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Abstract—Our research is concerned with the modeling and
design of cyber-physical transportation systems (CPTS), aclass
of applications where the tight integration of software with
physical processes allows for the automated management of
system functionality, superior levels of performance, andsafety
assurance. Part of the safety assurance problem is prevention
of deadly accidents at traffic intersections and, in particular,
finding ways for vehicles to traverse the dilemma zone (DZ),
an area at a traffic intersection where drivers are indecisive on
whether to stop or cross at the onset of a yellow light. State-of-
the-art approaches to the dilemma zone problem treat the cars
and stoplights separately, with the problem formulation being
expressed exclusively in either spatial or temporal terms.In
this paper, we formulate a methodology that accounts for two-
way interactions between the cars and stoplights, and propose
quantitative metrics and three-dimensional dilemma tubesas a
means for compactly describing sets of conditions for whichthe
vehicle-light system will be in an unsafe state. The proposed
metrics enable simple and actionable decision capabilities to deal
with unsafe configurations of the system. The second purpose
of this paper is to describe a pathway toward the integration
of dilemma metrics and dilemma tubes with an ontological
framework. The associated platform infrastructure supports algo-
rithmic implementations of simulation and reasoning for resolving
unsafe configurations of CPTS, such as those created by the DZ
problem.

Keywords-Dilemma Zone; Metrics; Cyber-Physical Transporta-
tion Systems; Artificial Intelligence; Safety.

I. I NTRODUCTION

This paper describes the development and simulation of
metrics for safety analysis of cyber-physical transportation
systems (CPTS). It builds upon our previous work [1] on tubes
and metrics for solving the dilemma zone problem at traffic
intersection. During the past three decades, transportation
systems have been transformed by remarkable advances in
sensing, computing, communications, and material technolo-
gies. The depth and breadth of these advances can be found in
superior levels of automobile performance and new approaches
to automobile design that are becoming increasing reliant on
sensing, electronics, and computing to achieve target levels
of functionality, performance and cost. By 2016, as much as
40% of an automobile’s value will be embedded software and
control related components [2][3]. Looking ahead, even greater
levels of automation will be needed for self-driving cars [4][5].

While consumers applaud the benefits of these advances

and the products they enable, engineers are faced with a
multitude of challenges that are hindering the system-level
development of cyber-physical transportation systems (CPTS).
These challenges include: (1) the integration of cyber-physical
systems (CPS) technologies into existing infrastructure,(2)
the realization of “zero fatality” transportation systems, and
(3) the development of formal models and credible, actionable
performance and safety metrics [6]. To this end, metrics for
system safety are needed to: (1) evaluate the operation and
control of transportation systems in a consistent and systematic
way, (2) identify, measure, and predict dynamic interactions
among system components, (3) set standards that serve as
measure of effectiveness (MoEs) and can guide model-based
systems engineering (MBSE) efforts. And yet, despite these
advances, accidents at traffic intersections claim around 2,000
lives annually within the US alone [7]. A key component of
this safety problem is the dilemma zone (DZ), which is an
area at a traffic intersection where drivers are indecisive on
whether to stop or cross at the onset of a yellow light.

In this project, we consider the interplay among the key
elements of transportation systems at traffic intersections, and
the consequences of their interactions on overall traffic system
level safety. This paper focuses on one aspect of the dilemma
zone problem, namely, development of metrics to capture the
essence of these interactions, and support the characterization
of the problem and its representation using three-dimensional
dilemma tubes. Section II is a review of existing approachesto
the dilemma zone problem and their limitations with regard to
the current trend toward CPTS. Section III introduces the new
dilemma zone metrics and their tubular representation. Sec-
tions IV and V describe the system architecture and simulation
prototype, respectively. Metrics for the assessment of safety
analysis are introduced in Section VI. The paper concludes
with discussion, conclusions and future work.

II. D ILEMMA ZONE PROBLEM AND CYBER-PHYSICALITY
OF TRAFFIC SYSTEMS

Dilemma Zone: Definition and Existing Solution Ap-
proaches. Also called the twilight zone, Amber signal or
decision zone, the dilemma zone is the area at a traffic
intersection where drivers are indecisive on whether to stop
or cross at the onset of a yellow light. Research [8] indicates
that under such circumstances only 90% of drivers will “play
it safe” and decide to stop. Consequently, the behavior of users



Figure 1. Schematic of spatial and temporal concerns in the dilemma zone problem. Traffic lights have discrete state behavior versus time. Here, C is the total
cycle time for the lights. VariablesdGL, dY L anddRL represent the duration of the green, yellow, and red lights,respectively. VariablesrY L is the time

remaining for the yellow light. Vehicles have dynamic behavior that varies continuously with time. Here,θS is the time it takes the vehicle to fully stop before
the stopline,θB is the time to reach the intersection while traveling at speed Vx, andθS

′

is the time it takes the vehicle to fully stop after the stopline.

in “twilight zones” is responsible for hundreds of lives lost and
billions of dollars in damages at stop light intersections in the
United States [7].

From an analysis standpoint (see Figure 1), scholars distin-
guish two types of dilemma zone that differ by the perspective
adopted on the problem. Type I dilemma zone formulations
place the “physics of the vehicle” at the center of the problem
formulation and are concerned with the difference between
the distance from the stop line to the nearest vehicle that can
stop safely (i.e., minimum stopping distance) and the distance
from the stop line of the farthest vehicle that can cross the
intersection at the onset of the yellow light (i.e., maximum
clearing distance) [9][10]. Therefore, the physical parameters
of the situation (e.g., car speed, road and car conditions, and so
forth) are the key determinant of whether the car will be ableto
safely cross the intersection or stop prior to the stop line.Type
II dilemma zone formulations (see the right-hand side of Figure
1) are defined with regard to the driver’s behavior and decision-
making as the vehicle approaches the intersection and the onset
of a yellow light. The boundaries of this type of DZ are also

sometimes measured with a temporal tag (i.e., representingthe
duration to the stop line) added to the probabilistic estimate
[11]. In this work, we will adopt the Type I definition of the
dilemma zone.

