
 27th Annual INCOSE International Symposium (IS 2017)
Adelaide, Australia, July 15-20, 2017

Semantically-enabled Model-based Systems
Engineering of Safety-critical Network of Systems

Leonard Petnga
University of Maryland

College Park, MD 20742, USA
+1 301 405 9926

lpetnga@umd.edu

Mark Austin
University of Maryland

College Park, MD 20742, USA
+1 301 405 6627

austin@umd.edu

Mark Blackburn

Stevens Institute of Technology
Hoboken, NJ 07030, USA

+1 561 637 3452
mark.blackburn@stevens.edu

Copyright © 2017 by Author Name. Published and used by INCOSE with permission.

Abstract. This paper describes a novel approach to the development and integration of semantics to
the model-based systems engineering and operation of safety-critical network of systems.
Engineering models work directly with formal domain and meta-domain (especially time and space)
knowledge that are determinate, provable (ambiguity free) and executable. Knowledge is encoded
as semantic blocks, which are an integration of ontologies, rules, and communication and
computation interfaces. These concepts are exercised in a collision avoidance problem involving
autonomous agents at a traffic intersection.

Introduction
Problem Statement. The rapidly–growing complexity, interconnectivity, and cost of systems in
civilian and military domains is driving the need for new design methodologies and tools to model
and analyze the performance of systems of systems (SoSs) and complex cyber-physical systems
(CPS) at the engineering level. SoSs are a set or arrangement of systems that results when
independent and useful systems are integrated into a larger system that delivers unique capabilities
(DoD, 2004). In many cases, relationships among the participating SoS entities might only be
weakly coupled. CPSs, on the other hand, are characterized by a network of computational and
physical elements, seamlessly integrated and tightly coupled. Examples of the latter include
self-driving vehicles, unmanned aerial vehicles (UAVs), mobile autonomous robots and unmanned
ground systems (UGSs). Despite their smartness, standalone CPSs are often ill-equipped to tackle
the complexity of safety-critical missions, especially in the military. Instead, their association with
other systems (including humans) leads to networks of CPS, with the collective behavior emulating
a SoS. We introduce the term “network of systems’’ (NoSs) to designate the aggregation of SoSs
and CPSs operating in a networked environment.
Ongoing projects such as the US Coast Guard Integrated Deepwater System (Peckenpaugh, 2016)
and air traffic control and management (FAA, 2016) demonstrate both the need for and the
transformative power of adopting NoS perspective in addressing complex critical military and
civilian undertakes. However, research challenges are numerous and diverse. Nevertheless, there is
a consensus on the need for novel domain-specific modeling and simulation methodologies and
tools (Crossley, 2004), (Maier, 2005), (Kalawsky, 2013). Specific and unambiguous domain
knowledge and their proper exchange and handling across various engineering areas of expertise are

critical to appropriate components modeling and decision-making at all levels. This includes the
proper elicitation of system requirements, which, along with erroneous assumptions about the
operation of a control/computer system, has been shown to be the leading cause of software–related
accidents in modern systems (Leveson, 2004). The ability of the system to achieve/demonstrate the
expected level of capability, performance, resilience while remaining safe is at stake, especially
when there are humans-in the loop. One near-term goal is to equip System Engineers (SEs) with
rigorous approaches for assessment of NoS safety and resilience while carrying out complex tactical
operations in challenging/hostile environments with little to no human interactions.
Scope and Objectives. This paper reports on the development of a semantically-enabled approach
to the model-based systems engineering (MBSE) of safety-critical NoSs. We will look into the
family of NoSs for which correct requirement elicitation and operational capability involve proper
handling of spatio-temporal constraints. A framework for the development of ontology-based
semantics for domains and meta-domains along with their rules and their integration with
engineering models will be introduced and described. The problem of collision avoidance (i.e.
safety) of autonomous mobile vehicles at a non-signalized intersection will illustrate the application
of these concepts.
Model-Based Systems Engineering for Network of Systems. Figure 1 shows a simplified
architecture of a NoS. Each component system has its own independent behavior and will
communicate with others via an interface (Wi), if and when needed, for the purpose of the system
level mission. System (Si) behavior and structure are modeled as graphs that dynamically evolve in
response to events and obey to a set of domain-specific rules. As a directed NoS, the responsibility
of meeting the system mission or goal is assigned to a manager (Wc). However, each component is
smart and can process information and make (local) decision too.

As an illustration, we consider a network of connected autonomous vehicles that must safely cross a
non-signalized intersection managed by an intersection manager (IM) as shown in Figure 2. The IM
is the manager in this directed NOS and cars have their own individual, independent trajectory and
behavior (see Figure 2 (a)). However, they have to communicate and coordinate with each other
and, apply traffic rules imposed by the IM to ensure the proper space-time separation needed to
avoid collision while crossing the intersection (see Figure 2 (b)). The network structure and
configuration are dynamic as vehicles enter and leave the intersection area.

