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Abstract. As remote robotic space satellite servicing technologies develop, each servicer satellite 
will need to account for a number of servicing scenarios and consider a variety of alternate design 
solutions to best meet the most servicing scenario requirements. This paper presents a graph 
transformation method for systematically down-selecting the number of design options available, and 
highlighting trade-offs in sets of design solutions which best meet satellite servicing task requirements 
while also reducing total mass, maximum power needed and servicing time. In the test case examined, 
the proposed method successfully identifies for further consideration, seven best design solutions 
from a set of over 100,000 potential solutions. 

Introduction 
Problem Statement. Government agencies and commercial entities throughout the world spend 
billions of dollars to send satellites to space each year. Though many of these satellites represent new 
science, human exploration and technology developments, many of these satellites are simply 
replacements for satellites that have reached the end of their lifespan. Frequently, much of the 
hardware aboard these satellites is still operational, but the satellite reaches the end of its lifespan due 
to a lack of fuel for orbital maneuvering or worn mechanisms. Rather than utilize an abundance of 
resources to replace a satellite entirely, it is now evident that a more cost effective solution is to simply 
send one additional satellite into space to robotically service a number of older, but mostly functional 
satellites. This strategy retains the functionality of a number of satellites for the cost of building, 
launching into space and operating a relatively smaller number of servicer satellites. Savings are 
especially likely to come from robotically servicing large fleets of satellites such as those which 
monitor the Earth’s weather patterns to predict and follow storms, the Earth’s heat signature to 
monitor fires and global climate or the Earth’s other environmental monitoring satellites to protect 
humanity’s home planet. Fleets of satellites are also used for commercial, military and other space 
telecommunications. These are considered national and international assets. 
 
Scope and Objectives. In a step toward the application of inference-rule down-selection methods to 
reduce trade space options on complex systems, this paper introduces a down-selection methodology 
and set of graph transformations for refining a set of generic tools with a variety of specifications 
(descriptions of capability) in order to perform a subset of tasks needed to service a satellite. This 
work builds upon and is motivated by previous University of Maryland Space  



 

 
Figure 1: Astronauts Servicing the Hubble Space Telescope (HST) (from the HST website) 

Systems Laboratory (UMD SSL) research on the Hubble Space Telescope (HST). HST is a well-
known satellite with an abundance of easily accessible data on satellite servicing. HST underwent 
five astronaut servicing missions during its operational life time (Figure 1). 
 

Related Work 

Robotic Servicing Satellites 
 
Promise of Robotic Servicing Satellites. Research at NASA’s Goddard Space Flight Center (GSFC) 
in Greenbelt, Maryland as well at the University of Maryland’s (UMD) Space Systems Laboratory 
(SSL) in College Park, Maryland both show promise in robotic satellite servicing. Engineers at GSFC 
have created a high-level architecture for servicing satellites.  
 
As illustrated in Figure 2, this architecture’s hierarchy begins with a servicing mission which includes 
both a servicer satellite, at least one client satellite and at least one servicing task that must be 
performed during the servicing mission. The servicing satellite includes one robotic arm and at least 
one tool which can be connected to that arm via an end effector. Figure 3 shows the key interactions 
between each of the components in Figure 2. The tool, connected to the robotic arm, assists the 
servicing satellite to perform a servicing task on a client satellite. The SysML block diagram states 
that the servicer satellite, connects to the robotic arm, the robotic arm connects to the end effector, 
the end effector connects to a tool and the tool interacts with the client satellite. 
 
There are a number of different types of tools which a robotic servicing mission could transport into 
space to complete its servicing task(s). The Space Applications of Automated Robotics and Machine 
Intelligence Systems (ARAMIS) study (Akin et. al. 1983) categorized these tools into generic 
categories. They include a hand, all purpose, camera/sensor, welder, cutter, latcher, gripper, bolt 
driver, pincher, delicate pincher computer and lubricant applicator. In addition, a safety cap remover 
and a fuel injector will likely also be necessary to perform refueling tasks such as those performed 
during GSFC’s International Space Station (ISS) test Robotic Refueling Mission (RRM). Figure 4 
details these generic tool types and their associated descriptive values. Multiple tools of the same type 
can exist and each can vary in individual specifications (listed as values in SysML). This means that 
in theory, there could be an infinite number of tool options and combinations of tools to use for any 
given servicing mission. Figure 5 shows a sample of a Wire Cutter Tool (in multiple orientations) 
created for RRM. 