Past research has focused on finding ways to mitigate, or
eliminate, DZs using mostly a pure traffic control engineering
view of the problem. These efforts have resulted in signal
timing adjustment solutions that ignore or cannot properly
account for the physics of vehicles or driver’s behaviors
[12][13][14]. In order to deal with uncertainties, other scholars
have used stochastic approaches such as fuzzy set [9] and
Markov chains [10]. For all of these traditional techniques,
the baseline of the solution can be either reduced (explicitly
or not) to a space- or temporal-based dilemma zone, but not
both.

Autonomous Cars and Intelligent Traffic Control Systems.
Recent work [15][16] illustrates the switch of researchers’
interest toward investigating solutions to the DZ problem



Figure 2. Framework for decision-making. Left: decision-making in the physical space. Right: decision-making in the dimensionless space.

that incorporate both the car physics and light timing, while
also providing a pathway forward for vehicle-to-infrastructure
(V2I) interactions and integration. These solutions will soon
become a reality, in part, because of an increased use of
artificial intelligence in automating the command and operation
of both cars and traffic signals. For automobiles, many aspects
of autonomy – from braking to cruise control and driving
functions – are in advanced stages of experimentation. Finding
ways to put smartness into vehicles has contributed to reduced
fatalities on highways mostly in the developed world. The en-
hancement of traffic signal controls with artificial intelligence
is an idea whose time has arrived – indeed, we now have the
capability to determine the position, speed and direction of
vehicles, and adjust light cycling times in a coordinated way
to make the intersection crossing more efficient. Researchers
have been developing and testing various technologies with
mixed results [17][18][19]. As a case in point, a pilot study
conducted by Carnegie Mellon University, reports a 40%
reduction of intersection waiting times, an estimated 26%
decrease in travel time, and a projected 21% decrease of
CO2 emissions [19]. Tapping into the full potential of these
intelligence capabilities is hindered by practical constraints that
include: (1) most vehicles cannot currently communicate with
traffic light controllers, and (2) autonomous vehicles still strug-
gle in operating safely in adverse weather conditions (heavy
rain, snow covered roads, etc.) and changing environment
(temporary traffic signals, potholes, human behaviors, etc.). In
this paper, we assume that these problems will be resolved by
ongoing research activities.

Toward Cyber-Physical Traffic Management Systems. Real-
time situational awareness (e.g., traffic, location, speed) and
decision, combined with vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications and control are valid
and effective pathways for a solution to both congestion and

safety at intersections. As such, we fully adopt a CPS view of
the traffic system with regard to the DZ problem. The value of
this perspective has already been demonstrated by Petnga and
Austin [20]. Autonomous vehicles (i.e., the physical system)
interact with the light (i.e., the cyber system) with the objec-
tive of maximizing traffic throughput, while ensuring vehicle
crossings are safe at the intersection. Enhanced performance
and safety at the intersection have been proven possible, thanks
to the critical role of temporal semantics in improving system
level decision-making. Also, when bi-directional connections
between the vehicle and light are possible, new relationships
can be established to characterize their tight coupling – this, in
turn, enables the various computers in the CPTS to exchange
information, reason, and make informed decisions. These
capabilities become safety-critical for situations – hopefully,
rare situations – where behavior/physics of a vehicle is such
that they can neither stop, nor proceed, without entering
and occupying the intersection while the traffic light is red.
Therefore, the development of metrics for the DZ problem
will greatly benefit from and enrich the CPTS perspective.

III. M ETRICS FORCHARACTERIZING THE DILEMMA
ZONE PROBLEM

Safety Requirements to Decision Trees and Dilemma Met-
rics. The core safety requirement for the car-light system that
must prevail at all times is as follows: “No vehicle is allowed
to cross the intersection when the light is red.” This is a hard
constraint whose violation is the driving force behind accidents
at intersections.

Understanding the mechanisms by which system-level
safety is achieved or violated is critical to addressing theDZ
challenge. This task is complicated by the need to work with
mixtures of continuous (vehicle) and discrete (traffic light)
behavior as illustrated in Figure 1 (a) and (b). We propose
that decision trees are a suitable framework for representing



the multitude of decision-making pathways. Some of these
pathways will correspond to behaviors that are safe. Others
will be unsafe and need to be avoided. The tree shown on
the left-hand side of Figure 2 shows the decision tree of
the autonomous car - in the physical space - when it knows
the traffic lights critical parameters at the time the decision
is made. Petnga and Austin [20][21] have shown that the
probability of the car making the right decision is higher when
it knows before hands the following: (1) DurationΘY of the
yellow light before it turns red; (2) Vehicle stopping distance
XS, and (3) Travel duration,ΘB, or distance, XB, to the traffic
light.

Moving forward requires a deep understanding of the in-
terrelationships between cross-cutting system parameters from
the various domains (car, light, time, space) involved at meta
level. Also, the ability of the system to efficiently reason
about unsafe situations and propose a satisfactory way out is
critical. We argue that this complexity can be kept in check
by casting the problem in dimensionless terms and setting up
a transformation,

∆ = Π(Θ, X), (1)

of the initial decision tree from the physical space to a
dimensionless space. Expressing the system decision tree in
dimensionless space as a result of the transformationΠ neces-
sitates the definition of intermediary variables and parameters.

