
 1

A Process Modelling Framework for Formal
Validation of Panama Canal System Operations

John Johnson
Department of Civil Engineering,

University of Maryland,
College Park, MD 20742, USA.

Mark A. Austin
Institute for Systems Research

University of Maryland
College Park, MD 20742

Copyright © 2008 by Institute for Systems Research. Published and used by INCOSE with permission.

Abstract. In this paper we develop a process modeling framework for the evaluation and formal
validation of Panama Canal system operations. Component- and architecture-level processes are
organized into a three level hierarchy and modeled in LTSA. Safety and progress requirements
are formally expressed as processes that can be evaluated through compositional and search
processes, respectively.

Introduction

Problem Statement. The Panama Canal is one of the world’s most important waterways.
Initially opened for operation in 1914, the canal is now in the midst of a US $5 billon upgrade
from industrial- to information-age capability (Panama Canal Upgrade, 2007). From a functional
perspective, the new canal system will be capable of servicing a larger number of vessels,
handling larger ships than before (i.e., so-called post-Panamax ships) and will even provide for
continued operations while sections of the canal system are undergoing maintenance. It is
estimated that by 2010, post-Panamax ships will have 50 percent of the world’s capacity for
moving containers (Maxing Out, 2007). From a performance perspective, the present-day
Panama Canal is typical of many large-scale waterways, where operations (e.g., shipping
throughput; avoiding accidents) are limited by an ability to: (1) sense relevant activities and
event in the surrounding environment, (2) look ahead and anticipate events, and (3) control
system behavior. In an effort to relax, or even remove, these constraints, next-generation
waterway systems are incorporating advances in computing, sensing, and communications.
Sensors gather data which is fed to computers for advanced processing. The enriched
information leads to better decision making which in turn is fed back to automated control
systems. Through this process, the aforementioned barriers are overcome, thereby providing the
desired results.

The first important consequence of this trend is that over time, present-day reliance on

centralized management of canal operations will be replaced by canal operations that are
partially or fully decentralized. From a systems engineering perspective, this means that present-
day canal systems that may have only a small number of current behaviors will be replaced by
system architectures having many concurrent behaviors. A second consequence is that
automation will replace some canal operations currently handled by humans. Design for
automation in large-scale system operations is challenging because in addition to making sure
system performance is adequate, we also need to validate that the automation system is capable

 2

and will do the right thing in the first place. Lessons learned from industry (Jackson 2006;
Magee 2006, Sangiovanni-Vincentelli 1996) indicate that there are now many automated
engineering systems with complexity approaching the point where validation of design
correctness will be impossible without mechanisms for verification are built into the design
process itself. These mechanism include (Sangiovanni-Vincentelli 2000):

• Formal Models. We need ways to capture the design representation and it specification in an

unambiguous ``formal language'' that has precise semantics.
• Abstraction. Abstraction mechanisms eliminate details that are of no importance when

evaluating system performance and/or checking that a design satisfies a particular property.
• Decomposition. Decomposition is the process of breaking a design at a given level of

hierarchy into subsystems and components that can be designed and verified almost
independently.

The hypothesis of our work is that these challenges can be kept in check through approaches to
design that apply these mechanisms in a disciplined manner. Accordingly, the purposes of this
paper are to explain how: (1) Architecture-level models of canal behavior can be systematically
assembled from component-level behaviors, (2) Design requirements for safety and liveliness
can be expressed formally and finite state processes, and (3) Safety validation can be
accomplished through composition of finite state process models for canal behaviors and
requirements. These principles are illustrated through simplified process models of Panama
Canal behavior constructed in the labeled transition system analyzer (LTSA 2007).

Model-Based Design and Verification/Validation. In established approaches to system design,
and as illustrated along the left-hand side of Figure 1, present-day procedures for “system
testing” are executed toward the end of system development. The well-known shortcoming of
this approach is the excessive cost of fixing errors.

Implementation

System Architecture

Formal Representation
of Requirements

Requirements

Testing

Implementation

Detailed Design

Preliminary Design

Requirements

In
c
re

a
si

n
g
 c

o
st

 t
oix

 e
rr

o
r

Phase where
design errors
are found.

are made.
design decisions
Phase where

issues.
testing here ... to minor
Reduced reliance on

Build little design logic
models.
Analyze them thoroughly
for potential violation of
requirements.
Don’t move forward until
design (or parts of design)
are provably correct.