 	
Figure 1. Simplified graph-based model of a (directed) NoS .	

Achieving correct-by-design NoS requires effective dealing with multiple physics, heterogeneous,
(spatio-temporally) distributed, connected components, which could be tightly or loosely integrated,
dynamic and/or static. Weak semantics of leading languages such as the Unified Modeling
Language (UML) and System Modeling Language (SysML), coupled with difficulties in achieving
separation of concerns and robust system integration make present-day MBSE procedures
inadequate in dealing with these challenges. Researchers have advocated approaches using logic to
strengthen UML/SysML semantics through language retrofitting (Graves, 2011) and ontological
profiling (Rouquette, 2010) which creates formal language representations in system modeling
environments (tools). Despite their demonstrated benefits in addressing inconsistencies and
redundancies in models, they are not intuitive and require strong knowledge in logic. Moreover,
they do not support effective analysis of system-level properties.
There is a strong need for modeling abstractions to be broad in scope, act across multiple stages of
system development and formality. Our perspective is that, development of NoSs can benefit from
ongoing work in CPS thanks to the multiple overlaps (intelligence, integration/coordination,
distributed behaviors, heterogeneous components, etc.) between the fields. The underlying tenet of
our research is that future methodologies for design and analysis of NoSs need to employ semantic
descriptions of application domains, and use ontologies and formal reasoning to adaptively enable
validation of requirements, communication (or mappings) among multiple disciplines and models,
and assessment of system capability in the face of permanent uncertainty.

Semantic Web: Theory, Models, Languages and Tools
Semantic Web Vision and Network of Systems. In his conceptualization of the World
Wide Web (late 1980s), Tim Berners-Lee identified two main goals: (1) To make the Web a
collaborative medium and, (2) To make the Web understandable and automatically processable by
machines (Berners-Lee, 2001). The first part of this vision has come to pass – in today’s Web,
machines retrieve and render information presented in formats that are readable and interpretable by
humans. The Semantic Web (second part) aims to produce a semantic data structure, which allows
machines to access and share information, thus constituting a communication of knowledge
between machines, and automated discovery of new knowledge. This is an ongoing effort that will
greatly benefit the development of NoS given the current trends towards machines as full system
components and software/computers increasingly being responsible of more and more system
functionality. There is a need for mechanisms (i.e., markup languages) enabling the introduction,
coordination, and sharing of the formal semantics of data, as well as an ability to reason and draw
conclusions (i.e., inference) from semantic data obtained by following hyperlinks to definitions of
problem domains (i.e., so-called ontologies).

		
Figure 2. Schematics for network of autonomous vehicles crossing a lightless traffic intersection

and example space-time trajectories that must be separated (Adapted from (Wuthishuwong, 2013))

Logic-based Semantics and Ontologies for Reasoning . To be used in reasoning, data
need to be backed by semantics, which provided clear, unambiguous interpretation with respect to
the knowledge of the associated domain and the context of use. To address this challenge,
researchers have developed several knowledge representation formalisms such as Semantic
Networks, Frame Systems, Description Graphs and Logic-based infrastructure. Because of their
sound mathematical foundations (well defined semantics and proven reasoning algorithms) and
decidability as fragment of first order logics - all features critical for reasoning tasks - we opt for
description logics (DL) formalisms (Baader, 2008). In DLs, domains are described in term of
concepts and roles assigned to or among them. Terminological axioms constitute the TBox or T
(definitions) and it’s complemented with assertional axioms ABox or A (individuals). Universal
(∀), existential (∃), intersection (), Union () and negation (¬) operators support the restriction
needed to make the language decidable at low complexity. Interpretations I are functions that map
concepts (C) and binary relationships (R) and they provide the required semantics to the domain
being described. A summary of description logic concepts constructors can be found in (Horrocks,
2007).
DLs provide the mathematical foundations on top of which machine and human ontological
languages such as the web ontology language (OWL) can be built in a systematic way
(Patel-Schneider 2004). They enable the creation of ontologies, which are engineering artifacts that
provide explicit specifications of the intended meaning of a vocabulary used to describe a given
domain. In ontologies, DL concepts are represented as classes while roles are captured as properties
and relationships. Ontological models provide semantic meanings that enrich the way models can
be branched and integrated across domains of knowledge automatically. These capabilities are
critical to NoS given the strong need to understand intricate relationships spanning multiple
domains and components and their ultimate affects on system level functionality. However,
(Patel-Schneider, 2004) points that the basic DL (ALC) requires some extensions to efficiently
support OWL, as suitable ontological language for such semantics capabilities. In (Petnga, 2016),
we’ve identified and described the necessary extensions, leading to SHOIN and SROIQ DLs
(respectively mapped to OWL1-DL and OWL2 DL) as appropriate logic-based formalisms for our
work. Moreover, SROIQ DL is decidable (Horrocks, 2006). Thus, OWL2 DL, which we use in
this work, is computationally decidable.