We begin by noting that the car will not always catch
the onset of the yellow light; thus, what is really relevant for
efficient decision-making here is the time left before the stop
light turns red. Using the remaining duration of the yellow
light rY L, its full durationdY L and the ones of the green and
red lights iedGL and dRL, we define the duration of a stop
light cycleC, reduced cycleCY L and cycle indexk as follows:

C = dY L + dRL + dGL (2)
CY L = rY L + dRL + dGL (3)

k =
C

CY L
(4)

(5)

The short (α1) and full (α2) yellow light duration as well as
the short (β1) and full (β2) stop light indexes are defined as
follows:

α1 =
rY L

CY L
(6)

α2 =
dY L

CY L
(7)

β1 =
rY L + dRL

CY L
(8)

β2 =
dY L + dRL

CY L
. (9)

We add to the aforementioned physical variables the stopping
durationΘ

′

B of the car – should it decide to stop – and define

the car stopping distance metric∆S , the light-car crossing
time metric ∆LC and the light-car stopping time metric
∆

′

LC as follows:

∆S =
XS

XB
(10)

∆LC =
ΘB

CY L
(11)

∆
′

LC =
Θ

′

B

CY L
. (12)

All these metrics are dimensionless and serve as the key
decision points of the dimensionless decision tree shown on
the right-hand side of Figure 2.

Navigating the Decision Tree.Navigation of the decision tree
is facilitated by the equation pair:

n = E

(

∆LC − 1

k

)

(13)

n
′

= E

(

∆
′

LC − 1

k

)

(14)

We employ the integer part function E to define indexesn and
n

′

. Equations (13) and (14) simplify the definition ofα andβ
indexes when∆LC > 1 or ∆

′

LC > 1 as follows.

α2,n = k ∗ α2 + k ∗ n+ 1 (15)
β2,n = k ∗ β2 + k ∗ n+ 1 (16)

α
′

2,n = k ∗ α2 + k ∗ n
′

+ 1 (17)

β
′

2,n = k ∗ β2 + k ∗ n
′

+ 1 (18)

Along with equations (6) through (9), the values ofα andβ
(see equations (15) through (18)) are necessary and sufficient
to constrain the dimensionless metrics∆S , ∆LC and∆

′

LC and
render a complete view of all possible outcomes of the decision
tree in a dimensionless space∆. From the right-hand side of
Figure 2, we can see that there are four possible configurations
of the system for which it is unsafe.

From Dilemma Metrics to Dilemma Tubes. Each of the
decision tree pathways on the right-hand side of Figure 2
that leads to an unsafe system state can be represented as a
“dilemma tube” in the∆ space, as shown in Figure 3. For
instance, equations (6), (8), and (10) through (12) providethe
foundational elements for defining Tube I. The boundaries of
each of the four tubes (i.e., I, II, III and IV) correspond to
the above-mentioned parameters, with the maximum value of
∆S i.e., ∆Smax corresponding to the maximum value of all
the∆S values in the system. Physically, this is determined by
the physics of the family of vehicles crossing the intersection
and the configuration of the traffic intersection as capturedby
equation (10). If, at any point in time, the system is projected
to enter an unsafe state, this situation will be materialized
as a point coordinateP∆(∆S , ∆LC , ∆

′

LC ) that is located
inside a particular tube. The physical interpretation of such



Figure 3. Dilemma tubes in the dimensionless (∆) space.

phenomenon is that the autonomous car does not have a good
decision option, and will need external help to safely crossthe
intersection.

Scenarios that lead to unsafe system configurations (e.g.,
see the right-hand side of Figure 2) will follow branches
of the decision tree that terminate with an “Unsafe” system
state. While the actual behaviors might not evolve along the
pathways presented in the decision tree, the end result will
invariably be the same (i.e., the system will be projected
to enter an unsafe state). In practice, simulation and safety
calculations can be done concurrently and the location of the
resulting point coordinate relative to any of the four dilemma
tube types easily determined. A final important point to note
is that since each of the tubes is mutually exclusive, a vehicle
can only be in one of the four dilemma tubes at a time, or in
any location in the remaining part of the∆ space, i.e., a safe
region.

Knowing in which tube the unsafe state has been material-
ized is critical in determining the appropriate course of action
to prevent the occurrence of an accident.

IV. SYSTEM ARCHITECTURE

This section introduces a Java-based software system in-
frastructure that adheres to the CPTS perspective and supports
the tube framework described in Sections II and III. As illus-
trated in Figure 4, the system architecture contains workspaces
for traffic intersection simulation. The main modules of the
infrastructure are as follows:

1. Component Modeling.The component modeling module
plays a central role in the system simulation. Physical entity
models are organized into static and dynamic components, as
shown in the mid-section of Figure 4. Examples of the former
include the traffic intersection (i.e., the spatial boundary),
traffic lights, and their associated sensors. Their key attributes
are not expected to change over time such as the stoplight
durationsdY L, dRL anddGL for the yellow, red and green for
each cycle. The remaining duration of the yellow light (rY L)
is a key attribute of interest for our study that does decrease
with time. As such, the component modeling module needs
a clock to account for the elapsed time. In our formulation,
sensors play a key role in determining the location (X) and
velocity (v) of a vehicle as a function of time. WithX and
v in place, vehicle accelerations can be computed from the
underlying equations of motion. Also, the vehicle braking force
(Fb) is subject to change over time; thus, it is a variable of the
system.

2. Tube Modeling and Metrics Computation Support. DZ
tubes are modeled as software entities because they are not
physical entities. In order to properly account for the multiple
facets of tubes in this framework, and provide flexibility in
the architecture, we propose that tube models serve as a data
repository platform and bridge between the computation and
the integration modules (see the dashed boxes and connecting
arrows in Figure 4).

The interface for the data repository platform distinguishes
base tubes(not visualized) fromdilemma tubes. The former



Figure 4. Dilemma tubes simulation system architecture.

store the basic initial configuration of the stop light, and
information that will be used to create the latter (i.e., dilemma
tubes). Dilemma tubes of various types allow for the represen-
tation of unsafe system states as defined by the car stopping
distance metric∆S , the light-car crossing time metric∆LC ,
and the light-car stopping time metric∆

′

LC and specifications
in equations (4) to (18). This separation of concerns provides
modularity and flexibility to the architecture, enabling the
support for modeling of complex intersections with multiple
stop lights on multi-lanes and/or complex intersection config-
urations (T,Y,X, etc.).

