
393

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Framework for Knowledge-Based Fault Detection and Diagnostics in Multi-Domain
Systems: Application to Heating Ventilation and Air Conditioning Systems

Parastoo Delgoshaei
Department of Civil and Environmental Engineering,

University of Maryland, College Park, MD 20742, USA
E-mail: p.delgoshaei@gmail.com

Mark A. Austin
Department of Civil and Environmental Engineering,

and Institute for Systems Research,
University of Maryland, College Park, MD 20742, USA

E-mail: austin@isr.umd.edu

Abstract—State-of-the-art fault detection methods are equipment
and domain specific and non-comprehensive. As a result, the
applicability of these methods in different domains is very
limited and they can achieve significant levels of performance
by having knowledge of the domain and the ability to mimic
human thinking in identifying the source of a fault with a
comprehensive knowledge of the system and its surroundings.
This paper presents a comprehensive semantic framework for
fault detection and diagnostics (FDD) in systems simulation and
control. Our proposed methodology entails of implementation of
the knowledge bases for FDD purposes through the utilization
of ontologies and offers improved functionalities of such system
through inference-based reasoning to derive knowledge about the
irregularities in the operation. We exercise the proposed approach
by working step by step through the setup and solution of a
fault detection and diagnostics problem for a small-scale heating,
ventilating and air-conditioning (HVAC) system.

Keywords-Fault Detection and Diagnostics; Heating Ventilating
and Air-Conditioning (HVAC); Inference-Based, Knowledge Base,
Ontologies; Reasoning.

I. INTRODUCTION

This paper is concerned with the development of ontol-
ogy and rule-based modeling abstractions, procedures, and
prototype software for automated fault detection and diagnos-
tic (FDD) analysis of condition-based maintenance in multi-
domain systems (e.g., buildings, health monitoring, power
plants and aviation systems). The article builds upon our
previous work [1]–[3] on behavior modeling and analysis of
engineering systems with semantic web technologies.

A. Problem Statement

Automated fault detection and diagnostic (FDD) tech-
niques provide a means of detecting unwanted conditions
(i.e., “faults”) in systems by recognizing deviations in real-
time or recorded data values from expected values, and then
diagnosing the causes leading to the faults. Automated fault
detection and diagnostic (FDD) techniques provide mecha-
nisms for condition-based maintenance of engineered systems
(e.g., buildings, health monitoring, power plants and aviation
systems). Proper implementation of FDD can enable pro-active
identification and remediation of faults before they become
significantly deleterious to the safety, security, or efficiency of
the operating system.

Within the building sector, degraded or poorly-maintained
equipment currently accounts for 15 to 30 % of energy
consumption in commercial buildings [4]. Approximately 50
to 67 % of air conditioners (residential and commercial) are
either improperly charged or have airflow issues [5] and [6].
Faulty heating, ventilating, air conditioning, and refrigeration
(HVAC&R) systems contribute to 1.5 to 2.5 % of total
commercial building consumption [7]. Much of this energy
usage could be prevented by utilizing automated condition-
based maintenance. During the last decade, considerable re-
search has focused on the development of FDD methods for
HVAC&R systems. This work has been driven, in part, by the
historically less-than-optimal operation of many state-of-the-
art HVAC systems. Yet, in spite of recent advances in building
simulation, automation and control (see the arrangement of
ontologies, rules, reasoning and simulation software in Figure
1), automatic methods for FDD of building systems remain
at a relatively immature stage of development. As a result,
we require more advanced FDD techniques that leverage
the untapped capabilities of building automation integrated
with methods in artificial intelligence and semantic modeling.
These interdisciplinary FDD systems can benefit from utilizing
knowledge repositories for storing automation/simulation data
and the inference-based reasoning techniques to obtain addi-
tional higher information, such as sensors location, equipment
service area.

B. Objectives and Scope

This paper describes a framework for knowledge-based
fault detection and diagnostics in multi-domain systems, with
a focus on applications to HVAC Systems. In a departure from
state-of-the-art developments in ontology engineering, which
place a priority on the development and testing of ontologies
alone, our objective is to create a modeling framework that
supports: (1) concurrent data-driven development of domain
models, ontologies and rules, and (2) inference-based reason-
ing for detection of faults and their causes. The proposed
method employs the Web Ontology Language (OWL) [8] and
Jena API [9] for the development of semantic models (ontolo-
gies and rules) spanning the building, mechanical equipment,
sensor, fault detection and diagnostics (FDD), occupant and
weather domains. Support for spatial reasoning among entities
is provided at the meta-domain level.

The remainder of this paper proceeds as follows: Section

394

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(BIM Models)

Engineering Simulation
Datatype Properties

Classes
Object Properties

define

Ontologies and Models FDD Rules and Reasoner

FDD Rules

Reasoner

System Behavior

System Structure
Instances

Property Value
(Modelica Models)

Figure 1. Architecture of engineering simulations connected to semantic models (ontologies and rules) reasoners for fault detection and diagnostic analysis
(Adapted from Delgoshaei, Austin and Pertzborn [2]).

II describes related work in FDD. Section III contains a
brief introduction to the uses of the Semantic Web and its
enabling technologies. The proposed methodology is described
in Section IV. Sections V and VI cover: (1) the meta-domain
and domain-specific ontologies and rules, respectively, and
(2) a step-by-step procedure for detection and analysis of
system faults. Section VII presents a case study problem that
involves detection of faults in a simple building – procedures
for reasoning across multiple domains are presented. Finally,
the conclusions of this study and a discussion of next steps is
presented in Section VIII.

II. RELATED WORK

Recent advances in building automation technologies pro-
vide a means for sensing and collecting the data needed for
software applications to automatically detect and diagnose
faults in buildings. During the past few decades a variety
of FDD techniques have been developed in different do-
mains, including model-based, rule-based, knowledge-based,
and simulation-based approaches. Katipamula and Brambley
summarizes FDD research for HVAC systems [4]. Their work
also describes different fundamental FDD methods under the
two main categories of model-based and empirical (history-
based) approaches. The major difference is in the nature of
the knowledge used to formulate the diagnostics. Model-based
diagnostics evaluate residuals between actual system measure-
ments and a priori models (e.g., first principle models). Data-
driven empirical strategies, on the other hand, do not require a
priori models. The models used in model-based methods can
be quantitative or qualitative. Quantitative models represent
the requisite a priori knowledge of the system in terms of
mathematical equations, typically as explicit descriptions of the
physics underlying system components. Qualitative models,
conversely, combine concepts such as descriptive “states”
and “rules” into statements that are axiological instead of
mathematical, expressing operational correctness or desirabil-
ity through an axiology, a value system, appropriate to each
physical application. As a result, the building system operation
can be continuously classified as being either faulty or not
faulty.

