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Abstract—Next-generation urban systems will be enabled by tech-
nological (cyber) advances deeply embedded within the physical
domain. The volume and variety of collected data in years to come
is only going to grow and diversify, making the task of urban
system design and management much more difficult than in the
past. We believe these challenges can be addressed by teaching
machines to understand urban networks. This paper explores
opportunities for using recently developed graph embedding
procedures to encode the structure and associated network
attributes as low-dimensional vectors. These embeddings can be
later used to advance various learning tasks. We exercise the
proposed approach on a problem involving identification of leaks
in an urban water distribution system. The Dynamic Attributed
Network Embedding (DANE) framework is used to generate
low-dimensional vectors for a water distribution network, whose
pressure attributes are simulated with EPANET. The embeddings
are then fed to a Random Forest algorithm trained to identify
water leaks.

Keywords-Systems Engineering; Machine Learning; Graph Embed-
dings.

I. INTRODUCTION

This paper is concerned with integrating recently devel-
oped graph embedding procedures with machine learning tasks
that can enhance decision making in urban settings.

A. Problem Statement

Modern societal-scale infrastructures are going through
an interesting time where the digital wave (e.g., the Internet,
smart mobile devices, cloud computing) has opened up new
avenues for enhancing the development of urban systems
(e.g., transportation, electric power, wastewater facilities and
water supply networks, among others) whose operations and
interactions have superior levels of performance, extended
functionality and good economics. While end-users applaud
the benefits that these digital technologies afford, model-based
systems engineers are faced with a multitude of new design
challenges that can be traced to the presence of heterogeneous
content (multiple disciplines), network structures that are spa-
tial, multi-layer, interwoven and dynamic, and behaviors that
are distributed and concurrent. In the past, engineers have kept
these difficulties under control by designing subsystems that
operate as independently as possible from each other. Today,
however, it is acknowledged that subsystem independence
and inferior levels of situational awareness imply sub-optimal
functionality and performance. Communication and informa-
tion exchange establishes common knowledge among decision
makers which, in turn, enhances their ability to make decisions

appropriate to their understanding, or situational awareness, of
the system state, its goals and objectives. Overcoming these
barriers makes future challenges in urban system design and
management a lot more difficult than they used to be.

B. Scope and Objectives

Our work is motivated by the premise that next-generation
cities are transitioning to an information-age fabric, where
highly efficient sensing and communication technologies are
deeply embedded within the physical urban domain. Present-
day trends indicate that the flow and variety of urban data is
only going to grow and diversify, making the task of system
design, analysis and integration of multi-disciplinary concerns
much more difficult than in the past.

Urban Water Supply Network (Physical)

Semantic
Modeling

Learning
Machine

actions

events

Digital Twin (Cyber)

Figure 1. High-level representation for an urban water supply network digital
twin (cyber) working alongside a physical urban water supply network.

As illustrated in Figures 1 and 2, we believe that these
challenges can be addressed by combining Machine Learning
(ML) formalisms and semantic model representations of urban
systems that work side-by-side in collecting data, identifying
events, and managing city operations in real-time. To this end,
Figure 3 shows a preliminary classification of the strength-
s/weaknesses of AI/ML. The proposed approach builds upon
our recent work in semantic modeling for (multi-domain) sys-
tem of systems [1] [2] and exploration of a combined semantic
and ML approach to the monitoring of energy consumption in
buildings [3].

This paper explores opportunities for using recently de-
veloped graph embedding procedures to encode the structure
and associated network attributes as low-dimensional vectors.
These embeddings can be later used to advance various learn-
ing tasks. We exercise the proposed approach on a problem
involving identification of leaks in an urban water distribution
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Figure 2. Digital twin architecture.

Figure 3. Venn diagram of semantic modeling capabilities versus machine learning capabilities.
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system. The remainder of this paper proceeds as follows:
Related work in ML algorithms for graphs is covered in
Section II. Our work in progress is described in Section III.
Conclusions and directions for future work are located in
Section IV.

II. RELATED WORK

This section covers the relationship of graph embedding
procedures to our related work in integration of semantic
modeling and ML approaches for the design of ”city digital
twins”.