The visualization system interface (not shown) connects
with the integration module, thereby allowing for flows of data
to/from the visualization display, and in accordance with the
adopted GUI technology. In our software prototype (see the top
left-hand corner of Figure 4), the display is controlled from the
integration module.

On the interface with the computation support module, a
traffic tubemodel is created as an extension of a more basic
tube model. It is the ultimate data structure of the tube as
it links predefined and computed tubes variables. The initial
traffic tube is linked to the base tube, and dilemma tubes are

created from updates of corresponding traffic tubes for various
values ofrY L. The number of dilemma tubes to be visualized
is computed by the system based on values ofn and n′ as
defined by equations (13) and (14).

The computation support module enables the correct calcu-
lation of the various metrics and variables needed to efficiently
characterize the dilemma zone using the tube framework. It
receives input data from both the component and the tube
modules, processes computation request following formulae in
equations (2) thru (18). We distinguishsystem parametersfrom
the threetube metrics∆S , ∆LC , ∆

′

LC introduced above. The
former are computed car, light or dimension parameters and
indexes that will contribute in the computation of the latter. Di-
mensionless indexes are parameters as they are, by definition,
dependent on∆LC and ∆

′

LC . Most of these parameters are
defined as attributes of the traffic tube model thus, the results
are stored as per the specification of that data structure.

3. System Integration. Reaping the benefits of the system
architecture requires bringing together its various modules and
pieces in an organized but systematic way. Thus, we need a
way to assemble system models for the purpose of the various



TABLE I. Summary of simulation parameters.

Element Variable Unit Min Max Set value Predefined parameters

Car
XB m 10 60 30 m1=1,500 kg,m2=2,800 kg,
Fb N 3000 8000 5000 m3=16,500 kg,
v m/s 5 30 10 m4=24,000 kg

Light
rY L s 0 5 2 dRL=20s
dY L s 3 17 5 dGL = 30s

analysis needs. We solve this problem with Whistle [22][23],
a tiny scripting language where physical units are deeply
embedded within the basic data types, matrices, branching and
looping constructs, and method interfaces to external object-
oriented software packages. Whistle is designed for rapid,
high-level solutions to software problems, ease of use, andflex-
ibility in gluing application components together. Currently,
computational support is added enabling Whistle to handle
input and output of model data from/to files in various formats
(XML, Open Street Map (OSM), Java, etc.). Therefore, an
input file (containing any Whistle-compliant program) is an
integral and central part of this module. It provides accessto
other system modules and needed functionality via interfaces
encoded as scripts. Also, the sequencing and timing in the exe-
cution of the commands is encoded in the program, giving the
analyst/modeler the control of the execution of the simulation.

V. SIMULATION PROTOTYPE

We describe in this section an implementation of the
framework for a scenario where the system configuration leads
to a system state inside Tube I, as shown in Figure 3. The
implementation consists of step-by-step assembly of a (typical)
dilemma zone scenario, simulation, and analysis of the results.
It is subject to three simplifying assumptions: (A1) the air
resistance is negligible, (A2) there is a two-way, delay-free
communication between the light and the autonomous car, and
(A3) computation and reaction times are negligible.

1. Step-by-Step Assembly of a Real-World Scenario.The
step-by-step details are as follows:

(i) A traffic system controller of a smart traffic system com-
putes and stores in real-time each stoplight indexes (C, CY L,
k, αi, βi, i=1,2) based on its corresponding parameters (rY L,
dGL, dY L, dRL) using equations (2) through (12).

(ii) An autonomous car approaching the intersection at speed
s is given its distanceXB to the stop line in real-time. This
information is provided either by its on-board radar coupled
with its computer or by the intersection controller. The car
itself (autonomous vehicle equipped with camera) notices the
onset (or the presence) of the yellow light.

(iii) Based on its current acceleration, speed, road conditions,
and maximum applicable braking force, the on-board computer
of the car estimates the vehicles stopping distanceXS, and
computes∆S (see equation (10)).

(iv) The computer finds that∆S > 1, meaning the car cannot
be safely immobilized before the stop line. It then determines
the normal travel timeθB to go through the intersection, i.e.,
to cover the distance XB, should it decides to go at speeds.

(v) The car requests and obtains from the traffic controller
the values ofαi, βi, i=1,2 and the length of the reduced cycle
CY L. It then computes the light-car crossing metric∆LC using
equation (11).

(vi) The on-board computer finds thatα1 < ∆LC < β1. At
this point, the only way for the car to avoid violating the safety
requirement (i.e., never cross the stop line when the light is
red) is to hope that while braking, it will cross the stop line
when the line is still yellow.

(vii) Using equation (12), the car determines the travel time
θ
′

B to cover the distance XB while stopping. Then, it computes
the light-car stopping time metric∆

′

LC .

(viii) The on-board computer finds thatα1 < ∆
′

LC < β1,
which translates as the light will be already red when the car
crosses the stop line while stopping.

Individual values of the metrics∆S , ∆LC and∆
′

LC generate
a point coordinate somewhere within the dilemma Tube I, as
pictured in Figure 3. The physical interpretation of this system
state is that the vehicle does not have a good decision option,
and will need a change of course of action or help from the
light to safely cross the intersection.