Rule-based strategies are one example of qualitative model-
based FDD methods. Rules can be based on first principles or
they can be inferred from historical experiments, but in either
case they represent expert qualitative knowledge that no purely
quantitative representation could model. The first diagnostic
expert systems for technical fault diagnosis were developed
at MIT by Scherer and White [10]. Since then, diagnostic
systems have evolved from rule-based to model-based and
expert systems approaches. Semantic models offer a means for
the representation of distributed and explicit knowledge and
provide ways through inference-based rules to derive implicit
knowledge. Berners-Lee and co-workers [11] points out to
the benefits of ontology usage for knowledge representation,
and utilizing high-level reasoning capabilities in the area of
agent-based control solutions. Exploitation of semantics and
ontologies in the area of agent-based engineering systems
has become one of the hot topics recently. The main reason
behind this trend is the success and promotion of Semantic
Web technologies to enable languages that are both machine
and human processable. Semantic Web-based applications have
been developed in the areas of health care [12], biology [13],
[14], and transportation [15]. In the area of fault detection
and diagnostics, Batic [16] has developed an ontology-based
fault detection and diagnosis systems and tested it on airport
ontologies to detect the high level irregularities in the operation
of airport heating/cooling plants. Also, Schumann [17] high-
lights the potential impacts of artificial intelligence techniques
such as ontologies on tackling the challenges in obtaining a
unified diagnosis framework. The benefit of this approach is
that ontologies are an essential technology guaranteeing data
and information interoperability in heterogeneous and content-
rich environments [18] which is at heart of comprehensive fault
detection and diagnostic methods.

III. THE SEMANTIC WEB

A. Semantic Models
Semantic models consist of ontologies, graphs of indi-

viduals (specific instances), and inference-based rules in the
form of if <conditions> then <consequences>. Together,
these entities and mechanisms allow for the construction and
execution of domain-specific knowledge bases.

395

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Domain Data Models and

Weather model

Occupant model

EnvironmentEnvironment

Occupant.owl

Weather.owl

Rules
Domain

Occupant.rules

Weather.rules

and Properties
Ontology Classes

Engineering

Building model

Sensor model

Equipment model

FDD model

Engineering

Building.owl

Sensor.owl

Equipment.owl

FDD.owl

Engineering

Building.rules

Sensor.rules

Equipment.rules

FDD.rules

Sources of Data (XML data files)

visit

Framework for Executable Processing of Events
load

Semantic Graphsload

load

Reasoner

graph transformation

...........

Spatial.rules

Spatial.owlload

Environment

Meta−Domain Ontology & Rules

design flow design flow

Framework for Concurrent Data−Driven Development of Domain Models, Ontologies and Rules

Figure 2. Proposed architecture for: (1) concurrent data-driven development of domain models, ontologies and rules, and (2) executable processing of events.

Ontologies: An ontology is a formal and explicit representa-
tion of the concepts, referred to as “classes” (e.g., cooling
coil, valve), and their interrelationships in a domain. The
classes may have attributes that are stored as a simple data
type properties” (e.g., coil setpoint). Support for semantic
relationships between classes is provided by object properties
(e.g., a coil has as a valve). For the representation of domains
where there are many variations to be represented, but com-
mon data properties among those variants, ontology languages
provide support for the organization of similar concepts into
hierarchies, and support for propagation of data and object
properties through hierarchies via inheritance mechanisms. We
may wish to state, for example, that a cooling coil is a type
of coil. In this hierarchy, the class cooling coil is a subclass
of the class coil. And the class coil is superclass of the class
cooling coil. The details of the classes, data properties and
object properties can be summarized as follows:

• Classes: Valve, Cooling Coil

• Datatype properties: coilTemperature (double), is-
Closed (Boolean), coilSetpoint(double)

• Object Property: hasValve

Individuals: Individuals are instances of ontology concepts,
and their purpose is to represent the data in a domain, e.g.,

• Individuals: ValveI, ValveII, Ccoil, Hcoil

• Storing individuals: ¡Hcoil hasValve ValveII¿

One common syntax for representing facts about a domain is
the triple structure <subject, predicate, object>.

Inference Rules: Inference rules and their associated reason-
ing mechanisms provide a way derive new information based
on the existing data stored in the ontology in the form of: if
<conditions> then <consequent>. For example, the script:

Logical Rule:

(?coil rdf:Type coil) (?coil setPoint ?sp)
(?coil coilTemperature ?cp) equal(?cp,?sp)
(?coil hasValve ?valve) -> (?valve isClosed true)

Stored individuals : <Hcoil hasValve ValveII>
<Ccoil coilTemperature 35>
<Ccoil coilSetpoint 35>

Inferred Knowledge: <ValveII isClosed true>

396

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

takes existing facts and rule that covers the setpoint and
temperature of a coil to infer that a valve is closed.

A key benefit of semantic modeling frameworks is that the
ontologies and rules are human readable, yet they can also be
compiled into code that is executable on machines.

IV. METHODOLOGY

A. Architecture Framework

In state-of-the-art development of semantic models, a com-
mon strategy is to provide classes and data properties for all
possible configurations within a domain, as well as linkage to
related domains. For example, in the integrated model-centric
engineering ontologies (IMCE) developed at JPL (Jet Propul-
sion Laboratory) during the 2000-2010 era [19], [20], the
electrical engineering ontology (i.e., electrical.owl) imports the
mechanical engineering ontology (i.e., mechanical.owl). Both
the electrical and mechanical engineering ontologies import
a multitude of foundation ontologies (e.g., analysis.owl, mis-
sion.owl, base.owl, project.owl, time.owl) and make extensive
use of multiple inheritance mechanisms in the development
of new classes. The result is ontologies containing more than
two hundred classes, with some classes containing three or
four dozen data and object properties. Notions of “simplicity
in system design” through modularity of semantic models (e.g.,
bundling of ontologies and rules) do not seem to exist.

In a first step toward mitigating these complexities, we
propose a semantic modeling framework (see Figure 2) that
supports: (1) concurrent data-driven development of domain
models, ontologies and rules, and (2) executable processing
of incoming faults. Instead of creating ontologies and then
developing a few rules for validation of model properties,
our goal is to put the development of data, ontologies and
rules on an equal footing. A key advantage of this approach
is that it forces designers to provide semantic representations
for data that are needed in decision making, and increases
the likelihood that data not needed for decision making will
be left out. Rules will be developed for verification of domain
properties and processing of faults through reasoning with data
sources, possibly from multiple domains. Implementation of
the latter goal leads to semantic graphs that will dynamically
adapt to the consequences of incoming data and events (e.g.,
changing occupant locations and weather events) acting on the
system.

Our second strategy is to minimize the use of multiple in-
heritance in the specification of OWL ontologies and, instead,
explore opportunities for replacing inheritance relationships
by object property relations. In order for the architectural
framework to be both scalable and adaptable to changing
external conditions, the ontologies will need to be modular,
and the rules will need to act both within a domain and across
domains.