Early detection of errors and "system operation" that

Design and Test.
Traditional Approach to System

Figure 1. Pathways of Traditional and Model-based System Development (Adapted from

Sidorova (Sidorova 2007)

 3

Emerging approaches to system design (Magee 2006, Sidorova 2007, Uchitel 2004) are based
upon formal methods and selective use of design abstractions. The new approach benefits system
design in two ways: (1) Concepts and notations from mathematics can provide methodological
assistance, facilitating the communication of ideas and the thinking process, and (2) Formal
methods allow us to calculate some properties of a design. by building design logic into
requirements and using formal models for synthesis of architecture-level representations. As
illustrated along the right-hand side of Figure 1, the goal is to move design processes forward to
the point where early detection of errors is possible and system operations are correct-by-
construction (Sidorova 2007).

Process Modeling and Validation with LTSA

 The labeled transition system analyzer (LTSA) is a tool for validating communication and
sequencing among entities in systems containing concurrent behaviors (LTSA 2007). In LTSA,
processes correspond to sequences of actions. Spatial and temporal design concerns are not
captured in LTSA (i.e., they are abstracted from modeling consideration). The textual
representation is the finite state process (FSP) language. Labeled transition systems (LTSs) are
the graphical representation.

From Requirements to Behavior with LTSA. The transformation from requirements to high-
level design occurs with the following activities: (1) identify main events, actions and
interactions, (2) identify main processes, (3) identify and define properties of interest, and (4)
structure processes into an architecture. Each canal component or subsystem will have behavior
that can be defined by a finite state machine. Therefore, architecture-level models of behavior
will be viewed as a network of interacting finite state machine processes. A top-down
specification of required behavior for components can be specified through the use of visual
modeling languages such as UML. Models of architecture-level behavior (details given below)
are synthesized through a bottom-up composition of component-level behaviors.

Specification of Component- and Architecture-Level Behavior. Process modeling of
component-level behavior can be specified directly through FSP code. If concurrent behaviors
have common elements, then there will be an interleaving of behaviors linked at common
actions. Models of architecture-level behavior are obtained through the parallel composition of
concurrent processes at the component level. Given two labeled transition systems (LTSs), let’s
say P1 and P2 we denote the parallel composition P1 || P2 as the LTS that models their joint
behavior. By extension, the architectural-level behavior model is defined by the product: P1 || P2
|| ….. || PN, where Pi is the finite state model for the i-th component among N interacting
components. Joint behavior is the result of all LTSs executing asynchronously, but
synchronizing on all shared message labels. At the component level, the nodes of a labeled
transition system represent states the component can be in. At the architecture level, labeled
transition system nodes represent system-level states, which, in turn, correspond to specific
combinations of component-level states. Transitions are labeled with messages that components
send to each other.

Validation of Requirements. The properties required of the system are also modeled as state

 4

machines. LTSA mechanically checks that the specification of a concurrent system satisfies the
properties required of its behavior. A good system: (1) exhibits safety and liveliness, and (2)
avoids deadlocks. A safety property asserts that nothing bad will happen during the system
execution. A liveliness property asserts that something good eventually happens (e.g., suppose
that ships are approaching the Panama Canal. Liveliness would assert that, eventually, all of
them will be able to pass through the passageway safely). A system state is deadlocked when
there are no eligible actions that a system can perform.

Formal model checking procedures make sure that the architecture-level design: (1) does what it
is supposed to do; (2) prevents certain behaviors from occurring; and (3) does not support un-
intended behaviors. If any one of these aspects is violated, then we have a gap between the
intended system and the actual system design. The resulting high-level design is much more
abstract than a detailed software/hardware implementation. But it captures the key patterns of
interaction and can be formally analyzed for safety and liveliness properties. A detailed
software/hardware implementation and optimization follows design.

Building the Panama Canal Process Model

The Panama Canal. The Panama Canal is an 80 kilometer passageway that joins the Atlantic
and Pacific Oceans. See Figure 2.

Figure 2. Plan and Elevation View of the Panama Canal.

A ship passing through the canal will ascend through a set of locks, traverse Lake Gatun, and
then descend through the lock system on the other side. The lock systems consist of a set of lock
compartments having entrance and exit gates.

 5

The locks function as water lifts, raising ships from sea level to the elevation of Lake Gatun (26
meters above sea level). The lock chambers are 33.53 meters wide and 304.8 meters long. The
maximum dimensions of a ship that can transit the canal are: 32.3 meters in the beam, 12 meters
draft, and 294 meters long. The water used to raise and lower the vessels in each set of locks
comes from Lake Gatun by gravity.