2. Simulation Setup and Coverage.The simulation setup
relies extensively on Java and its advanced graphics and media
packages JavaFX as supportive technologies to create, test,
debug, and deploy a client application. Simulation coverage
consists of four carsci, i ∈ {1, 2, 3, 4} of different size
(sedan, SUV, bus, cargo truck) and a stop light. Vehicles will
be distinguished by their weight (m). Vehicle velocity (v),
braking force (Fb) and distance to stop light line (XB) are
discrete parameters that can be selected within a predefined
range by the modeler/analyst. As for the stop light, the duration
of the red light (dRL) and green light (dGL) are treated as
constants; the duration of the yellow light (dY L) and the
corresponding remaining duration (rY L) are discrete variables
within predefined range. The range of each parameter is
generally distributed around an average value that is used
when a fixed value for a specific parameter is needed. Table I
summarizes the case vehicles and parameter values employed
in this simulation.

3. Simulation Execution and Dilemma Tubes Visualization.
Visualization of the dilemma tubes occurs through a processing
pipeline that involves the acquisition, storage, processing, flow
and restitution of data between the input file and the visual-
ization platform. For the execution of a scenario involvingone
car and one stop light, the following steps will be completed:

(1) A user creates an input file containing an execution/simula-
tion program in a Whistle-compliant format. In this application



Figure 5. Schematic of system inputs and outputs. The sub-figures are: (a) Whistle input file, (b) variables and metrics computation, (c) tubes visualization for
dYL = 100 seconds, and (d) tubes visualization for dYL = 5 seconds.

we use a text file, such as the one shown in Figure 5(a).

(2) The program instantiates a tube DataModel matched to the
needs of the simulation. This will later serve as a place holder
for the various versions of tubes as they are constructed and
displayed.

(3) The system is initialized. This is done by configuring
the stop light with predefined values todY L, dRL and dGL.
As for the car, if the engineering simulation module (e.g.,
racetrack) is hooked to the integration platform, then a cartype
is selected based upon its weight and its physical parameters
(initial velocity, trajectory and position). The corresponding
component models are interfaced with the integration module.

Computational requirements during the simulation can be
reduced through pre-computation and storage of the dilemma
tube parameters, as described in the following steps (4)-(7).
This is done for various values ofrY L and dimensionless
indexesn andn′ (see equations (13) and (14)).

(4) The number of dilemma tubesN that need to be visualized
at each iteration ofrY L is determined as follows:

N =















1 if n andn′ are undefined
n+ 2 if n ≥ 0 andn′ undefined
n′ + 2 if n undefined andn′ ≥ 0

(n+ 2)(n′ + 2) if n′ ≥ 0 andn ≥ 0

(19)

In equation (19),n is undefined when∆LC < 1 and n′ is
undefined when∆

′

LC < 1. In this configuration, the only tubes
that can be viewed are of Type I, as per Figure 3.

(5) From the input file, a method of the tube DataModel file
is called to generate a baseline empty tube as per the initial
configuration of the traffic light. This results in the creation
and storage of a new BaseTube that acts as a placeholder for
the set durations of the three lights. For simulations involving
multiple stoplights, the same method can be called repeatedly
for each set of stoplights. Each call of this method will result
in a TrafficTube model being created and instantiated.

(6) Next, a new method is called to create and update dilemma
tubes for the given input baseline tube. This leads to: (a) the
calling of the traffic tube instance, the extraction and storage



of the set value fordY L, then, (b) the creation of the dilemma
tubes via an update of the traffic tube for the decreasing values
of rY L from dY L to 0. Besides the value ofrY L, the values
of n and n′ as well as the input baseline tube are needed.
The foundational variables needed to display each dilemma
tube are computed, i.e., the tube type, dimensions on axis
and coordinates of their location in the dimensionless (delta)
space, as shown in Figure 5(b). The total number of dilemma
tubes created is determined, as per equation (19). In this case,
we haven = n′ = 0, which leads to four dilemma tubes,
Txx, Txo, Tox andToo which are of types I, II, III and IV,
respectively.

(7) The dilemma tubes are sorted and grouped byrY L. This
information will allow control of the display of tubes in a way
that is consistent with the unfolding ofrY L

(8) With the computation and storage of dilemma tubes com-
pleted, we can now make the move toward their visualization.
The first step consists of enabling Whistle access to the
visualization tube model in order to create an instance of
a JavaFX 3D chart. For those cases where the engineering
simulation module is hooked to Whistle, the racetrack and its
contents will be uploaded and displayed as per the set up in
(3). Otherwise, the simulation can be done with the system
state in the dimensionless space computed separately based
on the initial set up and targeted configurations.

(9) The 3D scene for the tube charts is created then, the
data stream system is configured and the data (flow) channel
tube between the input file and the 3D GUI is created and
initialized.

(10) The simulation of the engineering module is started.
As the car follows the path toward the intersection stop
line located atB, its positionX is sensed. The remaining
duration on the yellow lightrY L is measured from the clock.
Both quantities are sent back to the computation module for
processing. For each pair(XB, rY L), the values of∆LC , ∆S

and∆
′

LC are computed as per equations (10), (11) and (12).
As a group, these values define the state of the system in the
∆ space.

(11) The set of dilemma tubes corresponding to the value of
rY L is pulled from storage (see step 7) and “pushed” through
the channel (see step 9) to the display GUI. We can now
visualize an output similar to the ones shown in Figures 5(c)
and (d). The yellow plate is thePlan Tubefor the system in
the (∆LC , ∆

′

LC) space. It is built from the maximum values
of both parameters for the set of dilemma tubes available for
display and defines the system boundary at∆S = 1 for which
the dilemma tubes take shape.

(12) Identification mechanisms are encoded into the channel
system to single outmaterialized tube(s)– that is, tubes for
which the safety of the system has to be checked. Materialized
tubes are within the immediate vicinity of a system state
and, as such, depending on how compact the tube system
is, there could be many of them. There is always at least
one materialized tube at any moment (in black in Figure 5(c)
and (d)). When a materialized tube contains a system state, it
means that the system is unsafe. Such cases are quantified as
“active tubes.” We note here that the physical interpretation of
an active tube is not that of an actual violation of the system

safety constraint (see Section III), but that it will happenin
the immediate future, and certainly within the time left on the
yellow light (if any).