B. Working with Jena and Jena Rules

Our prototype software implementation makes extensive
use of Apache Jena and Jena Rules. Apache Jena [9] is
an open source Java framework for building Semantic Web
and linked data applications. Jena provides APIs (application
programming interfaces) for developing code that handles RDF

(resource description framework), RDFS, OWL (web ontology
language) and SPARQL (support for query of RDF graphs).
The Jena rule-based inference subsystem is designed to allow
a range of inference engines or reasoners to be plugged into
Jena. Jena Rules is one such engine.

fact 2fact 1

derived fact 4

builtin function

external software

call

real world building environment

fact 3

add new assertion
to semantic model

AND

sensors

sensors

sensors

building data model

Figure 3. Framework for forward chaining of facts and results of builtin
functions to new assertions (derived facts).

Jena Rules employs facts and assertions described in OWL
to infer additional facts from instance data and class descrip-
tions. As illustrated in Figure 3, it also provides support for
the development of builtin functions that can link to external
software programs and streams of data sensed in the real world.
For the implementation of the vision implied by Figure 2,
particularly support for spatial and temporal reasoning, the
latter turns out to be crucially important because, by default,
OWL only provides builtin datatype support for numbers (i.e.,
float and double), booleans (i.e., to represent true and false) and
character strings (i.e., string). To combat the lack of support
for complex data types, such as those needed to represent
data for spatial and temporal reasoning, we adopt a strategy
of embedding the relevant data in character strings, and then
designing builtin functions and external software that can
parse the data into spatial/temporal models, and then make
the reasoning computations that are required.

C. Data-Driven Approach to Generation of Individuals in
Semantic Graphs

In the proposed framework semantic models are the com-
position of ontologies, rules and data.

397

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4 illustrates a data-driven approach to the generation
of individuals in semantic graphs.

load

AbstractOntologyModel
<< abstract >>

Model
Jena Semantic

Jena Rules Ontology XML Data File

Data Model

hosting visitor
extend

load

visit

load

Figure 4. Data-driven approach to generation of individuals in semantic
graphs.

First, data is imported into Java Object data models using
JAXB, the XML binding for Java. After the ontologies and
rules have been loaded into the Jena Semantic Model, the
semantic model creates instances of the relevant OWL on-
tologies by visiting the data model and gathering information
on the individuals within a particular domain (e.g., building,
sensor, occupant). Once the data has been transferred to the
Jena Semantic Model and used to create an ontology instance,
the rules are applied.

V. META-DOMAIN ONTOLOGIES AND RULES

Meta-domain ontologies and rules have universal appli-
cation across domains, and include concepts such as time,
space, physical units and currency. This study employs spatial
reasoning to determine the relationship of sensor and occupants
to geometric entities such as rooms and building zones.

A. Spatial Ontology and Rules

Spatial logic is concerned with regions and their connec-
tivity, allowing one to address issues of the form: what is
true, and where? Formal theories for reasoning with space –
points, lines, and regions – are covered by region connected
calculus [21]. A robust implementation of two-dimensional
spatial entities and associated reasoning procedures is provided
by the Java Topology Suite (JTS) [22].

Spatial Ontology and Rules for Spatial Reasoning. Figure
5 shows an abbreviated representation of our experimental
spatial (geometry) ontology and associated data and object
properties. High-level classes – abstract concepts – are pro-
vided for entities that represent singular geometry (e.g., Ab-
stractGeometry) and groups of entities (e.g., AbstractGeom-
etryCollection). Specific types of geometry (e.g,, Polygon,
MultiPoint) are organized into a hierarchy similar to the Java
implementation in JTS. The high-level class AbstractGeometry
contains a Datatype property, hasGeometry, which stores a
string representation of the JTS geometry. For example, the
abbreviated string “POLYGON ((0 0, 0 5, ... 0 0))” shows
the format for pairs of (x,y) coordinates defining a two-
dimensional polygon. This feature allows a semantic model to

visit a domain data model, and gather a complete description
of the two-dimensional geometry.

Within Jena Rules, families of builtin functions can be
developed to evaluate the geometric relationship between pairs
of spatial entities (e.g., to determine whether or not a point is
contained within a polygon). Figure 6 shows, for example,
the Jena Rule that identifies the room in which a sensor is
placed. An English translation of the rule fragments is as
follows: If (?r) is a room with geometry (?rg) and string
representation (?rjts), and (?s) is a sensor with geometry
(?sg) and string representation (?sjts), then the builtin function
getPointInPolygon(?sjts,?rjts,?t) will determine if the sensor
(point geometry) is inside the room (polygon geometry) and
return the result as a boolean (?t). If (?t) is true, then the sensor
is inside the room and a new relationship (?s bld:isInRoom
?r) is created. A similar rule would be written to establish the
relationship between sensors and HVAC zones.

VI. DOMAIN ONTOLOGIES AND RULES

The domain-specific ontologies and rules are organized
into two groups: (1) engineering ontologies and rules, and (2)
surrounding environment ontologies and rules. In Figures 7
through 13 we use red rectangles with heavy dashed edges
to highlight the classes that participate in the rule checking
and/or the case study problem presented in Section VII. For a
complete description of the ontologies used in this study we
refer the interested reader to Delgoshaei and Austin [23].

A. Engineering Ontologies and Rules

The engineering ontologies and rules cover four domains:
(1) buildings, (2) mechanical equipment, (3) sensors, and (4)
procedures for fault detection and diagnosis.

Building Ontology and Rules. The prototype building on-
tology and rules (see Figures 7 and 8) provide computational
support for the representation of two-dimensional floorplan ge-
ometry, modeling relationships between elements of floorplan
geometry and sensors, zones for HVAC control, and building
elements such as doors, windows and walls. The latter are
modeled as subclasses of a component that has geometry
described by a JTS string.

Connections to the mechanical equipment and occupancy
domains are achieved through data properties for the building
environment state; see, for example, hasRoomSetpoint and
isOccupied. Object properties record the relationship of a
room to relevant HVAC zones and sensors. Windows have
the boolean data property isOpen to record whether or not a
particular window is open. As we will soon in the case study
problem, this parameter plays a pivotal role in diagnostic anal-
ysis of the causes leading to a fault in mechanical equipment.

The prototype software implementation has one rule for
determining the spatial relationship among zones of the build-
ing. The rule systematically retrieves the JTS geometry of
each zone, verifies they are not equal, and then uses the
builtin function getPointInPolygon() to verify their geometric
relationship. As previously noted, these backend computations
are handled by the Java Topology Suite software [22].

398

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hasBoundingBox
String

hasGeometry

LineString

LineRing

Polygon Point

MultiPolygonMultiPoint

AbstractGeometryCollection

exterior

interior

contains

contains

AbstractGeometryBoundingBox

Figure 5. Abbreviated representation of spatial (geometry) ontology and associated data and object properties.

Jena Rules

// Rule to check if a sensor is inside a room ...