Basic Ship Behavior. As a ship approaches the first chamber, valves below the compartment are
released and the water level adjusts to that outside of the canal. The gates then open and the ship
moves into the first chamber. After the gates lock, valves of the first and second chamber are
opened to allow the water level of the first chamber to rise and match the second chamber. The
gates open for a second time, allowing the ship to move into the second chamber. This repetitive
process continues until the ship reaches the Lake Gatun. The ship traverses the lake and then
descends through the exit lock system. The basic ship behavior is identical for crossings Pacific
to Atlantic and Atlantic to Pacific.

Component-Level Processes

 Figures 3 and 4 show elevation view of a double lock system architecture, the component-
level processes, and labeled transition system (LTS) representations for sequences of actions
representing basic component level behavior.

Figure 3. Elevation View of Lock System Components, Component- and Subsystem-Level

Processes.

The lock system architecture is an assemblage of Gate, Pump, and Ship processes. Gates can
open and close, and Pumps can adjust the water level ``up’’ and ``down’’ (i.e., release). In the
present-day canal, adjustments to water level are achieved through gravity feed from lake Gatun.
The modified Panama Canal will rely on mechanical pumps and water saving basins. In LTSA,
these actions are specified in FSP by writing:

 6

GATE = (opengate->closegate->GATE).

PUMP = (pumpup -> pumpdown->PUMP).

The equivalent graphical format is shown along the right-hand side of Figure 4.

Figure 4. Basic Component-Level Process Models for Gates, Pumps and a Ship Climbing

Through a Double Lockset.

Ship behavior is similarly defined in terms of sequences of actions that need to occur in order for

the vessel to ascend/descend through the double lock system, i.e.,

SHIP = (arrive -> request-> acquire -> enterlock1 -> enterlock2 -> exitlock2 -> clear-> SHIP).

The actions arrive, enterlock1 and enterlock2 define ship movement. The actions request,

acquire and clear involve communication, either with the lock passage controller for scheduler

(details can be found below). LTSA requires that processes be continuously operating – hence, in

the process model, after a ship clears the canal it immediately returns to the beginning.

Composition of Component-Level Processes

With definitions for basic component-level processes in place, LTSA provides support for

replication of component processes and definition of subsystem-level processes through tagging
and composition. For example, the fragment of code:

 ||SHIP_PROG = (atlantic:SHIP || pacific:SHIP)

 7

 ||CONVOY = ([1..2]:SHIP_PROG).

creates tags for ships on the Atlantic and Pacific sides of the canal, and then a convoy of ships on
each side. At this point, the individual ships have completely independent behavior. Additional
program structure can be enforced by creating queue processes and constraining the behavior to
follow a first-in/first-out policy. Similarly, unconstrained behavior of the lock system
components in achieve through composition of the pump and gate processes, e.g.,

 ||DOUBLEGATE = (low:PUMP || high:PUMP || low:GATE || middle:GATE || high:GATE).

creates a lockset with three gates (tagged, low, middle, and high) and two pumps (tagged low
and high). The DOUBLEGATE process model has 32 states representing all possible
permutation of pump and gates states. It is important to note that our use of tagged names simply
relate processes to their position in the lockset system and are decoupled from spatial concerns
(e.g., which lockset is on the West or East side of the Panama Canal). Hence, it is possible to
systematically assemble a complete lockset process model, which in turn can act as a template or
module for assembly of behavior for arbitrary canal configurations.

High-Level Canal Operations

By themselves, the pumps, gates and ships are independent processes that accomplish

repetitive low-level operations. System-level behavior of the ship convoys, coupled with
coordination of actions in the lock system is controlled via a high-level scheduler process and
passage controllers for each of the double lock systems.

Figure 5. Schematic for Assembly of Process Components in Lock Control.

 8

Figure 5 shows the essential details of communication among the scheduler, passage control,
canal system (pumps and gates), and ship passage processes. When a ship ‘’arrives’’ at either the
Atlantic or Pacific canal entrances, it request permission to enter the first lock system. If the lock
system is currently occupied then the scheduler will direct the ship to join a queue. Eventually
the ship will acquire access to the lock set, and be guided through the ascend/descend operations
by the passage controller process (i.e., enterlock1, enterlock2, exitlock2, clear).

Constraints on passage control ensure that the sequencing of ship actions is consistent with
physical constraints. For example, if a ship enters the Panama Canal from the Atlantic side, then
it needs to completely traverse the Atlantic-side lockset for before entering and descending
through the Pacific-side lockset. These constraints can be enforced through sequences of actions
that define entry and exit from specific locksets, e.g., the process

 EASTNOPASSLOCK = (atlantic.arrive -> atlantic.clear -> pacific.arrive ->
 pacific.clear -> EASTNOPASSLOCK).

preserves order of operations for a ship traversing the canal, East to West.

