
 Procedia Computer Science 16 (2013) 216 – 225

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology
doi: 10.1016/j.procs.2013.01.023

Conference on Syst
Eds.: C.J.J. Paredis, C. Bishop, D. Bodner, Georgia Institute of Technology, Atlanta, GA, March 19-22, 2013.

Model-Based Systems Engineering Design and Trade-Off Analysis
with RDF Graphs

Nefretiti Nassar and Mark Austin*
Graduate Student, Institute for Systems Research, University of Maryland, College Park, MD 20742.

Associate Professor, Department of Civil and Environmental Engineering, and Institute for Sytsems Research, University of Maryland, College
Park, MD 20742.

Abstract

Within the Semantic Web community, resource description frameworks (RDF) and logical reasoning engines work
together to provide semantic support and reasoning for Web applications. This paper explores the use of RDF graphs
for the representation of graphs of requirements and specification of design component properties. We show that the
component selection design problem and associated trade-space analysis can be cast as a sequence inference
analyses on RDF graphs. Inference procedures are provided for assessment of requirements in terms of component
attribute values, identification of compatible component interface pairs, component selection to meet the system
architecture requirements, and computation of system cost, performance and reliability. Our prototype
implementation makes extensive use of Java and Python, and focuses on the satisfaction of requirements and
component selection for a home theater design problem.
© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology.

Keywords: semantic web, graph-based design; inference rules; system design; trade-off analysis.

1. Introduction

 The Semantic Web is important to the Systems Engineering community because it provides formalisms (i.e.,
models and tools) for sharing and reasoning with data on the Web. As companies move toward the team-based
development of projects and products, having Web access to design specifications and component specifications
adds value to business operations. We assert that Semantic Web concepts and technologies can also provide
considerable assistance in the model-based systems engineering and design of modern-day systems, which are
undergoing a series of radical transformations to meet performance, quality, and cost constraints. To keep the
complexity of technical concerns in check, system-level design methodologies are striving to separate and simplify
concerns (i.e., to allow more efficient exploration of the space of potential design alternatives), improve economics
through reuse at all levels of abstraction, and employ formal design representations that enable early detection of
errors and multi-disciplinary design rule checking. We believe that methodologies for strategic approaches to design

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology

217 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

will employ semantic descriptions of application domains, and use ontologies and rule-based reasoning to enable
validation of requirements, automated synthesis of potentially good design solutions, and communication (or
mappings) among multiple disciplines [1-3]. Semantic Web-based technologies can play a central role in the design
of tools to support these design methodologies. Present-day systems engineering methodologies and tools, including
those associated with SysML, are not designed to handle projects in this way.

1.1. Scope and Objectives

The standard suite of languages, models, and tools for the implementation of Semantic Web applications includes
XML (eXtended Markup Language), RDF (Resource Description Framework), OWL (Web Ontology Language),
Jess, Jena, Protégé and SWRL (Semantic Web Rule Language), among others [4-9,11]. Because each aspect of
Semantic Web technology is designed to serve a specific purpose, working applications nearly always correspond to
an integration of languages, models and tools. Our hands-on experience in developing applications that involve
Semantic Web technologies tells us that when some of the models and tools are prototypes or tentative proposals
(e.g., SWRL and Protégé), the challenge in getting things to work properly is nearly always significant, and perhaps
a lot more difficult than really necessary. Therefore, in an effort to streamline and simplify computational design
support, in this paper we explore the use of RDF graphs for the representation of requirements and design
component properties, and Python for the implementation and sequencing of logical reasoning and inference
mechanisms. This approach is inspired, in part, by reference [10]. From a model-based systems engineering
perspective, the use of RDF graphs makes sense because they are general in their ability to represent data in
environments that will be subject to change. Python is a mature and well-known scripting language that provides for
easy implementation of inference mechanisms. Two research questions of interest are: (1) What are we giving up by
removing OWL, Jess, Jena, Protégé and SWRL from the formulation of problem solutions, and (2) Does it matter
for model-based systems engineering?

2

Environmental Model

User Requirements

Configurator

System Level Architecture Library of Components

System Design Alternatives

Add new components
to library.