[BuildingRule01: (?r rdf:type bld:Room) (?r bld:hasGeometry ?rg) (?rg geom:hasGeometry ?rjts)
(?s rdf:type sen:Sensor) (?s sen:hasGeometry ?sg) (?sg geom:hasGeometry ?sjts)
getPointInPolygon(?sjts,?rjts,?t)
equal(?t, "true"ˆˆxs:boolean) -> (?s bld:isInRoom ?r)]

Figure 6. Rules to determine the rooms in which sensors have been placed.

Mechanical Equipment Ontology and Rules. Figures 9 and
10 illustrate the concepts (i.e., ontology classes), properties
(i.e., data and object properties) and rules governing the
operation and identification of faults in mechanical systems
equipment. In practice, datatype property values associated
with the various ontologies will be set from streams of
data either performed by a simulation tool (e.g. EnergyPlus,
Dymola, TRNSYS) [24]–[26], or perhaps from measurements
taken in a real building, working in conjunction with BACnet
protocols [27] and a co-simulation middleware.

The semantic graph shown in Figure 9 is quite broad,
covering concepts from chillers and fans to zones. The scope
of our investigation focuses on faults associated with valves,
coils and air handling units. Basic rules (see Figure 10) are
provides for: (1) controlling the flow in a valve, (2) determining
if a valve is leaky, and (3) identifying situations where the
normal operational status of a valve is false. Thus, we are
able to determine that when a cooling coil valve is faulty, the
associated air handling unit is also faulty.

Sensor Ontology and Rules. Figure 11 shows the classes
and properties in our experimental sensor ontology. Our goal
is to provide computational support for modeling: (1) sensor
operation, including when a sensor reading might be outside an
acceptable working range, and (2) determining the location of

a sensor relative to the environment in which it is embedded.
These objectives are achieved with three classes: Sensor,
Measurement, and the external class Geometry.

Support for modeling various types of sensor (e.g., temper-
ature sensor, flow sensor, and CO2 sensor) is provided through
the definition of specialized sensor classes that subclass Sensor.
The class Measurement has data properties to keep track of the
current sensor value, the time, and the units associated with
the measurement.

Two sensor rules (see Figures 6 and 12) are supported:
(1) To determine if a sensor reading is beyond the acceptable
range, (2) To determine the room in which the sensor is
located. The first rule uses the classes Sensor and Measurement
and associate properties. The second rule uses the classes
Sensor and Geometry.

Fault Detection and Diagnostic Ontologies, Rules, and
Procedures. The fault detection and diagnostic (FDD) ontol-
ogy (see Figure 13) captures the knowledge needed for: (1)
identifying that a fault exists, and (2) systematically diagnosing
the fault to find the root causes. The main classes in this
process are State, Fault, Hypothesis and Evidence. State is
a high-level state representation that has data values – see, for
example, the boolean properties hasExpectedValue and has-
CurrentValu – common to many types of state representation.

399

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Zone

Sensor

Window

Geometry

Room

Figure 7. Schematic of building ontology classes and properties.

Jena Rules

// Rule to check if two zones intersect ...

[BuildingRule02: (?r1 rdf:type bld:Zone) (?r1 bld:hasGeometry ?r1g) (?r1g geom:hasGeometry ?r1jts)
(?r2 rdf:type bld:Zone) (?r2 bld:hasGeometry ?r2g) (?r2g geom:hasGeometry ?r2jts)
notEqual(?r1jts, ?r2jts) getPointInPolygon(?r1jts, ?r2jts, ?t)
equal(?t, "true"ˆˆxs:boolean) -> (?r1 bld:intersects ?r2)]

Figure 8. Rule for Zone Intersect.

400

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Coil

Valve

Air Handling Unit

Figure 9. Schematic of equipment ontology classes and properties.

Jena Rules

// Close the valve when the coil temperature is the same as coil setpoint.

[EquipmentRule01: (?coil rdf:type eq:Coil) (?coil eq:hasCoilSetpoint ?sp)
(?coil eq:hasCoilTemperature ?cp) equal(?sp,?cp) (?coil eq:hasValve ?valve) ->
(?valve eq:isShutOff "true"ˆˆxs:boolean) print(’valve is shut’)]

// If the valve is shut, the temperature of the air that passes through the coil
// has to be the same. Otherwise, the valve is leaky

[EquipmentRule02: (?hwv rdf:type eq:Valve) (?hwv eq:isShutOff "true"ˆˆxs:boolean)
(?c rdf:type eq:Coil)(?c eq:hasValve ?hwv) (?c eq:Tad ?t1)
(?c eq:Tas ?t2) notEqual(?t2 ?t1) -> (?hwv eq:isLeaky "true"ˆˆxs:boolean)
(?hwv eq:hasNormalOperationalStatus "false"ˆˆxs:boolean) print(’valve is Leaky’)]

// If the a valve fails, the AHU fails too ...

[EquipmentRule03: (?hwv rdf:type eq:Valve) (?AHU eq:hasCoil ?c) (?c eq:hasValve ?v)
(?v eq:hasNormalOperationalStatus "false"ˆˆxs:boolean) ->
print(’AHUMalfunction’) (?AHU eq:hasNormalOperationalStatus "false"ˆˆxs:boolean)]

Figure 10. Rules for establishing the operational status and simple operations of mechanical equipment.

401

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Geometry

SensorTemperature Sensor

Measurement

Figure 11. Sensor ontology classes and properties.

Jena Rules

// Simple rule to check if a sensor is broken ...

[SensorRule01: (?s rdf:type sen:Sensor) (?s sen:hasMeasurement ?m) (?m sen:hasValue ?r)
isOutOfRange(?m ?t) -> (?s sen:isBroken ?t)]

Figure 12. Rule for Zone Intersect.

402

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

State
Dynamic Thermal Sensation State

Evidence

Hypothesis

Fault

Figure 13. Fault detection and diagnostic ontology classes and properties.

Jena Rules

// General purpose rule for recording when a fault has occurred.

[FDDRule01: (?st rdf:type fdd:State) (?st fdd:hasCurrentValue ?csv)
(?st fdd:belongsToFault ?F) (?st fdd:hasExpectedValue ?esv)
notEqual(?csc,?esv) -> (?F fdd:hasOccured ’’true’’) print(’faultoccured’)]

Figure 14. Rule for detecting a faulty state.

403

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Jena Rules

// Determine romm in which an occupant is located.

[OccupantRule01: (?r rdf:type bld:Room) (?o rdf:type occ:Occupant)
(?o occ:hasOccupantGeometry ?og) (?og geom:hasGeometry ?ojts)
(?r bld:hasGeometry ?rg) (?rg geom:hasGeometry ?rjts)
getPointInPolygon(?ojts,?rjts,?t) equal(?t, "true"ˆˆxs:boolean) ->
(?r bld:hasOccupant ?o) print(?o,’OccupantisInRoom’,?r,?t)]

// When positive values of DTSIndex are greater than 0.3, an occupant is not comfortable.