Working with Semantic Web Technologies and Jena. Figure 3 illustrates the technical
infrastructure that supports the Semantic Web vision, and the foundation upon which we hope to
build NoS applications. Each new layer builds on the layers of technology below it. We observe the
top layer position of OWL among standardized technologies. OWL provides semantic descriptions
of the underlying data. Together, XML, RDF and OWL allow for the implementation of reasoning
that can prove whether or not assertions are true or false in almost real-time (decidability). Briefly,
the bottom layer is constructed of Internationalized Resource Identifiers (IRI) and Unicode. IRIs are
a generalized mechanism for specifying a unique address for an item on the web. The eXtensible
Markup Language (XML) is organized into tree hierarchies that provide the fundamental layer for
representation and management of data on the Web. Semantic Web applications will gather
information from a variety of sources, and in the context of NoS, merge and organize these sources
for local and global decision-making. Unfortunately, there is no easy way for tree structures to be
merged. The resource description framework (RDF) solves this problem by allowing for the
representation of graphs of data on the web. Graphs can always be merged.
Not all technologies on the semantic web are standardized. Some are emergent ones that are used
mostly for horizontal and vertical integration of multiple layers of the stack. Generally speaking,
they are Application Programming Interfaces (API) used to complete integration tasks. Jena is one
of such technologies (see http://www.jena.apache.org). It’s an open source Java framework for
building semantic web and linked data applications. It provides APIs for RDF, triple store and
OWL (ontology and inference). Jena uses a rule-based reasoning approach, which is the classic

technique to logic-based reasoning where the knowledge-based system is developed by deduction,
induction, abduction or choices from a starting set of data and rules. A unifying logic, such as the
DL, is needed for horizontal integration of top layers of stacks and provides the rigorous, formal
support needed by system (NoS) models. The latter are the result of the top level, i.e., the
application layer, which allows users to visualize and interact with whatever underlying semantic
platform supporting the application.

Figure 3: Semantic Web technology stack.

Semantically-enabled Modeling and Reasoning for Network of Systems
Semantic Modeling of Space and Time. Generally speaking, safety-critical NoS will be
distributed in both space and time, possibly even covering multiple time zones. This makes the
understanding of these domains critical to effective semantic modeling of such systems.
Formal approaches to NoS design need representations of space and time that are mathematically
precise. Important modeling challenges include the multiplicity of theories (point, interval, duration,
dimension), the complexity of expressing ternary relation involving time in triple graphs, the
difficult choice between discrete (efficient but inaccurate) and continuous (accurate but
computationally inefficient) time. Fortunately, foundation research found interval-based models as
most appropriate for formal analysis having time-dependent behavior. Therefore, Allen’s temporal
interval calculus (ATIC) was identified as the most qualified temporal theory for modeling of this
domain (Allen, 1983). Instant and proper time intervals are primitives in this theory. It enables
formal expression of mereological (part-of), topological (connects) and logical (rules-based)
relationships between entities. Restricted axioms ensure time reasoning decidability (in OWL DL).
Figure 4 illustrates semantic modeling and reasoning mechanisms in the temporal domain. The
upper right-hand side shows a representation of the time ontology with the relationships among
classes (e.g.: #Instant) and properties (e.g.: #hasTime). The upper left-hand side shows a set of facts
and three rules. Locations X, S and B are on cars trajectories as indicated in Figure 2 (a). We note
that Rule #3 is the literal definition of ATIC’s “finishes” topological relationship between two
proper time intervals. Encoding the facts in the knowledge based initializes the time semantic graph

and, when the rules are applied to the ontology, the structure of the graph is transformed through
inferencing as introduced in the previous section. The schematic along the bottom of the figure
shows the evolution of part of the time semantic graph as the three rules (R1)-(R3) are executed as a
function of time.