A. Architectural Template for Combined AI/ML

The proposed architectural template for a combined multi-
domain semantic modeling and ML approach is shown in
Figure 2. It is an extension of our work in 2018 [4]. Box
1 covers a framework for multi-domain semantic modeling,
where concurrent development of ontologies, rules and data
models placed on an equal footing. Box 2 shows ML for three
classes of problems – classification, clustering and associa-
tion – found in the data mining domain. Traditionally, ML
approaches rely on user-defined heuristics to extract features
encoding information about a graph (e.g., degree statistics or
kernel functions). However, recent years have seen a surge in
approaches that automatically learn to encode graph structure
and attributes into low-dimensional embeddings, using tech-
niques based on deep learning and nonlinear dimensionality
reduction. Box 3 is the starting point for our investigation and
the focus of this work-in-progress paper.

B. Graph Embeddings for Urban Networks

A prerequisite to network data mining is to find an
effective representation of networks. Established network rep-
resentations, such as adjacency matrices, suffer from data
sparsity and high-dimensionality, and a lack of support for
capturing semantics. During the most recent decade, however,
there has been a strong surge of interest in learning to encode
continuous and low-dimensional representations of networks as
graph embeddings. Graph embedding provides an effective and
efficient way to solve the graph analytics problem, by learning
a continuous vector space for the graph, assigning each node
(and/or edge) in the graph to a specific position in the vector
space. This process provides users a deeper understanding of
what is behind the data, and thus can benefit a lot of useful
applications such as node classification, node clustering, node
recommendation, link prediction, and so forth [5].

Embedding urban graphs into a low-dimentional space
is not a trivial task. A key challenge in the design of graph
embeddings for urban networks stems from the observation
that the information to be preserved is strongly affected by
the underlying characteristics of the graph. Urban networks
may be homogeneous, heterogeneous, and carry auxiliary
information modeled as attributes. Graph edges may be undi-
rected, directed and/or weighted. In a comprehensive survey
of graph embedding problems, techniques and applications,
Hongyun and co-workers [5] propose two taxonomies of
graph embedding which correspond to what challenges exist
in different graph embedding problem settings and how the
existing work address these challenges in their solutions.
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Figure 4. Traditional encoder-decoder approach.

One of the challenges described is capturing the diversity of
connectivity patterns in the graph. When embedding a graph
with topology information only, the connections between nodes
are the target to be preserved. However, for a graph with edge
weight or direction, the connectivity pattern provides graph
property from other perspectives, and thus should also be
considered during the embedding. Different types of objects
(e.g., nodes, edges) are embedded into the same space in
heterogeneous graph embedding. Therefore, another challenge
is conserving global consistency and addressing imbalance
between objects of different types. Some urban graphs (e.g.,
urban water supply networks) contain auxiliary information of
a node/edge/whole-graph in addition to the structural relations
of nodes (i.e., labels, attributes, node features, information
propagation, knowledge base). The auxiliary information helps
to define node similarity in addition to graph structural in-
formation. The challenges of embedding graph with auxiliary
information is how to combine these two information sources
to define the node similarity to be preserved.

In addition to the graph embedding input considerations,
output format also pose challenges. Different types of embed-
ding facilitate different applications. Output can be categorized
into node embedding, edge embedding, hybrid embedding and
whole-graph embedding. The challenge is determining suitable
embedding output to meet the needs of a specific application
or task. The task may be node classification, node clustering,
node recommendation/retrieval/ranking, link prediction, triple
classification, graph visualization, etc.

C. Autoencoders

Autoencoders are neural networks that are trained to
reconstruct their original input. Figure 4 shows a high-level
architecture for an autoencoder designed to work with graphs.
First, an encoder takes a graph as its input and system-
atically compresses it into a low-dimensional (embedding)
vector. The decoder then takes the vector representation and
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attempts to generate a reconstruction of the original (graph)
input. Encoder-decoder pairs are designed to minimize the
loss of information between the input graph and the output
(i.e., reconstructed) graph, and then use the embeddings for
downstream ML tasks. These frameworks may be deterministic
or probabilistic [6].