[OccupantRule02: (?oc rdf:type occ:Occupant) (?oc occ:hasDTSIndex ?v) greaterThan(?v,0.3)
(?oc occ:hasDTSState ?dts) -> print(?oc,’isComfortable’ "false"ˆˆxs:boolean)
(?oc occ:isComfortable "false"ˆˆxs:boolean)
(?dts fdd:hasCurrentValue "false"ˆˆxs:boolean)]

Figure 16. Rule for occupants location and thermal comfort.

ID

Evidence

Hypothesis

isValidID

T/F

ID
hasHypothesisID

Fault

hasIDID

State

currentValue

T/F
expectedValue

isViolated

hasEvidenceID

isVerified

indicates

has

supportedBy

T/F

T/F

T/F

hasStateName

Figure 15. Flow chart for identification of faults and identification and
verification of hypotheses and supporting evidence.

Our experimental FDD ontology also supports DTSState, a
subclass of State, designed to represent states associated with
dynamic thermal sensation (DTS).

Figure 15 is a flowchart for fault detection and the identi-
fication and verification of relevant hypotheses and supporting
evidence. The step-by-step procedure for detecting a fault
and diagnosing its causes corresponds to a traversal through
the classes State, Fault, Hypothesis and Evidence. A fault is
indicated when the current and expected values of a state

are in conflict. Each fault has a hypothesis that needs to
be supported by evidence. The evaluation procedure works
backwards. Verification of the evidence is a prerequisite to
validating a hypothesis. In an implementation of the procedure,
data properties indicate whether or not a fault has been verified,
whether or not an hypothesis has been verified, and whether
or not supporting evidence is valid. This procedure is mirrored
by set of rules shown in Figure 14.

B. Surrounding Environment Ontologies and Rules

The surrounding environment ontologies and rules include
model support for the building occupants and weather phe-
nomena.

Occupant Ontology and Rules. While several studies [28],
[29] have recently identified the importance of including
inhabitants as an integral part of simulation and control of
energy systems and indoor environments, present-day pro-
cedures rely on predetermined occupancy schedules and/or
empirical estimates based on sensors. For fault detection and
diagnostic analysis of mechanical equipment in buildings,
solutions are complicated by the strong coupling of human
presence, comfort and behavior, to details of the building
state (e.g., whether or not a window is open) and surrounding
environment (e.g., what side of the building is in the sun).

Figure 16 takes a first step toward the development of
rules for modeling and evaluation of occupant location and
thermal comfort. The occupant ontology (see reference [23]
for details) expands upon the work of Mahdavi and Taheri
[30], and considers four subcategory problems: (1) location, (2)
actions (e.g., open/close window), (3) attitudes (e.g., thermal
sensation) and (4) preferences in terms of temperature and
moisture of the air. Occupant location is modeled as point
geometry in the building.

Weather Ontology and Rules. Based upon the work of
Staroch [31], the weather ontology and rules cover concepts
such as Weather Phenomenon, Weather Report, and Weather
State. The weather state is composed of different Weather
phenomenon class holds the physical attributes regarding the
weather such as the temperature, pressure, solar radiation, wind

404

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sensor 002Sensor 001

Sensor 003

Occupant 1 Occupant 2

Occupant 3

Room 1 Room 2

Figure 17. Plan view of two-room building architecture, sensors, and building occupants.

and cloud. Weather data is obtained from current Weather
[32], a free and open source API (application programming
interface) that provides access to historical as well as current
and future forecast weather data from an online server. A
Weather report can include data about the current weather
or a forecast, specified in terms of start time and duration.
For example, a medium range weather report has duration
of more than 3 hours, with a start time of less than 12
hours into the future. Weather rules use current temperature
values to identify a frosty and heat temperature conditions. For
example, a Frost temperature condition occurs when observed
temperature is below 0 C. A Heat temperature condition occurs
when observed temperature is above 30 C. Similar intervals
of temperature range can be defined for cold, below room
temperature (at least 10 C and less than 20 C), and so forth.

VII. CASE STUDY PROBLEM

To examine capabilities of the framework for knowledge-
based fault detection and diagnostic analysis, this section
presents a case study test problem where faults in HVAC
equipment are triggered by occupant discomfort in a condi-
tioned space. The case study shows how heterogeneous data
and knowledge from a variety of sources and domains can be
integrated into a single semantic graph, how ontologies and
rules can work together to detect the existence of a fault,
and then diagnose the causes by systematically considering
hypotheses and the supporting evidence.

A. Problem Description

Figure 17 is a plan view of the case study problem setup,
consisting a small two-room building architecture, three sen-
sors and three building occupants. Not shown is the mechanical
equipment responsible for conditioning the room temperature
and achieving acceptable levels of occupant comfort. The
mechanical equipment consists of an air handling unit (AHU).
The AHU has a coil (i.e., for heating and cooling). The water
temperature that flows to the coil is managed by a valve.

Three rules are responsible for the operation and classifi-
cation of faults in the mechanical equipment:

• Close the valve when the coil temperature is the same
as coil setpoint.

• If the valve is shut, the temperature of the air that
passes through the coil has to be the same. Otherwise,
the valve is leaky

• If the a valve fails, the AHU fails too.

One measure to evaluate thermal comfort for the occupants
is through computing the thermal sensation as a function of
environmental factors such as outdoor and indoor temperature
and some personal factors such as clothing levels. A dynamic
model to compute thermal sensation (DTS) index to was
introduced by Chen and co-workers [33]. According to thermal
sensation scale suggested by ASHRAE [34], an acceptable
range for occupancy comfort is the interval [−0.3, 0.3]. By
comparing the current and expected values in a DTS state, the
rules in Figure 14 will infer the existence of a faulty state, and
then systematically examine the evidence associated with each
hypothesis to find a root cause.

B. Snapshot of Semantic Graph Model Assembly

Figure 18 shows a snapshot of the building, equipment,
sensor, weather, and FDD ontologies integrated together, and
populated with system data. The semantic graph model con-
tains instances of ontologies (individuals), relationships among
individuals (often spanning domains), and data values associ-
ated with various individuals.

From a fault detection and diagnostics standpoint, the main
points to note are as follows:

• Occupant 1 is located in Room 1.
• Room 1 has window, a temperature sensor (Sensor

001), and a carbon dioxide sensor (Sensor 002). HVAC
services are provided to Room 1 by air handling unit

405

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DTSState 1

T

Temperature Air Supply
Temperature Air Discharge

Tas
Tad

Inferred Relation
Explicit Relation
Notation:

AHU 001

CO2
Sesnor 002

Valve 001

Room 1

isComfortable

outdoortemperature

Hypothesis 1

Hypothesis 2

Hypothesis 3

Evidence 1

Evidence 2

Evidence 3

Evidence 4
indicates has

currentValue expectedValue
hasState

Occupant 1

Coil 001

Temperature
Sesnor 001

TCFault 1

T

Temperature Window

Coil Temperature

Coil SetpointTad

Tas

hashas

isLeaky shutOff

reading

reading

62

57

57

T T

isBroken

hasOccupant

F T

statusDTSIndex

has

30

4

F

Op

isOpen

F

F

F 150F

value

F

24

T

F

F

T

servesnormal operation

isInRoom

setpoint

44

44

isBroken

isInRoom

F

Sensor Domain ModelWeather Domain Model Building Domain Model

Fault Detected

Domain Model

Occupant
Domain Model

Equipment

FDD Domain
Model

Figure 18. Snapshot of fully assembled semantic graph model. The data values will be computed and filled by the rules.