 

 
 

 
Figure 2: SysML block diagram for Satellite Servicing Architecture. 

 
Figure 3: SysML Internal block diagram for Servicing Mission Interfaces and Interactions. 

 



 

 
Figure 4: Generic Tool Types 

 
Figure 5: Robotic Refueling Mission (RRM) Wire Cutter Tool (from the RRM website) 

 
Though there are an infinite number of tool options and tool combinations available, launch vehicles 
cannot lift an infinite amount of mass into space, servicer satellites cannot provide an infinite amount 
of power to operate these tools and client satellites cannot spend an infinite amount of nonoperational 
time to allow for servicing tasks to occur. For instance the GSFC’s ISS RRM limited itself to a 
“toolbox” with four tool slots (see Figure 6). 

 



 

 
Figure 6: Robotic Refueling Mission (RRM) “Toolbox” (from the RRM website) 

For this reason, it is imperative that robotic satellite servicing utilize a method for quickly and easily 
showing engineers their tool combinations which best meet their particular servicing mission’s task 
requirements while also reducing tool mass, power and task time. 

Trade-Space Down Selection 
 
Previous Work. Researchers (Nassar and Austin, 2013) at the Institute for Systems Research (ISR) 
at the University of Maryland, College Park have designed computational procedures for the 
systematic transformation of user requirements, high-level models of system architecture, and 
libraries of components into collections of viable design alternatives supported by trade-spaces for 
deign consideration. These procedures fall into a general class of problems called the component 
selection problems (see Figure 7).  
 

 
Figure 7: Component-Selection Design Problem (Adapted from Nassar and Austin (2013)). 

 
Figure 8 shows the step-by-step procedure for the application of inference mechanisms on graph 
transformations. Notice that compatibility (or lack thereof) relations between sets of components are 
evaluated before the problem requirements are considered. One can think of these procedures as 
``computational sculpting’’ where sets of design alternatives and the associated trade space curves 
are created through the systematic application of inference-guided transformations on graphs. Nassar 



 

and Austin (2013) demonstrated this approach on a problem that involved selection of components 
from a library for a home theater system. The requirements, components, and system architecture 
were all modeled as collections of resource description framework (RDF) graphs. RDF provides a 
general means for representing graphs of resources on the Web and, as such, is an ideal way to 
represent heterogeneous data in design. The ensuing inference procedures and graph transformations 
that work toward feasible design solutions were implemented in Python.  The work in this paper 
serves to take the next step towards this goal by applying inference-rule down selection methods to 
more complex, space based applications. 
 

 
Figure 8: Nassar’s and Austin’s (2013) Flowchart of Activities for Problem Definition with RDF 

Graph Models Followed by Inference-Rule Driven Graph Transformations 

 
The RDF/Python approach to implementation is not the only pathway forward. For example, the same 
approach could involve Web Ontology Language (OWL) technologies, Jena graphs and Jena Rules. 
This is a step that is yet to be explored.  Another possibility is to code the component selection 
problem as a mixed-integer programming problem and compute solutions in a commercial 
optimization package such as CPLEX. We note, however, that a key advantage of the proposed 
approach is the explicit representation and application of rules which enhance understanding for how 
the system design alternatives and trade-space curves are being generated.  

Methodology Demonstration 
 
Trade-Space Down Selection for Servicing Spacecraft. We propose a down selection methodology 
and set of graph transformations for refining a set of generic tools with varying specification in order 
to perform a subset of tasks needed to service satellite operations. The case study application is 
servicing of the Hubble Spacecraft (HST). 
 
Figure 9 shows a step-by-step procedure for generating a manageable set of viable tool combination 
solutions. The key points are as follows: 
 

x Steps 1, 2 and 4 input the necessary tools and constraints needed to perform the down-
selection. Steps 1 and 2 comprise the “Design Components” block from the inference-rule 
down selection process described in Figure 8. Step 4 is the “Design Problem Requirements” 
block. Step 12 outputs the final design space and shows the engineer all viable design solutions 
as well as those which are most optimal from the remaining solution set. This is the “Trade 
Space Analysis” block in Figure 8. In between these steps, the algorithm conducts a series of 
graph transformations.  