Figure 4: Illustration of semantic-driven modeling and reasoning in the temporal domain.
As for time, we need ambiguity-free models of space that properly capture and infer the spatial
configurations of NoS as materialized in the world. In addition to the decision between a wide range
of theories (point, interval, array, region, etc.), the modeler is faced with the challenge of handling
non-mereotopological aspects (orientation, shape, elevation, etc.), avoiding triadic relations and
dealing with mereotopological composition complexity (multiple possible results). Moreover, space
is also often under-specified in natural language and computational accuracy is a very relevant
consideration especially when sensors are moving; the velocities of both the sensors and moving
objects will affect timeliness of computations. Because there is no one-size-fits-all theory that
tackles all these challenges, we select the one that matches our need the best i.e. the Region
Connectedness Calculus (RCC-8) (Cohn, 1997). It’s a space-region theory with strong
mereotopological focus and enough flexibility to seamlessly integrate with “low dimension”
theories and extensions to account for key relevant non-topological aspects such as distance, area,
volume and other relevant features. In this theory, regions of dimension D ≥ 1 and height (8)
mereotopological relations are formally defined between them; there is also a RCC-5 version. In
order to achieve reasoning decidability and simplify the process, we add restrictions to the theory
with (1) closed convex spatial entities (those with holes can be triangularized), (2) no transitivity
deduction between spatial entities, (3) maximum dimension of spatial entities limited to three (to
satisfy the hyperbolicity property for space-time interactions). Figure 5 shows an excerpt of the
space ontology with a representation of the relationship among classes and properties. A spatial

entity has a few core properties (e.g.: #hasGeometry, #hasDimension, etc.) that are inherited by its
specializations (e.g.: #Region, #ZeroDSpace). The left-hand side of the figure shows a set of facts
(capturing the state of the given system) and three rules. Cars 1-4 are represented as spatial entities
s1- s4 in the space ontology along with their properties, traveling on a trajectory tr1- tr4 as shown in
Figure 2 (a). The following rule is the Jena translation of the RCC-8 “DisConnect” relationship
between two regions.

// Rule 3 (R3): Deduction of "regDisConnected" relationship between spaces ...
[DC: (?x rdf:type se:Region) (?y rdf:type se:Region) noValue (?x se:regDisConnected ?y) (?x
se:hasGeometry ?g1) (?y se:hasGeometry ?g2) getRCCRelation(?g1,?g2,?rel)
equal(?rel,"DC"^^xsd:string) -> (?x se:regDisConnected ?y)]

Figure 5: Illustration of a simplified ontology of space and sample literal rules.
Figure 6 (a) shows a view of the full description of a region while (b) is an excerpt of statements
relative to a given spatial entity in the knowledge base. We note that the geometry of the entity
(Statement 7) is encoded as a Java Topology Suite (JTS) object. JTS is an object-oriented software
library providing Euclidian planar linear geometry algorithms in computational geometry (see
http://tsusiatsoftware.net/jts/main.html). Statements 4, 6 and 2-3 show the respective results of the
Rules 1, 2 and 3 on the set of initial facts (Statements 7-8).
Because notions of space and time cut across all domains (they are not specific to NoS), by
themselves, the associated models are not sufficient to fully tackle the modeling challenges of this
class of systems. We close this gap by introducing a multi-layer system architecture that connects
cross-cutting theories and models to engineering models and semantic models.
System Architecture. The development of semantic architectures for NoS is complicated by
the variability and multiplicity of participating domains, the conjunction of two worlds (cyber &
physical) and the need to understand and formally evaluate system behaviors resulting from
interactions between components and with the surrounding environment. We introduce the
three-layer architecture in Figure 7 to tackle these challenges. Each bottom layer provides the one
above with the necessary foundation (semantic) needed as follows.
Theories and Standards Layer. It provides the mathematical foundations needed to support the
formal description of meta-domain knowledge. Meta theories (for known cross-cutting domains
such as time, space, communication, etc.) are separated from plain ones, which could be
well-accepted domain standards. Unlike the former, the latter might not always be available for the
problem at hand. Both RCC-8 and ATIC introduced above as respectively spatial and temporal
calculus supporting semantic modeling of those domain belong to this layer of the architecture.

Figure 6: A view of a) the ontological class Region and b) statements relative to a space s1 in the

knowledge base.