III. WORK IN PROGRESS

In this section we exercise a graph embedding procedure
that can encode both structure and network attributes on a
problem involving the identification of leaks in an urban water
distribution system.

Topic 1. Use Case

This use case aims to explore ML techniques for the
detection and localization of leakages in very simple water
distribution systems (WDSs). See Figure 5. Figure 6 is a
flowchart of the process for detecting the location of the leak
and taking actions to restore the system. We start by extracting
a graph representation of the WDS and determining the initial
hydraulic parameters of the system. The following topics
describe: (1) the generation of hydraulic data, in particular
node pressure, by the hydraulic simulation software EPANET
[7]; (2) the preservation of the network topology and node
pressure information in the encoding of node embeddings by
the DANE framework [8]; (3) the training and testing of a
Random Forest algorithm [9] with the node embeddings to
infer leak location; and (4) the resulting performance obtained
using this proposed framework.

Reservoir

Pump

Water Tank

Node 1

Node 2

Node 3

Node 4

Figure 5. Elevation view of urban water distribution network and junction
(node) numbers used by EPANET simulation.

Topic 2. Data Generation

ML algorithms for automatic water leakage detection
requires training data. The data should involve hydraulics
parameters at different locations in the WDS, pertaining to
previous leaks that occurred in the past. However, for security
reasons WDS data, which includes geographical layout of
pipes, tanks, and demands are kept confidential by the water
utility companies and are not readily available in public
domain. Alternatively, the training sets can be generated by
simulation of the pipe network under consideration. The sim-
ulation tool EPANET [7] can be used to achieve this goal

Figure 6. Process flowchart for training and executing machine.

[10]. EPANET is a computerized simulation model produced
by the Environmental Protection Agency of the USA that
predicts the dynamic hydraulic and water quality behavior
within a drinking water distribution system operating over an
extended period of time. Pipe networks consist of pipes, nodes
(junctions), pumps, valves, and storage tanks or reservoirs.
EPANET tracks the flow of water in each pipe, the pressure
at each node, the height of the water in each tank, the type
of chemical concentration throughout the network during a
simulation period, the age of the water, and source tracing. A
user can edit various characteristics of a network element and
perform simulation to observe its effect on the overall system.

One of the main features of EPANET is that its hydraulic
calculation engine is demand-driven. The water output data
at each node is defined as the base demand. Although the
software does not have direct tool to induce leakage in the
system, it is still possible to model leaks as an additional
demand, independent of the pressure in a consumption node.
The demand can be increased at different times during the
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simulation. The virtual WDS layout used to perform the
simulations is shown in Figure 5. with location of the 4
junctions, 4 links, pump station, water source, and tank. In this
work, we assume sensor nodes are deployed in each junction
of the network; however, in our resource limited world, placing
as many sensors as there are junction nodes to monitor all of
the nodes in real time is extremely infeasible. An opportunity
for future work would be to investigate how many sensor nodes
are needed and where to place them in the network. Placement
of sensor node would have direct impact on the efficacy of
locating the leakage in the WDS.

In order to generate the large number of cases required
for the ML training sets, the implementation of EPANET can
be automated by developing a program which calls EPANET
many times with varying leak locations. In this work, we
will use the EPANET-Python Toolkit to perform this task.
The toolkit is an open-source software, originally developed
by the Flood Resilience Group (a multidisciplinary research
group affiliated to UNESCO-IHE and Delft University of
Technology), that operates within the Python environment,
for providing a programming interface for the latest version
of EPANET. It allows the user to access EPANET within
python scripts. The toolkit is useful for developing specialized
applications, such as water distribution network models that
require running many network analyses. For simplicity, we will
limit the parameter of interest to node pressure, although we
recognize other parameters such as flow may be helpful in the
indication of a leak as well. We obtain the pressure data by
making some underlying assumptions: (1) The data obtained
through simulation does not involve any noise in it (i.e., the
sensors are ideal), (2) At-most one leakage can occur in the
WDS in a simulation run, and (3) Water leakage is assumed
to occur at the junction nodes only.