 



 

x Steps 5, 7, 8, 9 and 11 all reorganize the design options to allow for requirement and constraint 
application. Steps 5, 7, 8 and 9 are all part of the “Architecture Connectivity” block in Figure 
8. Step 11 is the “Feasible System Configurations” and the “Feasible System Designs” blocks. 

 
x Steps 3, 6 and 10 all remove design solutions which do not meet system constraints. Step 3 is 

the “Component Compatibility” block in Figure 8. Steps 6 and 10 are both the “Requirements 
Verification” block. 

 

 
Figure 9: Down-Selection Algorithm 

 
System Modeling of the Hubble Spacecraft.  The HST is made up of a large cylindrical spacecraft 
with two solar arrays attached on either end. The spacecraft is comprised of its external structure as 
well as a suite of science instruments, an Optical Telescope Assembly (OTA) and a support system. 
The science instruments, OTA, support system and solar arrays all connect to the spacecraft via its 
structure. Each of these systems have subsystems and components (such as the instruments, mirrors, 
reaction wheels, etc.) which have been serviced during one of the five astronaut servicing missions. 



 

 
Figure 10: Hubble Space Telescope (HST) System Architecture and Interfaces (as defined on the 

HST website) 

 
Video and Photographic Footage of Servicing Operations. Pilotte (2004) utilized HST astronaut 
Servicing Mission 3B (SM3B) as a basis for studying methods for robotically servicing satellites. The 
study reviewed hours of video and photographic footage taken during the Extra Vehicular Activities 
(EVAs) performed during that mission in order to create a table of tasks and subtasks executed during 
SM3B along with the likely robotic servicing tools necessary to complete each task and sub task 
activity. A portion of this table is shown in Table 1.  
 

Table 1: Selection of Tools Needed for Hubble Space Telescope (HST) Robotic Servicing from 
Pilotte (2004) 

 
 



 

Each activity in the table has an associated reference number (“Ref #”), initials of the Extra Vehicular 
astronaut who originally performed the task (“EV”)), name (“Primitive”), larger task it assists in 
completing (“Task Name”), information on its necessity for completing the servicing scenario 
(“Need?”), a general categorization (“Broad Prim”), the first tool needed (“1st EE”), the number of 
times the first tool is needed (“Inst #”), the second tool needed (“2nd EE”) and the number of times 
the second tool is needed. 
 
Demonstrating the Down-Selection Methodology. Table 2 shows the initial 19 servicing tool 
options used to demonstrate this algorithm (Figure 9, Step 1). Each tool option can be used for either 
the RESTORE arm type (the arm to be used in NASA’s RESTORE-L servicing mission) or the 
DEXTRE arm type (the arm used on RRM). After choosing the RESTORE arm type for this 
demonstration (Figure 9, Step 2), tools 4, 7, 13, 14 and 19 were all removed from the set of tool 
options (Figure 9, Step 3 is shown in red in Table 2). 
 

Table 2: Initial Set of Tool Options 
ID Tool Functions Arm Force Resolution Size Step Removed 
1 Delicate Pinch Delicate Pinch RESTORE 1  10  
2 Delicate Pinch Delicate Pinch RESTORE 2  9  
3 Delicate Pinch Delicate Pinch RESTORE 20   15 10 
4 Delicate Pinch Delicate Pinch DEXTRE 10   20 3 
5 Welder Welder RESTORE 5   12 6 
6 Cutter Cutter RESTORE 13   13 6 
7 Pinch Pinch DEXTRE 1   8 3 
8 Pinch Pinch RESTORE 6  12  
9 Pinch Pinch RESTORE 7  13  
10 Bolt Driver Bolt Driver RESTORE 5   18   
11 Bolt Driver Bolt Driver RESTORE 4   30 6 

12 Multi Tool 

Delicate Pinch, 
Pinch and 
Camera RESTORE 5 22 10  

13 Grip Grip DEXTRE 1   1 3 
14 Grip Grip DEXTRE 2   2 3 
15 Grip Grip RESTORE 5   5 10 
16 Grip Grip RESTORE 20  4  
17 Camera Camera RESTORE 0 30 5  
18 Camera Camera RESTORE 0 21 11 10 
19 Camera Camera DEXTRE 0 20 10 3 

 
Figure 9, Step 4, then calls to import a servicing activity sequence along with an associated set of 
requirements and functions for that sequence. This information is shown in Table 3. These activities 
are all sample activities from the Pilotte (2004) work. The force, resolution and size requirements and 
specifications listed in Table 2 and Table 3 respectively were arbitrarily generated without units for 
demonstration purposes only.  
 