TABLE I. Instances of states, hypotheses, and evidence for identifying the cause for abnormal occupant thermal comfort value.

Class Individual Description
State DTSState 1 The DTS index in between [−0.3, 0.3].
Fault TCFault 1 The DTS index lies outside the interval [−0.3, 0.3] when the air-handling unit is operating.

Evidence

Evidence 1 The CO2 sensor reading is above the normal range the and that shows the window is open.
Evidence 2 The outdoor temperature is greater than room setpoint.
Evidence 3 A sensor’s reading is outside the range that indicates the sensor is broken.
Evidence 4 A component is AHU is malfunctioning that results in an abnormal operation of AHU.

Hypothesis
Hypothesis 1 Warm outside air is leaking into the room through an open window –> Supported by Evidence 1 and Evidence 2.
Hypothesis 2 The serving air-handling unit has abnormal operation. –> Supported by Evidence 3.
Hypothesis 3 The room sensor that provides feed-back to AHU reaching its target setpoint is broken –> Supported by Evidence 4.

406

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Jena Rules

// Evidence Rule 01: A window is open base on C02 concentration in the room.
// ---

[EvidenceRule01: (?cs rdf:type sen:CO2Sensor) (?cs bld:isInRoom ?room)
(?r bld:hasWindow ?w)(?cs bld:hasReading ?m) lessThan(?m,600)
greaterThan(?m,400) (?e fdd:hasEvidenceID ?n) equal("1"ˆˆxs:integer,?n) ->
(?w building:isOpen "true"ˆˆxs:boolean) (?e fdd:isTrue "true"ˆˆxs:boolean)]

// Evidence Rule 02: Outside temperature is warmer than the setpoint.
// ---

[EvidenceRule02: (?r rdf:type bld:Room) (?r bld:hasSetpoint ?sp)
(?t rdf:type we:Temperature) (?t we:hasTemperatureValue ?tv)
greaterThan(?tv,?sp) equal("2"ˆˆxs:integer,?n) (?e rdf:type fdd:Evidence)
(?e fdd:hasEvidenceID ?n) -> (?e fdd:isTrue "true"ˆˆxs:boolean)]

// Evidence Rule 03: Temperature sensor in a room is broken.
// ---

[EvidenceRule03: (?ts rdf:type sen:TemperatureSensor) (?ts bld:isInRoom ?room)
(?ts bld:isBroken ?t) equal(?t, "true"ˆˆxs:boolean) equal("3"ˆˆxs:integer,?n)
(?e rdf:type fdd:Evidence)
(?e fdd:hasEvidenceID ?n ->(?e fdd:isTrue "true"ˆˆxs:boolean)]

// Evidence Rule 04: Malfunction is in the Air Handling Unit.
// ---

[EvidenceRule04: (?AHU rdf:type eq:AHU) (?v eq:hasNormalOperationalStatus "false"ˆˆxs:boolean)
equal(?t, "true"ˆˆxs:boolean) equal("4"ˆˆxs:integer,?n)
(?e rdf:type fdd:Evidence)-> (?e fdd:isTrue "true"ˆˆxs:boolean)]

// FDD Rule 02: Indicate when thermal comfort in a conditioned room has expected value.
// --

[FDDRule02: (?AHU rdf:type eq:AHU)(?AHU eq:servesRoom ?r)(?r bld:hasOccupant ?oc)
(?oc occ:hasDTSState ?dts) (?AHU eq:status ?s)
equal(?s "Operating") -> print(’Expected DTS’,?oc)(?dts fdd:hasExpectedValue "true"ˆˆxs:boolean)]

Figure 19. Fault detection diagnostic rules for operation of a heating coil and for checking evidence 3 and evidence 4.

AHU 001. AHU 001 has a coil (Coil 001); Coil 001
has a valve (Valve 001).

• The datatype property for AHU001 “normal Opera-
tion” is set to false. This setting is based on the system
data and the result of equipment rules 01 through 03
being triggered.

• The setpoint temperature for Room 1 is 24 C, but the
current temperature reading for Sensor 001 is 57 C.

• OccupantRule02 sets the ”isComfortable” datatype
property for Occupant1 to “false” as the result of a
DTSindex value of 4.

• Occupant 1 has dynamic thermal sensation (DTS) state
DTSState 1. DTSState 1 indicates a thermal comfort
fault (TCFault1), which will be diagnosed by looking
at three hypotheses and their supporting evidence.

• The relationship between Hypotheses 1 through 3 and
supporting evidence is shown along the bottom of
Figure 18. Users may query the semantic graph to find
the correct hypotheses and valid supporting evidence.

C. Test Problem Scenario and Hypothesis Evaluation Proce-
dure

The test problem scenario assumes that the numerical value
of occupant thermal comfort in a conditioned room has fallen
outside the acceptable range. This is detected by FDD Rule 01.
With this scenario in place, any one of three hypotheses could
potentially be true. To correctly identify the correct hypothesis,
the system requires to reason among the facts and identify the
evidence existing in different domains,

• The outdoor temperature is higher than the setpoint
(weather) and the window in the room is open (build-
ing, sensor, weather).

• The air-handling unit is malfunctioning (mechanical
equipment),

• The room sensor providing feed-back to the air-
handling unit to reach its target setpoint is broken
(sensor).

As a result, this task will require comprehensive reasoning over
multiple domains and identifying the supporting evidence to
the most probable hypothesis. To achieve this, we used the

407

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

proposed framework and implemented ontologies for weather,
building, occupant, sensor and equipment domains. The on-
tologies are populated with data. However, in general this data
will be obtained from simulations or real buildings.

D. Synthesis of Multi-domain Rules

Table I describes the instances for key concepts of FDD
ontology as they apply to the test case problem, and explains
details of the individuals for FDD ontology. For the case
study problem, the chain of dependency relationships between
hypotheses and supporting evidence is as follows:

• Hypothesis 1 is that warm outside air is leaking into
the room through an open window. Evaluation of this
hypothesis is supported by execution of two evidence
rules, EvidenceRul01 and EvidenceRule02.

• Hypothesis 2 is that the serving air-handling unit has
abnormal operation. Evaluation of this hypothesis is
supported execution of EvidenceRule03.

• Hypothesis 3 states that the room sensor that provides
feedback to AHU reaching its target setpoint is broken.
Supporting evidence is provided by the execution of
EvidenceRule04.