Topic 3. Node Embedding

With the data obtained from the hydraulic simulation
through EPANET-Python Toolkit, graph embedding can be
performed. In this use case we are interested in obtaining a
low-dimensional node vector representation for each node in
the network. The learned embeddings could advance various
learning tasks, particularly leak detection by node classifica-
tion. WDSs’ networks are associated with a rich set of node
attributes, and their attribute values are naturally changing,
with the emerging of new content patterns and the fading of
old content patterns. In addition, it has been widely studied
and received that there exists a strong correlation among
the attributes of linked nodes [11]. These node correlations
and changing characteristics motivate us to seek an effective
embedding representation to capture network structure and
attribute evolving patterns, which is of fundamental importance
for learning in a dynamic environment. In 2018, Li et al.
proposed a novel DANE framework that first provides an
offline method for a consensus embedding and then, in order
to capture the evolving nature of attributed networks, leverages
matrix perturbation theory to maintain the freshness of the end
embedding results in an online manner [8]. Applying DANE to
the pressure data outputted from EPANET simulation, yields a
six dimensional node embedding vectors for each node. How
to determine the optimal number of embedding dimensions is
still an open research problem, thus we chose a set up for
which the best results were reported.

Topic 4. Node Classification

With the node embeddings obtained from DANE, leak-
age detection can be performed. Leakage detection in this
work pertains to finding the corresponding junction where the
leakage has occurred, therefore the target function assigns a
value of 1 to the node where leakage has occurred, and a
value of 0 to the remaining nodes. The input and output data
are prepared, and passed to a Random Forest classification
algorithm. Random forest is considered a highly accurate
and robust method because of the number of decision trees
participating in the process. It does not suffer from the
overfitting problem often encountered in other ML methods,
since it takes the average of all the predictions, and cancel out
the biases. Random forests can also handle missing values,
by using median values to replace continuous variables, or
computing the proximity-weighted average of missing values.
It also provides the relative feature importance, which helps in
selecting the most contributing features for the classifier [9].

The training set needs to capture as much of the expected
variation in the target and environment as possible, therefore
we generate training set from a simulation where all of the
nodes are leaking for half of the simulation duration, and for
the other half of the simulation duration none of the nodes are
leaking. Since the simulation was set to last 24 hours, with
pressure readings at every hour, the training set contains 24
cases for each node. Figure 7 shows the plots for each node
in this scenario, where the first of the embedding dimensions
is plotted against time. Note that at the time step where the
leak occurs, the embedding value for that dimension changes;
therefore, the problem can be framed as anomaly detection.
In order to test the trained machine, we generate a test set
from a simulation where none of the nodes are leaking for
half of the simulation duration, and for the other half of the
simulation duration only one of the nodes is leaking. Similar
to the training set, the test set also contains 24 cases for each
node. Figure 8 shows the first of the embedding dimensions
plotted against time. Note that the embedding values change
slightly compared to the previous scenario where all the nodes
where leaking; therefore, the goal of the ML process is not
only to detect the anomalies, but also identify which anomalies
are actual leaks and which ones are just a propagation of the
leak effects. Also note that we keep the leak duration constant
through all simulations, since the initial objective of this work
is not to identify when the leak occurs but where it occurs.
However, we do aknowledge that the time domain is relevant
and future work will need to address variations in not only
space but time as well.

Topic 5. Preliminary Results

By training the Random Forest algorithm with both leak
and non leak data for each node, we were able to test whether
the algorithm is able to detect a leak in the system. The test was
performed by feeding the algorithm data for a scenario where
initially none of the nodes was leaking, and later introducing
the leak only at node number 3, as shown in Figure 8.
Classification problems are perhaps the most common type
of ML problem and as such there are a myriad of metrics
that can be used to evaluate predictions for these problems.
Classification accuracy is the most common evaluation metric
for classification problems, and it is the ratio of number of
correct predictions to the total number of input samples. We
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Figure 7. Node embeddings (1st dimension) obtained for train data set
plotted against time.

Figure 8. Node embeddings (1st dimension) obtained for test data set plotted
against time.

found that the Random Forest algorithm used to train and test
has a classification accuracy of 100 percent. We recognize
such a high performance may be due to the simplicity of our
network and the presence of only one leak when testing. Future
work will investigate the influence of size and complexity of
the network to the performance of the leak detection.