Cross-domain Knowledge Layer. It relies on the semantic foundations provided by the theory layer
to formally describe meta-domain and generic domain knowledge. Knowledge is encoded in the
form of a “semantic block” made of (1) an ontology, (2) set of rules and (3) interfaces (not shown)
that enable communication between semantic blocks and linking with computation platforms via
customized builtin functions. Practically, generic domain knowledge can be organizational or
operational policies, standard operating procedure/process (SOP) or directives that are applicable to
the system at hand in part or as a whole. In the context of this framework, they should be encoded
as semantic blocks. They might refer to/or use some meta-domain in their description (especially in
the absence of supportive theories). Because of the significant difference in the role they play in the
framework, meta-domain and generic domain knowledge are processed differently in the layer
above. Semantic models of time and space introduced above are integral part of this layer.
Application Models Layer. This is the top and most complex layer of the architecture. We
distinguish semantic from engineering models representing respectively the cyber and the physical
worlds. The problem domain is made of textual requirements that are processed and encoded as
instance of a well-defined requirement ontology through mechanism and rules that ensure their
syntactic and semantic correctness. In order to achieve their proper elicitation, requirements make
use of meta-domain knowledge, which provides entities as range to properties defined in the
requirement ontology. The solution domain is made of engineering models and associated
(component and control) semantic models. In line with the operation of NoSs, the latter are
responsible of system/component functionality and decision making while the former are in charge
of sensing and actuation. Models of system structure and behavior make up the engineering models.
They map (partially) to component semantic models. In order to keep the complexity of the
reasoning in check, only the information required for decision-making flows. Semantic blocks are
used to specify individual NoS component types and instances, mirroring entities in engineering

models whose data are stored in the knowledge repository. Meta-domains are added to individual
components as property. The control of the system requires the integration of component
knowledge and the creation of a control semantic model that comprises an integrator that can act as
a semantic controller of the system. It’s responsible of defining system metrics (instances) and
provides guarantees of the satisfaction of system requirements (as constraints) as well as the
integration of generic domain knowledge in decision making at all levels.
Development Process. The construction of the framework in Figure 7 requires a systematic and
rigorous process involving ontological and knowledge modeling expertise. Figure 8 shows the
proposed development process from the prospective of the system engineer. The various semantic
models are assumed to exist as retrievable, modifiable and reusable components stored in a library
of semantic blocks. Starting with an initial set of requirements, the first step involves analysis of
the NoS design problem at hand, and uncovering the various application and cross-domain
knowledge involved. Also, system level and metrics will be developed/identified at this stage. Then,
system goals and scenarios are specified as done in traditional MBSE approaches. Using the library
of semantic block components, textual requirements are semantically modeled, so are the system
components (including its controller). Engineering models of the latter can be developed
concurrently but their key attributes are to be mapped to the semantic model as per the system goals
and scenarios. This will enable communication between components and further ease system
integration. Rules will be used to evaluate compatibility between components. The later will be
used in a system configuration only if they are shown to satisfy the required (and expected
functionality) and are compatible (interface) with system components to which they will be

	
Figure 7. Framework for semantically-enabled model-based systems engineering of safety-critical

network of systems	

interacting. Next, the system is simulated. Its performance will be evaluated against the
requirements (model) and the design is modified accordingly. Changes (e.g.: new requirement) can
be handled as new valid statement(s), property(ies), rule(s), physical component(s) added/removed
to the corresponding block(s) of the appropriate semantic and engineering model(s).

	
Figure 8. Development process for semantically-enabled NoS.

Models Integration and Simulation with Whistle. The execution of the process
described in Figure 8 requires novel software infrastructures that are able to seemingly integrate
various semantic and engineering models. To that aim, we turn to Whistle, a Java-based scripting
language (still under development) designed for the integration and simulation of applications that
are glued together (Delgoshaei, 2014). Among the key features of the language are its ability to: (1)
support the use of physical units and dimensions, multi-format (XML, Open Street Map (OSM),
Java, etc.) input/output, (2) enable the use of variables, matrices, looping and branching structures
to control the flow of program logic and, (3) support the integration of custom-built functions
(along with their names and arguments). Together, these capabilities enable the simulation and
analysis of continuous & discrete behaviors. For instance, the short fragment of Whistle code:

area = 0.04 m^2; // Cross section area of a pipe ...
velocity = 5 m/sec; // Fluid velocity  
Q = area*velocity; // Discharge rate ...

print "*** Cross section area = ", area;  
print "*** Fluid velocity = ", velocity;
print "*** Discharge rate = ", area*velocity;

shows, for example, the computation of the flow-rate computation through a pipe. Whistle makes
extensive use of model-view-controller (MVC) software design pattern along with listening
mechanisms to clearly separate domains from object presentations, and enables communication

among multiple models and views, with the controller as mediator. Another design pattern used is
the composite hierarchy, a multi-layer tree structure of arbitrary complexity, implemented in a
flexible and scalable manner. It enables the systematic assembly and display of objects. This has
been shown useful in creating and visualizing spatial features of engineering models with various
levels of complexity.