Figure 19 presents the fault detection diagnostic rules for:
(1) Operation of a heating coil, (2) Checking evidence 3 and
evidence 4, and (3) Detecting when the thermal comfort in a
conditioned room matches its expected value.

E. Multi-domain Rule Evaluation

Figure 20 shows a snapshot of multi-domain evaluation and
forward chaining of rules. From an evaluation standpoint, the
eight rules can be clustered into two pathways, the first focus-
ing on fault detection and the second focusing on diagnostic
investigation of probable causes, represented as hypotheses and
supporting evidence.

Fault Detection: The first pathway identifies the existence of
a fault and is covered by rules 1 through 4:

• Rule 01: Use OccupantRule01 (see Figure 16) to
determine when an occupant is located in a room.

• Rule 02: Use FDDRule02 (see Figure 19) to determine
the expected comfort of an occupant.

• Rule 03: Use OccupantRule02 (see Figure 16) to
determine the current comfort of an occupant.

• Rule 04: Use OccupantRule02 (see Figure 16) to
compute when a fault has occurred.

determine in which room an occupant is located and whether
or not the current value of occupant comfort matches the
expected value of comfort. In the snapshot, activation of Rule
01 determines that: Occupant1 is located in Room1. A separate
execution would also determine that Occupant2 is also located
in Room1. Activation of Rule 02 is based upon the output of
Rule 01, state data from the building domain, the relationship
of the air handling unit to Room1. In the snapshot trace, the
output of Rule 02 states that DTSState for Occupant1 is true

and that Occupant1 has a DTSIndex of 4. A fault occurs when
there is a discrepancy between the current and expected values
of comfort (see F7 and F9), as indicated by the values of
current and expected values of DTSState.

Fault Diagnostics: By systematically examining hypotheses
and supporting evidence, the second pathway diagnoses the
causes of a fault. For the scenario outlined in Figure 20, this
procedure is covered by rules 5 through 8:

• Rule 05: Use EquipmentRule01 (see Figure 10) to
determine if a valve is shut.

• Rule 06: Use EquipmentRule02 (see Figure 10) to
determine if the coil has failed.

• Rule 07: Use EquipmentRule03 (see Figure 10) to
determine whether or not the air handling unit has
failed.

• Rule 08: If EvidenceRule04 (see Figure 19) evaluates
to true then Hypothesis 3 is true.

The rule for determining whether or not the valve is shut
takes input values from the Coil001 CoilSetpoint (44) and
CoilTemperature (44) (see F12 and F13), and checks to verify
that the coil has a valve. In our scenario, the rule output
(F14) is true, indicating that Valve001 is shut, and hence in
Rule 06 normal operation evaluates to false. A simple check
to verify that the coil belongs to air handling unit AHU001
generates the conclusion that normal operation of the AHU is
false (see F19). Finally, input from the room occupancy test
and a test to verify that AHU001 is connected to Room1, leads
to the conclusion Evidence 4 is supported and Hypothesis 3 is
valid. Finally, we note that except for the room occupancy
information feeding into Rule 08, the fault detection and
diagnosis pathways operate independently.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed in this paper a knowledge-based frame-
work for fault detection and diagnostics. The underlying
process closely mimics the “thinking process” that humans
follow in identifying and diagnosing the causes of a fault.
Thus, the steps of gathering data for the participating domains,
populating ontologies with individuals, and using rules to
detect and diagnose faults and their causes is easy for humans
to understand and generally applicable to other domains (e.g.,
building energy, automotive, health care) for FDD purposes.
Capabilities of the prototype implementation has been demon-
strated by working step by step through the procedure of
detecting and diagnosing the source of faults in an HVAC
system.

Key advantages of this approach include: (1) it is decoupled
from the system simulation, (2) it is comprehensive, and (3)
it is scalable. In fact, the process for expanding an application
to include new domains as they come along is very straight
forward. The inference-based rules are guaranteed to check at
anytime a changed occurred in a an ontology resulting in event-
driven fault detection and diagnostic. Finally, inference-based
rules provide mechanisms in capturing chain effects that exists
in the nature of system failure – for example, if a valve is not

408

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F20 = Evidence1 isValid true

F2 = Occupant hasGeometry
F3 = Room1 has Occupant1
F4 = AHU001 serves Room1
F5 = AHU001 status operating
F6 = Occupant1 hasState DTSState
F7 = DTSState expectedValue true

F8 = Occpant1 hasDTSIndex 4
F9 = DTSState currentValue false
F10 = DTSState indicates DTSFault
F11 = Coil001 CoilSetpoint 44

F13 = Coil001 hasValve Valve001
F12 = Coil001 CoilTemperature 44

F14 = Valve001 isShut true

F16 = Coil001 Tad 57
F17 = Valve001 isShut normalOperation false
F18 = AHU001 hasCoil Coil001
F19 = AHU001 normalOperation false

Equipment
Domain

FDD
Domain

F6

F3

F1

F5

F8

F11 F12

F14 F13

F15

F16

F20

F4

Domain
Building

Domain
Occupant

F9

F7

F10

Legend:

F4

Rule 05: Valve is shut.

F19

F17

F18

Rule 06: Coil failed.

Rule 08: Evidence 4 is true and, hence, Hypothesis 3 is valid.

Rule 07: AHU failed.

Rule 04: A fault has occurred.

Rule 03: Occupant current comfort.

Rule 02: Occupant expected comfort.

Rule 01: Occupant location.

F2

F15 = Coil001 Tas 62F1 = Room hasGeometry

AND

AND

AND

AND

AND

AND

AND

AND

Figure 20. Snapshot of multi-domain evaluation and forward chaining of rules.

operational, the evidence that AHU is not operating properly
also holds true.

In our prototype implementation, the small two-room build-
ing model extracted data from a custom “system data model”
currently under development. We expect that a more mature
version of this ontology would extract semantic information
from instances of building information models (BIM) such as
the Industry Foundation Class (IFC). Future work will also
include deployment in real building systems. We anticipate
that the proposed methodology will be integrated into building
automation systems (BAS) and support investigations where
analytic built-in functions are implemented in the condition
part of inference-based rules. These functions will perform
time-history analyses to identify a faulty state for the system.
We anticipate a trend where formal approaches to analysis are

used to irregularities in building performance, which are indi-
cators of possible system faults. Moreover, we will investigate
strategies for taking control actions based on recognized faults
of the system.

IX. ACKNOWLEDGMENT

The first author was supported by a fellowship award
from the NIST Graduate Student Measurement Science and
Engineering (GMSE) Program.

REFERENCES

[1] P. Delgoshaei, M.A. Austin, and D. Veronica, “Semantic Models and
Rule-based Reasoning for Fault Detection and Diagnostics: Applica-
tions in Heating, Ventilating and Air Conditioning Systems,” The Twelth

409

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Conference on Systems (ICONS 2017), April 23-27 2017,
pp. 48–53.