Select
components

Fig. 1. Schematic of the component-selection design problem

To explore these issues, our prototype implementation focuses on the satisfaction of requirements and components
selection for a home theater design problem. As illustrated in Fig. 1 we will assume that the system-architecture is
fixed and that components can be selected from a component library. We show that the component selection design
problem and ensuring trade-space analysis can be cast as a sequence inference analyses on RDF graphs. Inference
procedures are provided for assessment of requirements in terms of component attribute values, identification of
compatible component interface pairs, component selection to meet the system architecture requirements, and
computation of system cost and performance. An algorithm for identification of Pareto-Optimal design solutions has
been developed [3].

2. Background Review

2.1. Graph-Based Modeling and Systems Design

218 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

 Graph structures are essential for the representation of system requirements and system architectures. When
requirements are organized into levels for team development, graph structures are needed to describe comply and
define relationships among requirements (terminology such as incoming and outgoing requirements is sometime
used). A parent requirement may have multiple derived children requirements, and a derived child requirement may
have multiple parents. Individual requirements are linked together using graph structures. Depending on the
requirements context, they need to support the allocation of requirements onto a number of other system modeling
entities like parts (components), functions and interfaces.

2.2. Semantic Web Vision and Technical Infrastructure

 In his original vision for the World Wide Web, Tim Berners-Lee described two key objectives [6]: (1) To make
the Web a collaborative medium, and (2) To make the Web understandable and, thus, executable by machines.
During the past twenty years the first part of this vision has come to pass -- today's Web provides a medium for
presentation of data/content to humans. Machines are used primarily to retrieve and render information. The
Semantic Web aims to produce a semantic data structure that allows machines to access and share information, thus
constituting a communication of knowledge between machines, and automated discovery of new knowledge.
Realization of this goal will require mechanisms (i.e., markup languages) that will enable the introduction,
coordination, and sharing of the formal semantics of data, as well as an ability to reason and draw conclusions (i.e.,
inference) from semantic data obtained by following hyperlinks to definitions of problem domains (i.e., so-called
ontologies).

Unifying Logic

Trust

Proof

Rules: RIFOntology: OWL

RDFS

Data Interchange: RDF

XML

URIUnicode

En
cr

yp
tio

n

Applications and Interfaces

layers
Representation / syntax

Ontology and reasoning
layers

Applications

Data layers

Layers of Abstraction Semantic Web Technology Stack

Fig. 2. Layers of abstraction and technology in the Semantic Web

Fig. 2 illustrates the technical infrastructure that supports the Semantic Web vision. Each new layer builds on the
layers of technology below it. The bottom layer is constructed of Universal Resource Identifiers (URI) and Unicode.
URIs are a generalized mechanism for specifying a unique address for an item on the web. The eXtensible Markup
Language (XML) provides the fundamental layer for representation and management of data that can be organized
into hierarchical relationships. However, a common engineering task is the synthesis information from multiple data

219 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

sources. This can be a problematic situation for XML as a synthesized object may or may not fit into a hierarchical
(tree) model. A graph, however, can, and thus we introduce the Resource Description Framework (RDF). RDF is a
graph-base data model for describing the relationships between objects and classes (i.e., data and metadata) in a
general but simple way, and for designating at least one understanding of a schema that is sharable and
understandable. The graph-based nature of RDF means that it can resolve circular references, an inherent problem of
the hierarchical structure of XML.

Fig. 3. Example of an RDF triple where A is the subject, the predicate is a verb, and B is an object.

In practical terms (see Fig. 3), English statements are transformed into RDF triples consisting of a subject (this is the
entity the statement is about), a predicate (this is the named attribute, or property, of the subject) and an object (the
value of the named attribute). Subjects are denoted by a URI. Each property will have a specific meaning and may
define its permitted values, the types of resources it can describe, and its relationship with other properties. Objects
are denoted by a ``string'' or URI. The latter can be web resources such as requirements documents, other Web pages
or, more generally, any resource that can be referenced using a URI (e.g., an application program or service
program). A set of related statements constitute an RDF graph. The ontology, logic, proof and trust layers introduce
vocabularies, logical reasoning, establishment of consistency and correctness, and evidence of trustworthiness into
the Semantic Web framework. Class relationships and statements about a problem domain can be expressed in the
Web Ontology Language (OWL) [7]. Recently, rule languages such as SWRL (Semantic Web Rule Language) have
been developed to provide designers with mechanisms to reason with data and class relationships [11].