Table 3: Servicing Activity Sequence and Associated Requirements 
ID Activity Tool Function Force Resolution Size 
1 Stow groundstrap (SA-3) Delicate pinch <5 

 
<10 

2 Remove PIP pin (fwd 
latch) 

PIP (pinch) 4<x<10 
 

9<x<20 

3 Remove BAPS post Small handrail (grip) >10 
 

<5 



 

4 Inspect p105 and p106 
covers 

Camera 
 

>20 <10 

 
Figure 9, Step 5 and Step 6 next call to list the functions needed to complete the servicing activity 
sequence, as done in Table 3, and remove tools from the tool set which do not satisfy these 
requirements, as shown in orange in Table 2. Because each tool function is only listed once, the 
requirements listed (Figure 9, Step 7) in Table 3 for each tool function are the most rigorous available 
by default (satisfying Figure 9, Step 8). Table 2 has already been configured to show tools by function 
type (Figure 9, Step 9) and shows tools removed which do not meet any of the Table 3 requirements 
in a yellow color (Figure 9, Step 10). 
 
Next, the algorithm calls to organize the remaining tools into sets of tools which satisfy all of the 
servicing activity functions needed in Table 3. Table 4 shows all 18 viable tool combination groups 
(satisfying Figure 9, Step 11). 
 

Table 4: Viable Tool Combination Groups 
Group ID Tool IDs 
1 1, 8, 12, 16 
2 1, 9, 12, 16 
3 1, 8, 16, 17 
4 1, 9, 16, 17 
5 2, 8, 12, 16 
6 2, 9, 12, 16 
7 2, 8, 16, 17 
8 2, 9, 16, 17 
9 8, 12, 16 
10 9, 12, 16 
11 1, 12, 16 
12 2, 12, 16 
13 12, 16 
14 8, 12, 16, 17 
15 9, 12, 16, 17 
16 1, 12, 16, 17 
17 2, 12, 16, 17 
18 12, 16, 17 

 
Generation of Trade-off Curves. Finally, the algorithm generates tradeoff curves for tool groups 
versus tool group mass, total task time and maximum tool power needed (in satisfaction of Figure 9, 
Step 11).  Figure 11, Figure 12 and Figure 13 show these plots and highlight the tool groups which 
minimize mass, power or time, in red triangles from the remaining tools in Table 2’s initial tool set. 
Table 5 shows the tools’ individual specifications for reference. 
 



 

 
Figure 11: Tool Group Mass vs Total Task Time 

 

 
Figure 12: Maximum Tool Power Needed vs Total Task Time 

 



 

 
Figure 13: Maximum Tool Power Need vs Total Group Mass 

 
Table 5: Viable Tool Specifications 

ID Tool Functions Mass Power Time to 
Complete 
Task 1 

Time to 
Complete 
Task 2 

Time to 
Complete 
Task 3 

Time to 
Complete 
Task 4 

1 Delicate Pinch Delicate Pinch 1 19 1 
   

2 Delicate Pinch Delicate Pinch 2 18 2 
   

8 Pinch Pinch 8 12 
 

8 
  

9 Pinch Pinch 9 11 
 

1 
  

12 Multi Tool Delicate Pinch, 
Pinch and 
Camera 

12 8 2 3 
 

7 

16 Grip Grip 16 4 
  

10 
 

17 Camera Camera 17 3 
   

6 
 

In short, after listing all available tools and applying inference-rules (Table 2), the down-selection 
method whittled the trade space down to a set of 18 viable tool combinations. These tool combinations 
were then easily compared with each other on the bases of mass, power and time. 
 