(13) Configuration of the tube system. The way the tubes
appear on the visualization GUI depends on the values of
dimensionless indexesn and n′. To identify the formation
of the tubes, we look at the tubes from the top view in the
plan (∆

′

LC ,∆LC ) in the computer screen reference system, i.e.,
with ∆

′

LC pointing downward and∆LC pointing right. As for
the value ofN in equation (19), four types of formation are
possible:

TubeFormation =















point if n andn′ are undefined
line if n ≥ 0 andn′ undefined
I if n undefined andn′ ≥ 0

rectangle if n′ ≥ 0 andn ≥ 0
(20)

In the point formationthe only tube that can be displayed is
of Type I. In theline formation, realized tubes appear aligned
horizontally on an axis parallel to the∆LC axis. A similar
formation is observed in theI formation with the tubes being
aligned vertically following the∆

′

LC in the dimensionless
space. The boundary of the last type of formation has the shape
of a rectangle. Whenn = n′, it becomes a square as for the
four-tube formation in Figure 5 (c).

VI. SAFETY ANALYSES

The purposes of this section are two-fold. First, we employ
the simulation platform described in Section V to identify and
analyze the key factors that affect the system level safety of
the traffic system. In the second part of this section, single
and set-pair factor safety analyses are performed to investigate
how system safety depends on systematic adjustments to single
factors (e.g., vehicle braking force) and combined sets of
parameters.

1. Safety Factors Identification.Under the set of assumptions
(A1) to (A3), and from Table I, the following six factors are
single out for further consideration: weigh of the car(m), car
velocity(v), car braking force(Fb), distance to stoplight (XB),
remaining duration of the yellow light (rY L), and configured
duration (dY L). For these studies we pickn = n′ = 0 which
leads to a four-tube square formation.

2. Single Factor Safety Analysis.

a/ Effect of Car Weight and Velocity.For this analysis, we
use the set of four cars and assign for each simulation run
a velocity within the range in Table I with a step of5m/s.
The remaining four parameters are fixed to their set value. For
each run, we observe and record the presence and name of any
active tube (synonym of unsafe system) as well as the identity
of the car whose state has been materialized in the active tube.
The absence of any active tube means the system is safe for
all vehicles. The results are summarized in aparameter-based
safety profileas shown in Figure 6(a).

For this particular configuration of the traffic system, the
active tube for all runs is the tubeTxx, which is of Type I. The



Figure 6. Parameters-based single factor safety profiles.

heavier cars (#3 and#4) violate the safety constraint at lower
speed (v ≤ 15m/s), while small and mid-size vehicles (#1
and#2) would not violate the safety constraint if they operate
on both sides of velocityv = 15m/s. The combined effects of
inertia and velocity play against safety (i.e., heavier cars lack
agility – at velocityv ≤ 15m/s, they can neither stop before
nor clear the intersection within the 2s time interval). We note
the troubling “unsafe” state for all cars atv = 15m/s. To
summarize, operating heavier vehicles within higher velocity
range and, small and average size vehicle at lower or higher
velocities are the only way to keep the traffic system safe.

A quick evaluation of the sensitivity of the safety profile to
changes in any of the fixed parameters shows that the only one
for which it doesn’t change significantly isdY L. For instance,
if we consider changes inrY L, smaller and mid-size vehicles
become safer as long asrY L grows beyond2s (3s for heavier
vehicles). At lowerrY L (≤ 1s), all vehicles tend to be unsafe
except for smaller ones at low velocity (v ≤ 10m/s). Given the
relatively far distance (XB = 30 m) at which this evaluation
is performed, there might still be room for improvement as the
car gets closer to the intersection stop line, especially atlow
velocities.

b/ Effects of the Car Distance to the Intersection.For this
study, we use the same set of four cars and keep track of
the distance to the stop line, this time with a step of10m
which is used to define the location of sensing points for the
system. And as with the previous analysis, the remaining four
parameters are fixed to their set value. System safety is tracked
by observing and recording the presence and name of active
tubes along with the identity of the car whose state has been
materialized in the active tube. Finally, the distance-to-stop-
line safety profile (see Figure 6(b)) is generated.

We observe that as heavier vehicles (#3 and #4) ap-
proach the intersection, they are mostly unsafe until the last
checkpoint, where their dynamic capabilities allow them to
either stop safely before or clear the intersection within the
remaining2s on the yellow light. The small vehicle (#1) is
safe all the time; with the exception of checkpointXB = 20m
(which corresponds to the last location where heavier vehicles
transition to a safe state), the mid-size vehicle (#2) are safe.
An examination of the sensitivity of this profile to perturba-
tions in rY L reveals that heavier cars are more sensitive than
mid-size and small cars. Away from the light (XB ≥ 50m),
heavier cars are unsafe and they will require5s, 4s and3s on
rY L,respectively at40m, 30m and20m to avoid violating the



intersection safety requirement. Mid-size vehicles, in contrast,
only require3s at 20m to stop.

c/ Effects of the Car Braking Force.The same protocol is
followed to study how car braking force affects system safety.
To that end, we systematically vary the parameterFb within
the defined range in Table I using a1000N step. This results
in the braking force safety profile shown in Figure 6(c).

For this configuration of the system, the effect of the
braking force is well perceived for the mid-size car (#2) as
it leaves the unsafe state whenFb increases and passes the
5, 000N threshold. Under the same circumstances, heavier cars
(#3 and#4) certainly need a braking force outside the current
simulation range – in fact, our set value for the maximum force
of 8, 000N does not help switch the system back into safety.
In other words, even a8, 000N braking force is insufficient
to counter the kinetic energy of the vehicles and immobilize
them withinXB = 30m andrY L = 2s. Small cars are much
more agile, and the minimum braking force of3, 000N is good
enough to keep the smallest car (#1) safe.