Prototype Implementation: Collision Avoidance at Lightless Intersection
Problem Description and Assumptions. To illustrate the use and effectiveness of the
semantically-enabled MBSE framework, we consider the problem of glancing collision between
two smart cars at a non-signalized traffic intersection. This scenario is similar to the configuration
where car 1 and 2 would collide at location B as pictured in Figure 2 (a). Stoplights and signs at the
intersection are replaced by a single intersection manager(IM) that monitors traffics and intervenes
to resolve spatio-temporal conflicts impeding safe crossings. The core requirement of the system is
that of “no pair of vehicle should occupy the same space of the intersection at the same time”(Req.
1). This system is an “ideal” Directed NoS (as modeled in Figure 1) in the sense that each vehicle is
an autonomous system equipped with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
capabilities. The IM is the entity responsible of the system goal of maximizing traffic throughput
while ensuring safe crossing of the intersection. Thus, it provides directives to vehicles to that aim.
We seek to develop a simplified implementation of the framework in Figure 7 to model and analyze
this system. Our purpose here is to show how the structure and configuration of the semantic
framework, the cooperation between the actors and use of cross-domain knowledge (especially
space and time) in reasoning result in safe operation of this simple NoS.
For the purpose of this experiment, we assume that: (i) vehicles travel at constant but different
speeds on two intersecting, known trajectories, along with the locations of checkpoints and (ii)
always execute the directives of the IM as given in no delay. Also, (iii) computation and
communication are performed within actuation and sensing response time margins of error with no
delay. Finally, (iv) they can communicate with each other when they are within sensing range as
pictured on the racetrack in Figure 9 (e) and (f) but they don’t have decision capabilities to predict
and resolve spatio-temporal conflicts (collisions).
Each approaching vehicle, when within communication range of the IM, must identify itself and
submit its velocity and estimated arrival time at the closest checkpoint of the intersection. The IM
processes the information received from all vehicles, executes appropriate predefined collision
avoidance algorithms (details out of the scope of this work) and returns any required change of
dynamic (e.g.: velocity) to each vehicle for execution. The series of schematics in Figure 9 show a
prototype (under development) of the system implementing the proposed semantic framework for
this problem.
Simplified engineering models. In order to keep the experiment simple yet explicit enough to
maintain the focus on the topic of this research, vehicles are represented as “moving/dynamic” (red,
gray and blue) rectangles surrounded by their respective safety bubble (a set of three red ellipses)
and communication range/coverage (yellow ellipse) as shown in schematic Figure 9(e). Their
semantic representations (JTS geometries) are used in the collision avoidance algorithm
implemented by the IM. The latter is represented by a blue small rectangle at the top corner of the
intersection but its coverage is omitted. Red and yellow dots represent sensors indicating the front
and back of vehicles (Figure 9(f)). The racetrack itself is considered a “static” component
partitioned into straight, approach and intersection areas with checkpoints (in blue) at the
boundaries. This partition obeys a well-defined spatial modeling framework we’ve introduced in
(Petnga, 2015). The behavior of each individual component of this NoS is illustrated by the
simplified state chart next to the given element in Figure 9(c). Details of the models can be
observed in real-time in the data model view (Figure 9(d)).
Semantic Modeling and Reasoning. Semantic models of the car and IM are created as
standalone semantic blocks, with component ontologies extended by individual reasoner
implementing corresponding rules. For more complex requirements or scenarios, requirements will

be modeled as a separate domain i.e. a standalone semantic block. Ontologies communicate via
their interfaces (as encoded in Figure 9(a)), which listen to (and communicate relevant) changes in
the semantic graph across the domains and from external sources. These changes ultimately
propagate into the knowledge base of the entity such as the one of the IM partially shown in Figure
9(b).

Figure 9. Schematic of the semantically-enabled implementation for a lightless traffic system.

As indicated above for time and space, decidability of reasoning tasks (for collision avoidance)
involving such cross-cutting domains requires precise and accurate models. However, this can add
complexity to the reasoning process and increase computation time, leading to invalid decisions and
low performance of the system as shown in (Petnga, 2015). Thus, for illustration and simplification
purposes, we choose the lowest possible ontological commitment i.e. 0D space + Time for our
semantic models. Thus, temporal relations are computed and established as per ATIC.
Figure 10 illustrates the communication and control mechanisms in the networked traffic system for
collision avoidance. Traffic policy (for instance, right of way to the vehicle coming to the right) are
handled as generic domain rules applied to the entities involved (i.e.: cars) by the IM. The latter is
the controller of the system but no additional design rules nor metrics are added or defined.
Vehicles approaching the intersection send a “crossing request” containing the required information
(Statements 1 - 4) to the IM and it returns its decision on conflict resolution (Statements 8 - 9). The
right hand side of the Figure illustrates what is happening behind the scene as the collision is
predicted and resolved before it materializes in the physical world.