Interpretation. From this point, an engineer could note which tool group are most optimal in each 
plot and determine which tool group to choose as the design solution. In this particular case, because 
tool group 13 is the most optimal in Figure 11 and Figure 13 as well as near optimal in Figure 12, it 
is likely the best design solution to this sample tool trade study. Thus, rather than looking at an 
overwhelmingly large selection of choices, the engineer has a much smaller and much more 
manageable decision available without expending the resources necessary to meet optimization 
algorithm conditions or to run more computationally complex optimization algorithms on all of the 
possible tools and tool combinations available. 
 



 

Conclusions and Future Work 
 
Conclusions. The down-selection method presented in this study has tremendous potential for 
efficiently and manageably identifying a best design solutions from a large option set. The method 
also has the potential to showcase system properties to engineers that they may not have deduced 
without performing a trade study. In this scenario, even though the multi tool may have been one of 
the most massive tools with mediocre power consumption and task completion times, it still provides 
an overall savings in these areas when utilizing all of its functions (tool group 13). However, only 
when comparing tool group options against mass and power did it become evident that tool group 13 
the clear best choice. If engineers do not need to consider mass, then groups 4, 15 and 18 all present 
viable design options. Of those options, only one of them uses three instead of four tools (group 18) 
and one of those options does not include the multi tool (group 4). The down-selection method 
presented in this study identified cases when the multi tool is and is not most appropriate.  
 
Globally, the graph transformation method for systematic trade space down-selection presented in 
this study successfully presented a set of 18 servicing tool group options for a set of four servicing 
tasks from an initial set of 19 potential servicing tools, amounting to an initial 194=130,321 potential 
servicing tool group combinations. Of those 18 servicing tool groups, an engineer could then easily 
visualize the seven best group options as measured against mass, power and time and use engineering 
judgement to pick the single ultimate design solution. This systematic trade space down-selection 
method shows promise for quickly reducing an even larger, more intractable problem to one that is 
easily solvable. 
 
Future Work. Because this graph transformation method for systematic trade space down-selection 
successfully reduced the trade space from over 100,000 options to 18 options with an even smaller 
number of clear winning options, the method has the potential to reduce an even larger set of potential 
design solutions to a smaller set of easily comparable set of solutions. To do this, the down selection 
algorithm must be automated. Future work will create an executable software program which can run 
through orders of magnitude more design options for the satellite servicing scenario. Such a program 
would ideally be linked with common commercial tools such as MagicDraw which can describe 
systems with the SysML standard. This program could include methods for accounting for 
specification units so that engineers need not standardize units before inputting them. In addition, 
though the algorithm presented in this study assumes that a robotic arm has already been chosen, 
future iterations of the algorithm could include different arm options within the trade space. This is 
an exciting and undoubtedly fruitful avenue for improving satellite servicing. 
 
Scaling the algorithm up to accommodate a larger set of initial tool options and requirements will 
require automation. Automatically characterizing and evaluating the trade space may prove 
challenging because it must be done in a rigorous ontological fashion. Delgoshaei and Austin (2012) 
and Mosteller et. al. (2012) have performed similar work for transit system and biomedical system 
applications respectively. Hennig et. al. (2011) have also studied space system ontologies, though not 
for the robotic servicing application or for direct use in automated algorithms. We will explore 
avenues for casting down selection processes as a finite domain constraint programming problem, 
and then employing a variety of strategies (algorithms) to systematically prune the design space. A 
second possible approach is to employ Semantic Web technologies for the graph representation of 
relationships among various design options – in this case, arms and tools – and use sets of rules to 
systematically prune the semantic graph until all of the design alternatives are feasible and can be 
ranked and visualized in trade-off diagrams. To improve the accuracy with which requirements are 
expressed and evaluated, there is a strong need for computational procedures and tools that can work 
with notions of time, space, currency and other units of measure, and incorporated them into Boolean, 
equality, and inequality constraints. The automated algorithm will likely build upon work that 
Delgoshaei and Petnga have recently completed (Petnga, 2016; Delgoshaei, 2014). 



 

 
Future iterations of the algorithm presented in this study could also include arm selection within the 
trade space, however this could also prove difficult to execute because robotic arm requirements 
depend on complex physics. Simple inequalities may not accurately represent these requirements like 
they do servicing tool requirements. The algorithm will need to only include the physics that is most 
important to robotic arm selection in order to simplify computation. 
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