IV. CONCLUSIONS AND FUTURE WORK

The long term objective of this research is to under-
stand how ML and semantic-modeling can work hand-in-hand

to enhance the collection of data, identification of events,
and management of city operations. By exploring potential
applications of ML to the identification of leaks in urban
networks, this work work-in-progress paper takes a tiny step
towards realization of the goal. Note that no validation set
was used in this work because the simplicity of the network
did not provide enough dimensionality to partition the cases
into separate training, validation and testing sets without losing
significant modeling or testing capability. In addition, we
have used only one basic scenario for training and one for
testing. Looking forward, our investigation will explore other
possible simulations where different leak combinations and
larger network sizes will be used. Future work will also explore
the accuracy of the learned model when facing dynamic
topologies, where edges are removed or created. We also aim
to understand what types of graphs (e.g., undirected, directed,
weighted) are easy for the ML to learn. Lastly, to the best
of our knowledge, the DANE framework does not incorporate
a decoder; therefore, extensions of the DANE framework to
incorporate this capibility will be needed.

REFERENCES

[1] M. Coelho, M. A. Austin, and M. R. Blackburn, “Distributed System
Behavior Modeling of Urban Systems with Ontologies, Rules and
Many-to-Many Association Relationships,” The Twelth International
Conference on Systems (ICONS 2017), April 23-27 2017, pp. 10–15.

[2] ——, The Data-Ontology-Rule Footing: A Building Block for
Knowledge-Based Development and Event-Driven Execution of Multi-
Domain Systems. Proceedings of the 16th Annual Conference on Sys-
tems Engineering Research, Systems Engineering in Context, Chapter
21, Springer, 2019, pp. 255–266.

[3] P. Delgoshaei, M. Heidarinejad, and M. A. Austin, “Combined
Ontology-Driven and Machine Learning Approach to Monitoring of
Building Energy Consumption,” in 2018 Building Performance Model-
ing Conference and SimBuild, Chicago, IL, September 26-28 2018, pp.
667–674.

[4] M. A. Austin, P. Delgoshaei, M. Coelho, and M. Heidarinejad, “Archi-
tecting Smart City Digital Twins: A Combined Semantic Model and
Machine Learning Approach,” Journal of Management in Engineering
(Special Issue on Smart City Digital Twins), ASCE, 2019, (In Press).

[5] H. Cai, V. W. Zheng, and K. C. Chang, “A Comprehensive Survey
of Graph Embedding: Problems, Techniques and Applications,” IEEE
Transactions on Knowledge and Data Processing, vol. 30, no. 9, 2018,
pp. 1616–1637.

[6] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation Learning
on Graphs: Methods and Applications,” CoRR, vol. abs/1709.05584,
2017. [Online]. Available: http://arxiv.org/abs/1709.05584

[7] L. Rossman, EPAnet 2 Users Manual, January 2000, vol. 38.
[8] J. Li et al., “Attributed Network Embedding for Learning in a Dynamic

Environment,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, ser. CIKM ’17. New
York, NY, USA: ACM, 2017, pp. 387–396. [Online]. Available:
http://doi.acm.org/10.1145/3132847.3132919

[9] L. Breiman, “Random Forests,” in Machine Learning, vol. 45, no. 1.
Norwell, MA, USA: Kluwer Academic Publishers, October 2001, pp.
5–32.

[10] J. Mashford, D. Silva, S. Burn, and D. Marney, “Leak Detection
in Simulated Water Pipe Networks using SVM,” Applied Artificial
Intelligence, vol. 26, May 2012, pp. 429–444.

[11] J. J. Pfeiffer, S. Moreno, T. La Fond, J. Neville, and B.
Gallagher, “Attributed Graph Models: Modeling Network Structure
with Correlated Attributes,” in Proceedings of the 23rd International
Conference on World Wide Web, ser. WWW ’14. New
York, NY, USA: ACM, 2014, pp. 831–842. [Online]. Available:
http://doi.acm.org/10.1145/2566486.2567993

42Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-771-9

ICONS 2020 : The Fifteenth International Conference on Systems