As the value ofrY L decreases, the safety profile for car
#1 is not affected as all for all values ofFb. However, below
5, 000N , the mid-size and heavier cars would requirerY L ≤
4s to remain safe. Above that threshold force, only heavier car
will need the same amount of time to stay safe. Thus, we can
conclude that the higher the inertia of the vehicle, the higher
breaking force and time on yellow light are needed for the
system to remain safe.

d/ Effects of the Initial Configuration of the Yellow Light.As a
final step in this experiment, we would like to understand how
the configuration of the stoplight by the traffic engineer and,
in particular, the duration of the yellow lightdY L, affects the
system safety. To that end, we consider a fixed stoplight cycle
durationC = 55s and assign a progressively increasingly high
percentage of that duration to the yellow light from5% to 30%
with a step of5%; thus, the data range shown in Table I. The
simulation is run for the various values ofdY L and results of
the safety profile are shown in Figure 6(d).

We see from the safety profile that, for a given value
of rY L = 2s, increasing the actual configuration of the
yellow light does not affect the outcome of system safety.
However, a look at the corresponding tube formation shows
that, as the value ofdY L increases, so is the spacing between
the tubes. This translates into more room for safety, should
the system manage to get out of unsafe situations, i.e., the
volume occupied by the tubes. The contrast between the tube
formations in Figures 5(c) and (d) illustrates this phenomenon.
When dY L = 5s, a low value, the rectangle formation is
compact, and the tubes are closed to each other (see Figure
5 (d)). Should they realize all, there will be little to no room
to avoid a violation of the safety constraint. Conversely, at
higher dY L = 100s (for illustration only) there is plenty
of room between the tubes. This means that, should there
exist a mechanism to take advantage of the availability of this
safety space to adjustrY L to higher values, the safety of the
system will be improved. These observations make the case
for reconfigurable traffic lights that are capable of adjusting
the remaining duration of the yellow light to resolve safety
issues. Also, we note the variation in tube sizes in Figures
5(d) and 5(c), withTxx being the smaller andToo the bigger.

This observation can be traced back to indexk, as per equation
(4), and its further propagation into the parameters that define
the tubes as shown in Figure 3, especially those defined by
equations (15) to (18). Finally, we note that0 ≤ rY L ≤ dY L

thus, the two variables are dependent. SettingdY L from an
initial position dY L1 to dY L2 ≥ dY L1 allows rY L to add
dY L2 − dY L1 to its range which, as we have seen so far, adds
more safe room for the overall system.

3. Set (pair) Factor Safety Analysis.Despite the valuable
insight provided by single factor analyses in understanding
system level safety, they provide just a “snapshot” view of the
system through the perspective of the parameter consideredfor
the analysis. The sensitivity of most safety profiles to changes
in the values ofrY L clearly shows that even though most
factors are set or controlled independently, their interaction is
the key driver behind system level safety. Thus, there is a need
to look at changes to system safety caused by adjustments to
combined sets of parameters.

a/ Parameter-based Safety Template for Pair (rY L, XB). Pair-
ing the six parameters leads to fifteen possible sets. However,
given that parameters such asrY L and dY L are dependent
and others such asm andXB are constrained by the vehicle
physics, not two sets of parameters are equally important
or relevant for this study. Thus, we won’t be analyzing the
system safety for all pairs, but we will be looking at the pair
(rY L, XB), which illustrates the cyber-physicality of the traffic
system as introduced in Section II. The protocol of the study
described here can be repeated and applied to other pairs as
well.

For set factor studies, all the parameters considered vary
within their individual, predefined range. The other parameters
are configured to their set values as presented in Table I. Run-
ning the simulation and recording the safety state of the system
results in the creation of a parameter-basedsafety template,
such as the one seen on Figure 7(a). This particular template
is created with the configuration:K ≡ (m = 1, 500kg, v =
10m/s, Fb = 5, 000N, dYL = 5s, dRL = 20s, dGL = 30s).
The template shows the safety state of each system operational
point. A red dot signifies that underK, the system state is in
an active tube (i.e., the system is unsafe). A blue dot means the
system is safe. In practical terms, the template is an indicator of
safety – for instance, under configurationK, if car #1 crosses
the intersection boundary (XB=30m) when there is only3s
left on the yellow light, the system will be safe as it will be
located atA(30m, 3s), which is a safe operational point on the
template. If, however, the configurationK remains unchanged,
the system will be unsafe2s later at locationC(10m, 1s).
Therefore, for the system to remain safe underK, the car
has to enter the intersection when there is at least4s left on
the yellow light. These examples illustrate the greater insight,
we can gain using safety templates, in the interplay between
system parameters and their effects on system level safety.

b/ Parameter-based Safety Indexes for Pair (rY L, XB). A
subspaceUs that contains all unsafe states of the system for
the configurationK can be defined as follows:

UsK(rY L,XB) =

{

0s ≤ rY L ≤ 1s

1m ≤ XB ≤ 15m.
(21)



Figure 7. Parameters-based safety templates and indexes.

Intuitively, one might think that a smaller subspaceUs trans-
lates to a safer system, but this is only part of the story.
Considering that an unsafe subspace might also contain safe
states, as observed in this case, we ought to be able to
quantitatively assess the safety of a configuration in a clear
and simple way. To this end, we introduce the parameter-based
configuration safety indexSI as follows:

SIK(rY L,XB) =

(

1−
nUK

nK

)

∗ 1000. (22)

Here,nUK
is the number of unsafe states (red dots) inUs and

nK the total number of states in the template for configuration
K. For the safety template shown in Figure 7(a), we count
nUK

= 5 unsafe states andnK = 6 ∗ 7 = 42 total states. This
leads to a configuration safety index ofSIK(rY L,XB) = 880.