[2] P. Delgoshaei, M. A. Austin and A. Pertzborn, “A Semantic Framework
for Modeling and Simulation of Cyber-Physical Systems,” International
Journal On Advances in Systems and Measurements, vol. 7, no. 3-4,
December 2014, pp. 223–238.

[3] M.A. Austin, P. Delgoshaei and A. Nguyen, “Distributed System
Behavior Modeling with Ontologies, Rules, and Message Passing Mech-
anisms,” Procedia Computer Science, vol. 44, 2015, pp. 373 – 382, 2015
Conference on Systems Engineering Research. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915002951

[4] S. Katipamula and M. R. Brambley, “Review Article: Methods for Fault
Detection, Diagnostics, and Prognostics for Building SystemsA Review,
Part I,” HVAC&R Research, vol. 11, no. 1, 2005, pp. 3–25.

[5] J. A. Siegel and C. P. Wray, “An Evaluation of Superheat-based Refrig-
erant Charge Diagnostics for Residential Cooling Systems/Discussions,”
ASHRAE Transactions 108(1), 2002, p. 965.

[6] W. Kim and J. E. Braun, “Impacts of refrigerant charge on air condi-
tioner and heat pump performance,” in Impacts of Refrigerant Charge
on Air Conditioner and Heat Pump Performance, July 10–15 2010, pp.
2433–2441.

[7] M. Wiggins and J. Brodrick, “Emerging Technologies: HVAC Fault
Detection,” ASHRAE Journal, April 2012, pp. 78–80.

[8] OWL:, “Web Ontology Language Overview, W3C Recommendation
from February, 2004. For details, see http://www.w3.org/TR/owl-
features/ (Accessed, April 2017).”

[9] Apache Jena, “An Open Source Java Framework for build-
ing Semantic Web and Linked Data Applications, Accessible at
https://jena.apache.org (Accessed on 12/12/16),” 2016.

[10] W. T. Scherer and C. C. White, A Survey of Expert Systems for
Equipment Maintenance and Diagnostics. Boston, MA: Springer US,
1989, pp. 285–300.

[11] T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web,”
Scientific American, May 2001, pp. 35–43.

[12] T. Q. Dung and W. Kameyama, Ontology-based Information Extraction
and Information Retrieval in Health Care Domain, ser. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2007, vol. 4654
LNCS, pp. 323–333.

[13] C. Taswell, “DOORS to the Semantic Web and Grid with a PORTAL
for Biomedical Computing,” IEEE Trans Inf Technol Biomed, vol. 12,
no. 2, 2008, pp. 191–204.

[14] P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull,
C. Goble, and L. Stein, Applying Semantic Web Services to Bioin-
formatics: Experiences Gained, Lessons Learnt. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 350–364.

[15] D. Corsar, D. Milan, P. Edwards, and J. D. Nelson, The Transport
Disruption Ontology. Lecture Notes in Computer Science, vol 9367,
Springer, 2015, pp. 329–336.

[16] M. Batic, N. Tomasevic and S. Vranes, “Ontology-based Fault Detection
and Diagnosis System Querying and Reasoning Examples,” in ICK-
DDM 2015 : 17th International Conference on Knowledge Discovery
and Data Mining, vol. 2, no. 1. International Science Index, Industrial
and Manufacturing Engineering, 2015.

[17] S. Schumann, J. Hayes, P. Pompey and O. Verscheure, “Adaptable Fault
Identification for Smart Buildings,” in 2011 AAAI Workshop (WS-11-
07), 2011.

[18] M. Merdan, “Knowledge-based Multi-Agent Architecture Applied in
the Assembly Domain,” Ph.D. Dissertation, Vienna University of Tech-
nology, 2009.

[19] T. Bayer, D. Dvorak, S. Friedenthal, S. Jenkins, C. Lin
and S. Mandutianu, “Foundational Concepts for Building
System Models,” in SEWG MBSE Training Module 3, see
http://nen.nasa.gov/web/se/mbse/documents, California Institute of
Technology, CA, USA, 2012.

[20] D.A. Wagner, M.B. Bennett R. Karban, N. Rouquette, S. Jenkins and
M.o Ingham, “An Ontology for State Analysis: Formalizing the Map-
ping to SysML,” in Proceedings of 2012 IEEE Aerospace Conference,
Big Sky, Montana, March 2012.

[21] D.A. Randell, Z. Cui, and A.G. Cohn, “A Spatial Logic based on
Regions and Connectivity,” 1994, Division of Artificial Intelligence,
School of Computer Studies, Leeds University.

[22] Java Topology Suite (JTS). See http://www.vividsolutions.com/jts/ (Ac-
cessed August 4, 2017).

[23] P. Delgoshaei, and M.A. Austin, “Framework for Knowledge-Based
Fault Detection and Diagnostics in Multi-Domain Systems: Application
to HVAC Systems,” Institute for Systems Research, University of Mary-
land, College Park, MD 20742, USA, Tech. Rep. 2017-4, November
2017.

[24] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang,
C.O. Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, M.J. Witte and
J. Glazer, “EnergyPlus: Creating a New-Generation Building Energy
Simulation Program,” Energy and Buildings, vol. 33, no. 4, 2001, pp.
319 – 331, Special Issue: {BUILDING} SIMULATION’99.

[25] S.A. Klein, W.A. Beckman, et al., 1994, TRNSYS: A Transient Simula-
tion Program, Engineering Experiment Station Report 38-12, University
of Wisconsin, Madison.

[26] “TRNSYS: The Transient Energy System Simulation Tool. See:
http://www.trnsys.com/ (Accessed September 8, 2017).” 2017.

[27] 2004, BACnet: A Data Communication Protocol for Building Automa-
tion and Control Networks, ANSI/ASHRAE 135.

[28] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei and T. Weng,
“Occupancy-Driven Energy Management for Smart Building Automa-
tion,” in Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building (BuildSys 2010), Zurich,
Switzerland, November 3-5 2010, pp. 1–6.

[29] J. Lu, T.Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E.
Field and K. Whitehouse, “The Smart Thermostat: Using Occupancy
Sensors to Save Energy in Homes,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Zurich, Switzerland, November 3-5 2010, pp. 211–224.

[30] A. Mahdavi and M. Taheri, “An Ontology for Building Monitoring,”
Journal of Building Performance Simulation, October 2016, pp. 1–10.

[31] P. Staroch, “A Weather Ontology for Predictive Control in Smart
Homes,” 2013, M.S. Thesis in Software Engineering and Internet
Computing, Vienna University of Technology.

[32] Weather API. See https://openweathermap.org/api (Accessed September
14, 2017).

[33] X. Chen, and Q. Wang, and J. Srebric, “Occupant Feedback-based
Model Predictive Control for Thermal Comfort and Energy Optimiza-
tion: A Chamber Experimental Evaluation,” Applied Energy, vol. 164,
2016, pp. 341 – 351.

[34] 2010, ASHRAE Standard 552010 Thermal Environmental Conditions
for Human Occupancy, American Society of Heating, Refrigerating and
Air-Conditioning Engineers.