Executing the reasoning algorithm (which translates Req.1 as constraint), the IM computes and
finds s13 (Figure 9(f)) as the spatial intersection of the two trajectories thus, the risk of glancing
collision. It needs to know each vehicle registration (Statement 1), trajectory (Statement 2), current
velocity (Statement 3) and expected arrival time at the closest intersection checkpoint (Statement 4).
It computes the travel duration of each vehicle to s13 and infers the corresponding time interval of
each vehicle while in the intersection control zone (Statement 6). Next, the nature of the
relationship between the intervals as per ATIC is established as “intFinishes” (Statement 7). This
clearly predicts a temporal conflict between the two vehicles, which completes the prediction of
glancing collision at s13.

Finally, the collision (i.e. spatio-temporal conflict) is resolved (in the cyber world) and prevented
(in the physical world). The IM does that by identifying the vehicle with the lowest traffic priority
(i.e. #2) and computing the velocity required to achieve the temporal separation at s13 in
accordance with traffic rules such as the posted speed limit for that branch of the trajectory
(Statement 8). The IM communicates to both vehicles the new (safe) velocities in its decision
(Statement 9).
Engineering and Semantic Models Integration and Simulation. In the absence of
sound integration science for NoS, software capability is an interesting alternative. Thus, we ought
to use Whistle to integrate the various semantic and engineering models of our traffic system within
and across domains. This is an ongoing step-by-step effort with careful bottom up assembly,
simulation and testing of models. At this time, we are able to integrate physical models to Whistle.
Engineering models (car, IM, racetrack) can be created in accordance with their precise JTS
geometric representations. The latter are used for basic reasoning and control of the execution of the
simulation as per Req. 1 (network of 2 cars and 1 IM). However, the control algorithm has to be
very detailed and executed line by line without any flexibility and, in the absence of semantics, it is

	
Figure 10. Illustration of ontology-based communication and control for spatio-temporal reasoning

in networked traffic system.

not scalable to a large number of entities. The integration of the semantic side is on its way with
modeling of key components (car, IM) and cross-domain knowledge (space and time) completed.
Collision avoidance algorithms making use of cross-domain knowledge and integrating Req. 1 as
constraint are already developed and tests are on the way. Linking of cross-domain knowledge and
component models as per Figure 7 will follow. Next, Whistle grammar will be updated to enable the
integration and testing first of semantic domains then, with engineering models.

Discussion and Conclusions
Benefits of our Approach. The framework introduced in this paper addresses key semantic
limitations of state-of-the-art MBSE approaches for NoS. It enables: (1) the development and
integration of domain and cross-domain knowledge to engineering models in support of modeling
and analysis of emergent behaviors of such systems, (2) mechanisms for (software) integration of
cyber and physical components for emulation of smartness and decision making and, (3) support for
effective analysis of system-level properties such as safety, that can be formulated in requirements
and algorithms as constraints and characterized by metrics. Models are backed by sound DL
semantics for which appropriate extensions and restrictions on meta-theories, guarantee stability
and decidability of reasoning tasks. As shown in the case study, we go beyond state-of-the-art
reservation-based approach (Wuthishuwong, 2013) and account for the geometry of vehicles and
their dynamics in the reasoning process. This results in great insights into system design and
operation at early-stage of NoS development.
Future Work. There is a need to investigate mechanisms for knowledge modeling of
requirements and the systematic translation of textual requirements (in plain English) into
syntactically and semantically valid ontological instances. The linkage of requirements (as
knowledge domain) with meta-domain knowledge and its integration to the rest of the semantic
framework will enable formal and automatic verification of design and smooth the design space
exploration process. Also, results obtained in the case study are contingent to a certain number of
assumptions and constraints that need to be removed/relaxed to emulate real-world scenarios. For
instance, mechanisms for enabling the study and integration of component failure or adversary
behavior (ii), account for computation, communication and execution delays and failures (iii) and
various environmental changes/affects as well as attacks (both cyber and physical) are critical.

References
Allen, J., 1983, ‘Maintaining Knowledge about Temporal Intervals’, Communications of the ACM,

26(11) : 832–843 (New York, NY, US).
Baader et al., 2008, ‘Description Logics’. Van Harmelen, F., Lifschitz, V., and Porter, B., editors,
 Handbook of Knowledge Representation, chapter 3, pages 135–180, Elsevier (US).
Berners-Lee, T., Hendler, J., and Lassa, O., 2001, ‘The Semantic Web’, Scientific American,

Volume 284, Issue 5, pages 35–43 (US).
Cohn, A., Bennett, B., Gooday, J., and Gotts, N., 1997, ‘Qualitative spatial representation and
 reasoning with the region connection calculus’, Geoinformatica, 1:144, Springer (US).
Crossley, A., 2004, ‘Systems of Systems: An Introduction of Purdue University Schools of