3. Design Methodology

 In our work, RDF graphs are used to model individual design requirements, graphs of requirements, the
characteristics of individual components, and graphs of design components. Synthesized graph models are employed
for libraries of design requirements and components, as well as the mapping of requirements to design solutions. We
use Python to script and sequence the inference rules, computation of Pareto-Optimal design solutions, and
generation of two-dimensional plots for the trade-space (e.g., cost versus performance).

3.1. Component-Selection Problem

 The component-selection problem can be stated as follows: We wish to choose a subset of components from a
library of components to satisfy the requirements of a system-level architecture, and component- and system-level
requirements. As illustrated in Fig 1., we will assume that a representation for component specification exists, and
that a component library has been designed as built. Generally speaking, two outcomes to the component selection
problem are possible. The first possibility is that a search procedure will find one or more combinations of
components that satisfy all of the architectural, functionality and performance requirements. In such cases, we will
choose a subset of feasible designs that maximize performance, minimize cost, and so forth. The second class of
outcomes occurs when the design requirements are stated in such a way that no feasible designs exist. This problem
can be solved by either relaxing the requirements (i.e., values of the inequality constraints representing the
requirements), or by developing new components that will have superior performance and/or extended functionality.
Our research objective is to devise strategies for component selection during the early stages of design, where the

220 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

number of components is unlikely to be excessively large.

3.2. Synthesis of Design Solutions from RDF Graph Representations of Requirements and Design Components

 Fig. 4 is a flowchart of activities for problem definition with RDF graphs followed by a series of inference-rule
driven graph transformations designed to generate feasible design solutions.

Fig. 4. Flowchart of activities for problem definition with RDF graph models followed by inference-rule driven graph transformations.

The processing pipeline begins with RDF graph representations of individual requirements and design components.
Then, customized inference rules are created in Python for: (1) the representation of the system architecture, (2)
identification of pairwise component compatibilities, (3) the identification of feasible system configurations, (4)
validation of design requirements, (5) identification of feasible system designs, and (6) trade-space analysis. It is
important to note that steps (1), (2) and (3) only relate to the system architecture definition, and properties and
compatibility of the design components. Hence, at the front-end of the design synthesis, there is no need to include
the design problem requirements. The feasible system configurations computed at step (3) are configurations of
components that satisfy the architecture descriptions they may not also satisfy the design problem constraints. The
feasible system designs computed at step (5) are feasible configurations that satisfy all of the design requirements.
Finally, trade-space analysis is conducted to identify sets of Pareto-Optimal design solutions the details of a simple
algorithm and Python code to compute the Pareto-Optimal design solutions can be found in Nassar [3].

4. Home Theater Design Problem

The home theater design problem was posed by David Everett at NASA Goddard Space Flight Center as an
exercise in understanding how requirements should be written and organized to support the purchase of a home
theater system. The long-term hope is that systems engineers will be able to search for components on the Web that
satisfy a specific set of technical specifications.

4.1. Problem Description

Suppose that we wish to purchase a home theater system that satisfies a budgetary constraint (total cost < $2,100)
and as illustrated in Figs. 5 and 6 below, has an amplifier, speakers and a flat screen TV. Development of the design
requirements begins with a statement of need (and initial requirements reflecting the statement of need) and evolves
into three levels of requirements. The Level 1 requirements are the initial requirements (e.g., R01: I need a home
theater system). The Level 2 requirements serve the purpose of defining a detailed agreement between the customer
and supplier (e.g., R03: The theater system shall have a large display screen). The Level 3 represents are the

221 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

component-level requirements and are cast as inequality constraints written in terms of the component attribute
values (e.g., R08: The width of the screen shall be at least 3 ft, R09: The height of the screen shall be at least 2ft). In
other words, they contain quantitative elements that can constrain the selection of components from a database. The
problem formation addressed here is simplified in the sense that only the Level 3 requirements are evaluated
quantitatively. Evaluation of the Level 1 and Level 2 requirements occurs through the logical satisfaction of the sets
of lower-level requirements.