Full Canal Model

 The full canal model is defined through a system-level composition of Pacific- and Atlantic-
side systems together with the process model for ship convoy behavior. In turn, the Pacific- and
Atlantic-side processes are a composition of DOUBLEGATE, PASSSAGECONTROL and
SCHEDULER processes. Joint behaviors in the full canal model correspond to sequenced
actions/interactions between lower-level processes – these actions reduce the size of the overall
model. Still, models are very large, often exceeding 140,000 different states (i.e., distinct
combinations of subsystem and component-level states).

 With small process models (e.g., containing less than 20-30 states), one can visualize
communication between the states in LTSA. Since this approach is intractable for analysis of full
canal systems, we must resort to mathematics to formally validate properties of the full canal
process model.

Formal Validation of Panama Canal Operations

In our approach to process modeling and formal validation, requirements are written as

properties that can be formally evaluated with respect to the component- and architecture-level
models. A property is an attribute of a process that is true for every possible execution of that
process. Properties of interest for current processes fall into two categories: safety and liveliness.
We also need to check that the proposed system will not enter a deadlock state – that is, a state
for which there is no exit (or outgoing transition) , and hence the system becomes blocked and
cannot make further progress.

 9

Safety of Canal Operations

A safety property asserts that nothing bad happens during the canal operation. For Panama

Canal operations we need to ensure that at all times: (1) The canal scheduler will not assign more
than one ship to a lock; (2) Ships acquire a lock before clearing it; (3) West-bound ships will
clear the Atlantic lockset before the Pacific lockset (and vice versa for East-bound ships); and (4)
Floods will be prevents by ensuring that a gate will not open before water levels on both side of
the gate are equalized.

Safety properties are specified in FSP by property processes. Safety checks are compositional

in the sense that if there is no violation at a subsystem level, then there cannot be a violation
when that subsystem is composed with other subsystems. For example, the abbreviated fragment
of code:

property SYS_FLOOD = (ascend->low.opengate->low.closegate->low.pumpup->RESET

| resethigh->low.pumpup->low.pumpdown …. low.closegate-> SYS_FLOOD),
RESET= (resetlow->low.pumpdown->low.opengate->low.closegate->low.pumpup->RESET

| descend->low.pumpdown->…. low.closegate->SYS_FLOOD).

Establishes a property SYS_FLOOD that asserts the lower locks will not flood.

Figure 6: Abbreviated LTS Diagram for atlantic:SYS_FLOOD Safety Property.

 10

By default, and as illustrated in Figure 6, the LTSA compiler will automatically generate
transitions to the error state. In total the atlantic:SYS_FLOOD property process contains 17
states, 16 for the process specification, and one for the error state.
 Two outcomes are possible when the flood property processes are composed with the system
specification, i.e.,

||FULLCANAL_TEST = (FULLCANAL || pacific:SYS_FLOOD || atlantic:SYS_FLOOD).

If the combined canal–property process does not contain an error, then the FULLCANAL_TEST

specification will remain unchanged. If on the other hand, there is an error in the architecture-
level design, indicating the possibility of an accidental flood occurring, then this will show up
through the presence of an error state in FULLCANAL_TEST.

Liveliness of Canal Operations

A liveliness property asserts that something good eventually happens. For the Panama Canal

application we need to ensure that all ships will eventually clear the system. Accordingly the
statement pair:

progress EASTPASS = {east.[1..2].atlantic.clear}
progress WESTPASS = {west.[1..2].pacific.clear}

asserts that all east-bound ships will eventually clear the Atlantic lockset and, conversely, all

west-bound ships will eventually clear the Pacific lockset. It is important to note that unlike
safety properties, liveliness (or progress) checks are not compositional. Instead, progress analysis
involves the systematic construction of terminal sets. A progress violation occurs if one or more
terminal sets does not contain at least one of the terminal set actions (i.e., east[1].atlantic.clear or
east[2].atlantic.clear for east-bound ships).