Engineering’s Signature Area’, MIT Engineering Systems Symposium (Cambridge, MA,
US).
Delgoshaei, P., Austin, M.A., and Pertzborn, A, 2014, ‘A Semantic Framework for Modeling and
 Simulation of Cyber-Physical Systems’, International Journal On Advances in Systems and
 Measurements, Vol. 7, No. 3-4, pp. 223–238 (EU).
Department of Defense (DoD), 2004, ‘Defense Acquisition Guidebook Chapter 4 : System of

Systems Engineering,’ US Department of Defense (Washington, DC, US).
Federal Aviation Administration (FAA), 2016, ‘NextGen is Working’,

https://www.faa.gov/nextgen/, accessed June 15 (US).
Graves, H., and Bijan, Y., 2011, ‘Using formal methods with SysML in aerospace design and
 engineering’, Annals of Mathematics and Artificial Intelligence, Springer (US).

Kalawsky, S., 2013, ‘The Next Generation of Grand Challenges for Systems Engineering
Research’, Conference on Systems Engineering Research, Georgia Institute of Technology
(Atlanta, GA, US).

Horrocks et al., 2006, ‘The Even More irresistible SROIQ’, 10th International Conference on
Principles of Knowledge Representation and Reasoning, AAAI Press, pp. 57–67 (UK).

Horrocks, I., and Pan, Z., 2007, ‘RDFS(FA): Connecting RDF(S) and OWL DL’, IEE Transactions
on Knowledge and Data Engineering, Issue 02, volume 19, pp. 192–206 (US).

Leveson, N., 2004, ‘The Role of Software in Spacecraft Accidents’, AIAA Journal of Spacecraft
 and Rockets, 41:564–575 (US).
Maier, W., 2005, ‘Research Challenges for Systems-of-Systems’, IEEE International Conference on

Systems, Man and Cybernetics (Waikoloa, HI, US).
Patel-Schneider et al., 2004, ‘OWL Web Ontology Language semantics and abstract syntax’, W3C

recommendations, from http://www.w3.org/TR/owl-semantics/ (US).
Peckenpaugh, J., 2016, ‘Coast Guard Awards Multibillion-Dollar Ship, Aircraft Deal’, Government

Executive Magazine, from http://www.govexec.com/dailyfed/0602/062502p1.htm, (US).
Petnga, L., and Austin, M.A., 2015, ‘Spatial Modeling and Reasoning for Cyber-Physical Systems’,
 International Conference on Complex Systems Engineering (Storrs, CT, US).
Petnga, L. and Austin, M.A., 2016, ‘An Ontological Framework for Knowledge Modeling and
 Decision Support in Cyber-Physical Systems’, Advanced Engineering Informatics, 30(1):
 77–94 (US).
Rouquette, N., and Jenkins, S., 2010, ‘Transforming OWL2 Ontologies into Profiles Extending
 SysML’, 12th NASA-EST Workshop on Product Data Exchange (Oslo, Norway).
Wuthishuwong, C., and Traechtler A., 2013, ‘Vehicle to Infrastructure based Safe Trajectory
 Planning for Autonomous Intersection Management’, 13th International Conference on ITS
 Telecommunications (ITST)

Biography
Dr. Leonard Petnga is a Postdoctoral Associate at the Institute for Systems Research (ISR) at the
University of Maryland College Park (UMCP). His research focuses on knowledge structures and
Model-Based Systems Integration for Cyber-Physical Systems (CPS) with applications in
Transportation, Aeronautic and Energy systems. He has also been a Cyber-Physical Systems
Scholar in the Systems Integration Division (SID) at the US National Institute of Standards and
Technology (NIST).

Dr. Mark Austin is an Associate Professor of Civil and Environmental Engineering at the
University of Maryland, College Park, with a joint appointment in the Institute for Systems
Research (ISR). Mark is Technical Director of the Master of Science in Systems Engineering
(MSSE) Program at ISR. Mark has a Bachelor of Civil Engineering (First Class Honors) from the
University of Canterbury, Christchurch, New Zealand, and M.S. and Ph.D. degrees in Structural
Engineering from the University of California, Berkeley.

Dr. Mark R. Blackburn is an Associate Research Professor with Stevens Institute of Technology
and primarily responsible for research focused on methods, modeling, simulation, visualization, and
automated tools for reasoning about computer-based systems. He is the Principal Investigator (PI)
on a Systems Engineering Research Center research task sponsored by NAVAIR investigating
approaches to model-centric engineering.

Acknowledgment: This work was supported by the U.S. Naval and Air Command (NAVAIR)
under task number SERC RT 157 from the Systems Engineering Research Center.