Fig. 5. Flow down of requirements to system architecture definition. Assembly of the home theater system from library components.

Fig. 6. Definition and organization of requirements into three levels.

The design component library [12,13] contains three television components (Sony, Samsung, and Sony), three
amplifier components (Bose, Polk, and Klipsch) and three speaker components (Polk, Klipsch, and Bose). As
illustrated in Fig. 5, amplifier components will connect to speaker and TV components. The maximum number of
potentially good design configurations is 27.

4.2. Modeling Requirements and Design Components as RDF Graphs.

222 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

The requirements and design components models were initially developed as objects in Java, exported to Excel in
a comma-separated value (CSV) format, and then read into a simple graph triple-store for RDF statements,
implemented in Python.

Fig. 7. RDF graph model for Requirement 8

Fig. 8. RDF graph model for a Bose amplifier component.

For systems engineering applications, RDF graph representations provide a desirable balance of and expressiveness
and flexibility. Fig 7 shows, for example, a collection of RDF triples subject, predicate, object organized into a
graph representation for Requirement 8. In each case, the subject is Requirement 8. The predicates are: category,
title, level and derived by. String representations for the triple objects are shown along the right-hand side of Fig. 7.

223 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

Fig. 8 shows an RDF graph representation for a Bose Amplifier component. The RDF triples systematically describe
the input/output capabilities of the amplifier, its power handling capabilities and cost. Flexibility stems from the use
of graphs no need to conform to a table data structure and the use of Python for the implementation of the simple
graph class.. For our purposes, inference rules a useful because they can deduce whether or not inequality
constraints have been satisfied, and to infer relationships between design components and requirements. The design
component and requirements libraries (see the left-hand side of Fig. 4) were created by simply loading CSV
representations for all requirements and design components into merged graphs for the requirements and design
components, respectively. Each design requirement is translated into a Python inference rule according to the
description, level, and dependencies among the requirements (see Fig. 6).

4.3. Synthesis of Feasible System Configurations

The system architecture rules declare that television components can only connect to amplifiers. Speakers can only
connect to amplifiers. For example the script of Python implements a television-to-amplifier rule:

class televisionToAmplifier(InferenceRule):

 def getqueries(self)
 tvToAmp=[('?x','category','television'), ('?y','category','amplifier')]
 return [tvToAmp]

 def _maketriples(self,x,y):
 return [(x, 'connects to', y)]

The e televisions and amplifiers, then if true, creates a new relationship
``(television x) connects to (amplifier y) The component compatibility rules establish whether or not different
component types are compatible based upon the outputs of the first matched against the inputs of the second. For the
synthesis of home theater design solutions, amplifier-to-television and amplifier-to-speaker compatibility is
prerequisite to a feasible system configuration. With 3 amplifiers, 3 speakers and 3 televisions in the components
library, there are potentially 27 configurations that could work however, limitations on the input/output
relationships reduce the number of potentially good designs from 27 to 18.

4.4. Quantitative Evaluation of Design Requirements

The quantitative evaluation of design requirements involves development of inference rules for the evaluation of
level 3, level 2 and level 1 requirements, i.e.,

requirement15 = Req15() mergegraph.applyinference(requirement15)

requirement14 = Req14() mergegraph.applyinference(requirement14)

224 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

Inference rules for the level 3 requirements are derived directly from the inequality constraints defined in the
requirements statement. For example, the inference rule for R15 evaluates speaker design options to see if their

sign constraints. After applying the level 3
requirement inference rules to the merged graph, the graph has 100 unique vertices and 308 edges. The size of the
graph in terms of the number of vertices has increased by the addition of a satisfied vertex. However, the order of
the graph in terms of the number of edges has increased by a factor of 30 new relationships. After applying the level
2 requirement inference rules to the merged graph, the graph has 100 unique vertices and 319 edges. The size of the
graph in terms of the number of vertices remained the same. But, the order of the graph in terms of the number of
edges has increased by a factor of 11 new relationships. After applying the level 1 requirement inference rules to the
merged graph, the graph has 100 unique vertices and 321 edges.