Conclusions and Future Work

The essential details of a process modeling framework for the formal evaluation and

validation of Panama Canal System operations has been presented in this paper. The importance
of this work stems from the critical role that the Panama Canal plays in global shipping
operations. Motivation for this work stems from the difficulty engineers have in evaluating and
validating designs where behavior is defined by decentralized operations (many concurrent
behaviors), yet automation (sensors, control, computer software) is needed for the
implementation of correct working operations. The enablers for our work are finite state
processes and the labeled transition analyzer (LTSA). LTSA has its roots in the analysis of
computer operating system processes. Yet, as we have shown in this paper, fundamental
properties for design can be easily reinterpreted and placed in a canal design setting.

Figure 7 shows process hierarchies for lockset and sensor-enabled lockset control. In this
paper we have restricted discussion to lockset control (i.e., we have described scheduler, passage
control, ship control, ship, gate and pump processes). Processes have been organized into three

 11

Figure 7. Process Hierarchies for Lockset and Sensor-Enabled Lockset Control.

levels: system level command, lockset level procedures, and component level mechanisms.
Although we have talked about the need for sensor-enabled control, the lockset model does not
explicitly contain sensor processes. Furthermore, because LTSA requires that processes be
continuous processes, ship behaviors are modeled as repetitive cycles of actions – although there
is nothing wrong with this assumption, in terms of validating lockset and canal behaviors, in
practice ships don’t have this behavior. This modeling assumption also limits the size of
problems that can be studied. Although we were able to model full canal system models having
more than 100,000 states, by simply adding more ships to the system, the model will grow to a
point where even a modern PC/laptop cannot handle the memory requested by LTSA. We are
currently exploring a second model where locksets are modeled with sensors to detect the arrival
of ships, monitor water levels, and ensure locks are restricted to single use operations. This
data/information will be relayed to the sensor-enabled scheduler, which in course, will direct the
passage controller to provide access to ships at the front of the low-lock and high-lock queues.
An important benefit of this approach is that ships do not need to be modeled as processes –

 12

instead, they are simply viewed as objects that are directed to pass through the canal system.
Results of this work along with complete details of the LTSA analyses will be released in an ISR
Technical Report (Johnson and Austin, 2007).
 Future work will focus on development of methods to keep problem sizes in check through:
(1) judicious use of abstractions, and (2) layered organization and evaluation of property models.

Acknowledgement. This work reported in this paper was supported, in part, by a summer grant
to the first author from the NSF Research Experiences for Undergraduates (REU) Program.

References

Jackson, D., Dependable Software by Design. Scientific American, 294(6), June 2006.

Johnson J., and Austin M., Mechanical Verification of Panama Canal System Operations with

LTSA, ISR Technical Report 2007-XX, Institute for Systems Research, University of
Maryland, College Park, MD 20742, December 2007. (to be released).

Labeled Transition System Analyzer (LTSA) Home Page. See:

http://www.doc.ic.ac.uk/jnm/ltsa/LTSA.html. Accessed, November 2007.

Magee J.L., and Kramer J., Concurrency: State Modelsand Java Programs (2nd Edition), John

Wiley and Sons, New York, 2006.

Maxing Out, Economist 382, Academic Search Premier, Volume 71, 2007.

Sangiovanni-Vincentelli A. Automotive Electronics: Trends and Challenges. In Presented at

Convergence 2000, Detroit, MI, October 2000.

Sangiovanni-Vincentelli A., McGeer P.C., Saldanha A. Verification of Electronic Systems : A

Tutorial. In Proceedings of the 33rd Desgin Automation Conference, Las Vegas, 1996.

Sidororva N., Lecture Notes on Process Modeling, Graduate Course, Department of Mathematics

and Computer Science, Eindhoven University, Netherlands, 2007.

The Panama Canal’s Ultimate Upgrade, Popular Mechanics, Volume 184, 2007, pp. 56-61.

Academic Search Premier. EBSCO.

Uchitel S., Kramer J., and Magee J. Incremental Elaboration of Scenario-Based Specifications

and Behavior using Implied Scenarios. ACM Transactions on Software Engineering and

Methodology, 13(1):37–85, January 2004.

Biography
John Johnson is an undergraduate student in the Department of Civil and Environmental

Engineering at the University of Maryland, College Park.

Mark Austin is an Associate Professor in the Department of Civil and Environmental

 13

Engineering, University of Maryland, College Park. He currently holds an affiliate appointment
with the Institute for Systems Research. During the past ten years, Mark has taught extensively
in the Master of Science in Systems Engineering (MSSE) program, and conducted short courses
in Systems Engineering at US companies, and in Europe and South America. He has a Bachelors
degree in Civil Engineering from the University of Canterbury, New Zealand, and Masters and
Ph.D. degrees in Civil Engineering from UC Berkeley.