By systematically adjusting the vehicle weight (m) and ve-
locity (v) we can generate an ensemble of safety templates,
and then for each, compute the safety index. This leads to the
safety index chart shown in Figure 7(b). The chart shows that
for high speeds, both the smallest vehicle (Sc) and heaviest
vehicle (Bc) have similar levels of safety. The smallest vehicle
does a better job at lower velocities. In-between, the mid-size
vehicle (Ac) cannot do better at average velocity (As). These
results are consistent with the findings in 1.a/.

We note that this safety index does not capture the topology
of unsafe and safe points in theUs subspace for (rY L, XB).
As seen in a/ above, that distribution is critical in predicting the
future state of the system. Therefore, we cannot use the safety
index SI to that same end. However, it can be used for a high
level estimate of the parameter-based safety appreciationof the
system safety before diving into topological considerations of
Us for further investigation. To that extent, the two approaches
serve complementary purposes.

4. Beyond Predefined Configurations and Pair Factors.
Any change in the value of a parameter in the configuration
K in Section 3.a/ automatically forces the switch and use

of a different safety template (with the new value for that
parameter) to predict the state of the system when the car
reaches the stop line. This limits the ability of the Systems
Engineer to navigate the design space of the traffic system.
A possible solution is to flatten all independent variables
in a pentagon-like diagram which will give a partial view
of the whole design space. The actual full design space is
much more complex (i.e., a five-dimensional shape) and almost
impossible to visualize. Any combination of values of the
five parameters (m, v, Fb, rY L, XB), each within its respective
range, is theoretically a valid point.

VII. D ISCUSSION

Our preliminary results are contingent upon assumptions
(A1) through (A3) listed in Section V. Neglecting air resistance
(A1) certainly simplifies the account of the dynamics of the
cars but it comes at a price. With the acceleration null, the
velocity is assumed constant onXB which leads to a constant
value ofΘB in equation (10) for all vehicles at the same veloc-
ity for the the same value ofXB. This propagates all the way
to the tubes visualization where, under such circumstances,
points for the various cars will be stuck in the plan (∆S ,∆

′

LC
) at a single∆LC value. One opportunity for future work is
to account for the air resistance in the dynamics of the car,
through a drag forcef = k1 ∗ v

2 for instance. This will lead
to a more accurate model of the vehicle dynamic that will
ultimately improve the quality of the results. The immediate
effect on this tube framework will be the distribution of system
states along the axis∆LC as well.

Task execution of the scenario introduced in Section V
requires intensive computations and communication at multiple
steps; this makes it hard for assumptions (A2) and (A3) to
survive any physical prototype testing of the system. In fact,
as many researchers have pointed out, not only do real-world
computations and communication require finite amounts of
time to complete [24][25], but delays of unacceptable duration
can trigger accidents in traffic scenarios that are safety critical.
Given that such considerations are platform-dependent, there
should be in a future iteration of this work a mechanism to



account for delay information in the execution model, perhaps
along the lines of what has been accomplished with Ptolemy
[26].

VIII. C ONCLUSION AND FUTURE WORK

The purpose of this paper has been to introduce and
describe a new and innovative tubular (3D) characterization of
the dilemma zone problem. We have discussed the modeling,
design and prototype simulation of a tubular framework that
supports the study and analysis of the dilemma zone problem
using a set of dimensionless metrics.

State-of-the-art approaches to the dilemma zone problem
treat the cars and stoplights separately, with the problem
formulation being expressed exclusively in either spatialor
temporal terms. By taking on a systems perspective that allows
for two-way interactions between the cars and stoplights, the
proposed method leads to a dilemma tubes formulation that
compactly describe sets of conditions for which the vehicle-
light system will be in an unsafe state.

The essential elements of the two-way interaction are for-
mally captured by three metrics: (1) the car stopping distance
metric ∆S , (2) the light-car crossing time metric∆LC , and
(3) the light-car stopping time metric∆

′

LC in dimensionless
space (∆). These three metrics work together to define a
simple and precise way safety of the system in a manner that
is consistent with the system decision tree. To support this
formulation we have developed a flexible software architecture
for the computation of metrics and implementation of the
tubes. Simulations were performed and tubes were visualized
under sets of physical and cyber parameters for the car and
the light extracted from the system design space.

The single safety factor analysis indicates that system-level
safety is strongly influenced by the combined effect of car
weight m and velocityv, its distance to the stop lightXB,
and the configuration of the yellow lightdY L. Parameter-based
safety templates, which are effective in predicting the future
state of the system at the stop line, were created by pairing
the remaining duration of the yellow lightrY L andXB. We
have defined a parameter-based safety indexSI as a first-order
estimate of system level safety. This new metric enables the
characterization and comparison of safety templates. All of
these analyses work together to provide a deeper understanding
of the dilemma zone problem and strategies for resolving
unsafe scenarios. The proposed approach and preliminary
results are consistent with research that has investigatedthe
critical role of component interactions on the safety of complex
systems [27].

Future versions of this work need to fully embrace the
cyber-physicality of next generation traffic systems as de-
scribed in Section II. Key characteristics of these develop-
ments would include semantically-enabled and efficient plat-
form structures that can support the modeling, emulation
and simulation of the behavior of real-world autonomous
cars and intelligent traffic control systems as agent of cyber-
physical transportation systems. To that end, an ontological
architecture supporting the formal description of the relevant
sub-domains involved is needed. Spatio-temporal reasoning
supported by appropriately implemented semantic extensions
(such as Jscience or Joda time) will enhance traffic agents

decision-making capabilities. For the traffic system, the archi-
tectural framework will support reasoning in the dimensionless
space and enable light reconfiguration, should a car be heading
into a dilemma tube. The dilemma metrics introduced in this
paper will be implemented in the Integrator rules engine.
This entity (physically a smart traffic controller) will be the
ultimate responsible of system-level decisions. Further details
on the underlying semantic platform infrastructure supporting
this architecture can be found in Petnga and Austin [28].
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