4.5. Synthesis of System-Level Design Alternatives

The system design rule establishes relationships between the design components and the design requirements. As
illustrated in the abbreviated script of output, there are nine system level designs that satisfy all of the requirements:

System Design 1 : [u'Lg Television', u'Bose Amplifier', u'Polk Speaker']

System Design Cost = $ 2000, Performance = 23, Reliability = 0.448.

System Design 9 : [u'Sony Television', u'Polk Amplifier', u'Bose Speaker']

System Design Cost = $ 1878, Performance = 28, Reliability = 0.729.

The highest performing system-level design has a value of 30 with an associated cost of USD $1,828 and a
reliability of 0.648. This system-level design includes a Sony television, Bose amplifier, and a Bose speaker. The
most reliable system-level design has a value of 0.729 with an associated cost of USD $1,878 and a performance of
28. This system-level design includes a Sony television, Polk amplifier, and a Bose speaker. The least expensive
system-level design cost USD $1,828 with an associated performance of 30 and a reliability of 0.648. This system-
level design includes a Sony television, Bose amplifier, and a Bose speaker. The design with the highest
performance level is also the least expensive. Thus, the tentative conclusion is as follows: the best system-level
design will include a Sony television, Bose amplifier, and a Bose speaker.

4.6. Trade-Space Analysis

Trade-space analysis is based upon a systematic comparison of the feasible system designs measured with respect to
cost, performance and reliability. We have developed a simple algorithm to automatically identify the Pareto-
Optimal design solutions within a space of two design criteria (e.g., cost versus reliability as shown in Fig. 9).

5. Conclusions and Future Work

In this paper we have presented work that investigates the use of RDF graphs and inference rule transformations

implemented in Python for the automated synthesis and evaluation of design solutions. In addition to validating

225 Nefretiti Nassar and Mark Austin / Procedia Computer Science 16 (2013) 216 – 225

whether or not such an approach would work, we wanted to start to understand the pros/cons of working with RDF
in lieu of OWL and all of its associated tools and models. Our proposed approach is simple. For example, in contrast
to Jena and OWL, understanding exactly what is stored in the RDF graphs is straightforward. The RDF graphs are
an order of magnitude smaller than their OWL counterparts. On the other hand, coding inference rules to evaluate
requirements is less than ideal. Maybe this problem can be overcome by redesigning the RDF graph models so that
they are a little more general, but allow for fewer more powerful inference rules?

Fig. 9. Trade-off analysis for cost versus reliability.

References

1. M.A. Austin, V. Mayank, and N. Shmunis, Ontology-Based Validation of Connectivity Relationships in a Home Theater System,
International Journal of Intelligent Systems, 21(10) 1111-1125, October, 2006.

2. M.A. Austin, V. Mayank, and N. Shmunis, PaladinRM: Graph-Based Visualization of Requirements Organized for Team-Based
Design, Systems Engineering, 9(2): 129-145, May 2006.

3. N. Nassar, Systems Engineering Design and Tradeoff Analysis with RDF Graph Models, M.S. Thesis, Insitute for Systems Research,
University of Maryland, College Park, MD 20742, December 2012.

4. RDF: Resource Description Framework. See http://www.w3.org/RDF/ (Accessed December 2012).
5. G Klyne and J.J. Carroll, Resource Description Framework (RDF): Concepts and Syntax. See http://www.w3.org/TR/rdf-concepts/

(Accessed December 2012).
6. T Berners-Lee, J. Hendler, and O. Lassa, The Semantic Web, Scientific American, 35-43, May 2001.
7. Web Ontology Language (OWL). See http://www.w3.org/TR/owl-ref/, (Accessed September 2012).
8. Protege Ontology Editor and Knowledge Acquisition System, See http://protege.stanford.edu
9. Jess The Expert System Shell for the Java Platform. See http://herzberg.ca.sandia.gov/jess/, 2003.
10.
11. Horrocks, et al., SWRL: A Semantic Web Rule Language combining OWL and RuleML, W3C Member Submission, 2004.
12. Best Buy Computers, Video Games, TVs, Cameras, Appliances. See: http://www.bestbuy.com, 2012.
13. Polk Audio. See http://www.polkaudio.com, 2012.

