and machine
learning for the weather, utility, and occupant domains.
This case problem uses hourly data on electricity usage
(obtained from the utility company in 2016) for one bed-
room residential buildings located in Maryland for a four-
month winter utility season (January 1 through April 30)
and one month of the summer utility (May 1 through May
31) season. Data is provided for the rate category, the
weather condition (hot, cold), occupancy schedule, and
dew point.

Domain Ontologies.Figures 4 and 5 show fragments of
the classes, data and object properties in the Weather and
Utility ontologies. Current and future forecast weather

data was collected from an online server (WeatherAPI )
and stored in Weather ontology. The utility ontology em-
ploys temporal concepts such as time interval and time in-
stant (Petnga L. and Austin M.A. 2013) to represent util-
ity tariff scheduling. In this ontology, a season is a con-
cept that begins and ends with time instants and may have
one or more sub-intervals associated with the tiered rates;
e.g., on-peak, off-peak, and mid-peak rates. At any point
in time, temporal reasoning procedures are capable of de-
termining whether or not a peak interval is in effect, and
identifying the associated rate for that season and time of
the day.

Jena Rules for Domain Ontologies. The occupancy
schedule is defined as an inference rule in KRR shown in
Figure 6. This example shows how the knowledge about
the occupants’ presence during a weekday can be derived
from temporal reasoning and semantic facts, i.e., time of
day and the calendar (weekday, weekend, holiday). In
this setting, the semantic terms such as holiday and week-
end are used in the occupancy schedule inference rule, the
values of which are computed from Jena boolean built-in
functions named isWeekend() and isHoliday(). Figures 7
and 8 represent sample Jena rules associated with weather
and utility ontologies, respectively. The former presents
a semantic rule for the identification of a frost (i.e., ob-
served temperature is below 0 °C) condition. In the latter,
UtilityRule01 identifies the season that “time-of-the-use”
belongs to and UtilityRule02, identifies if that time-of-use
belongs to the on-peak tier.

Results

Figure 9 shows the distribution of actual, obtained from
utility provider, hourly consumption target values com-
pared with predicted values. As shown in the graph, the
shape of the predicted distribution is similar to the ac-
tual distribution. Figure 11 shows results of the classi-
fication analysis using the k-nearest neighbor algorithm
to predict electricity consumption. The features for this
analysis were based on outdoor temperature, solar radia-
tion, and wind speed from raw data, and occupancy ob-
tained from KRR. The algorithm used 90 % of annual
electricity for training and 10 % for testing and k = 4. The
training set is composed of 700 data points and with the
batch size of 100, 7 mean square errors (MSE) were com-
puted as 0.033, 0.041, 0.054, 0.036, 0.021, 0.027, 0.021.
The predicted values are close to the actual values except
when predicting unusually high consumption,> 0.5 kWh.
Overall, based on Figure 9 distribution, the data is mainly
concentrated in the low energy consumption range, less
than 0.2 kWh. This observation and the good prediction
on low range results from Figure 11 suggest that the model
works well for these data in the study.



Figure 4: Partial view of weather ontology classes and properties (Source: Adapted from Staroch (Staroch P. 2013;
Delgoshaei P. 2017)).

Figure 5: Schematic of utility ontology (Delgoshaei P. 2017).



Jena Rules

[weekDayVacant: (?z rdf:type bld:Zone)(?z bld:hasSchedu le ?sc) equal(?sc,"Schedule1")
(?td rdf:type te:TOU) isWeekend(?td,?w) isHoliday(?td,? h)
notEqual(?w,"false"ˆˆxs:boolean ) notEqual(?h,"false" ˆˆxs:boolean)
(?td te:hasTimeValue ?time) le("16:59:59"ˆˆxs:time,?ti me)
ge("06:59:59"ˆˆxs:time,?time)->(?s bld:isOccupied "fa lse"ˆˆxs:boolean)]}

Figure 6: A Jena rule to detect schedule of occupancy during weekdays that do not fall on a holiday.

Jena Rules

[WeatherRule01: (?t rdf:type we:Temperature) (?t we:hasT emperatureValue ?tv)
lessThan(?tv,0) -> (?t rdf:type we:Frost)
(?t, we:isCondition, "true"ˆˆxs:boolean) print(?tv,’Fr ostCondition’)]

Figure 7: A Jena rule for weather ontology to detect frost (Delgoshaei P. 2017).

Jena Rules

[ UtilityRule01: (?interval rdf:type te:Season) (?interv al te:endsAt ?end)
(?interval te:beginsAt ?begin) (?t rdf:type te:TOU) (?t te :hasTime ?time) lessThan(?begin,?time)
lessThan(?begin,?end) greaterThan(?end,?time) -> (?t te :isInInterval ?interval) ]

[ UtilityRule02: (?t te:isInHourInterval ?interval) (?in terval te:isPeak ?peak) -> (?t te:onPeak ?peak) ]

Figure 8: Jena rules for the utility ontology to identify the season and the tiered rates(Delgoshaei P. 2017).

Figure 10 is a plot of clustering analysis on energy con-
sumption based on inferred weather condition obtained
from KRR side. The main categories of the weather con-
dition are: Room, Below Room, Cold and Frost. These
conditions are inferred based on the semantic rules de-
picted in Figure 7. The data represents the electricity con-
sumption for the heating and the shoulder season, from
January to May. The clusters also confirm the energy con-
sumption as a function of weather conditions belong two
these seasons. The red cluster containing the Room and
Below conditions represents the shoulder season and the
blue cluster represents the heating season. The centroids,
the dataset average, are marked by “x” representing each
cluster. The results show that the two clusters confirm the
expected seasons of heating and shoulder seasons. Also,
the heating cluster has a higher average consumption than
the shoulder season. This is a potentially useful insight
for utility companies on how to structure their electricity
tariffs (two vs. three seasons) based on semantic labels
(i.e., frost condition associated with the heating season)
rather than temperature numeric values.

Figure 12 shows results of the cluster analysis for electric-
ity consumption and its relationship to outdoor air tem-
perature and tiered utility rate (1 represents on-peak and 0
represents off-peak). The tiered rates were obtained from

semantic rules defined in Figure 8. This study considers
two clusters to represent conditions during cold and shoul-
der seasons. The consumption during the peak hours in
summer is not as well correlated with outdoor air temper-
ature. This reflects the setpoint reset during unoccupied
hours. However, during the off peak, occupied hours in
winter, heating is correlated with the outdoor air temper-
ature. Overall, the results of this figure suggesting that
during (1) occupied, extreme weather conditions, there is
a linear correlation between consumption and outdoor air
temperature and (2) during moderate weather conditions,
the energy consumption has little correlation with outdoor
temperature and occupant behavior.

Discussion

A recent study (BAS 2018) indicates that the market for
building automation system installation is expected to ex-
pand at 4.6 percent annual growth from 2016 through
2022. This trend is driven in part by the belief that en-
ergy efficiency of buildings can be improved through the
use of data/information working alongside technologies
for AI, big data management and cloud platforms. Imple-
mentation of this prototype requires considerations when
integrating ML techniques with KRR models. The spe-
cific areas include: data exchange and synchronization



Figure 9: Distribution of predicted and actual energy con-
sumption test data for k-NN (k=4).

Figure 10: Hourly energy consumption as a function of
weather condition category.

Figure 11: Predicted values and actual target values of
energy consumption based on occupancy and weather
conditions.

Figure 12: Cluster analysis for hourly electricity con-
sumption based on outdoor air temperature and utility
category.



of results between ML and KRR models, and handling
the difference in processing time in the semantic domain
(slow) and the ML algorithms (fast). This study demon-
strates how collection of data-ontology-rules can be used
to represent and reason with data from multiple domains
and provide essential semantic knowledge to the learning
algorithms.

Conclusion
This paper describes an approach to monitor building en-
ergy consumptions by integrating machine learning tech-
niques with mechanisms for semantic knowledge repre-
sentation and reasoning. This work implements a super-
vised learning algorithm, nearest neighbor, to predict the
electricity consumption based on raw data such as solar
radiation, outdoor temperature, and wind speed, as well
as knowledge data such as occupancy inferred by seman-
tic rules. We also integrated the semantic knowledge in
weather conditions (i.e., frost, above room temperature,
below room temperature) integrated to K-means cluster-
ing algorithm to identify the electricity consumption sea-
sons (i.e., heating, shoulder, cooling). Our long-term vi-
sion is that this framework will be used to couple semantic
and machine learning techniques for buildings-to-grid in-
tegration.
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Nomenclature
AI Artificial Intelliegence
BAS Building Automation Systems
OWL Web Ontology Language
FDD Fault Detection and Diagnostics
KRR Knowledge Representation and Rea-

soning
ML Machine Learning
WWW World Wide Web
SWRL Semantic Web Rule Language
TOU Time of Use


