

System Validation and Verification Using SDL

Ron Henry

Class Project Report

ENSE 623

December 5, 2004

i 12/7/04 6:19 PM

Table of Contents

1 Introduction.. 1-1
1.1 Abstract .. 1-1
1.2 Organization... 1-1
1.3 Terminology... 1-1
1.4 Motivation.. 1-2

2 Conceptual Framework.. 2-1
2.1 Formal Methods ... 2-1
2.2 Logic-Based V&V Approaches ... 2-1
2.3 Standard Notations for Formal Modeling .. 2-3

2.3.1 Specification and Description Language (SDL) .. 2-3
2.3.2 Message Sequence Charts (MSCs) .. 2-5
2.3.3 Test and Test Control Notation (TTCN).. 2-6

2.4 SDL Tools.. 2-6
2.5 Proposed Methodology .. 2-7

3 Project Formulation ... 3-1
3.1 Remote Astronomy Case Study ... 3-1
3.2 Tau/SDL Configuration ... 3-1

4 System Definition .. 4-1
4.1 System Context .. 4-1
4.2 Use Case Definitions.. 4-1
4.3 Domain Model ... 4-6
4.4 SDL Architecture ... 4-8
4.5 SDL Process-Level Design .. 4-20
4.6 Bugs and Limitations ... 4-42

5 Validation and Verification Using Executable Model... 5-1
5.1 System Simulation ... 5-1
5.2 Architecture Validation.. 5-3
5.3 Test Case Generation ... 5-11

6 Future Work ... 6-1
Appendix A. Execution Trace for Observe Simulation.. A-1
Appendix B. Observatory TTCN Test Suite .. B-1
7 References and Web Resources ... 7-1

ii 12/7/04 6:19 PM

List of Figures

Figure 2-1: Automated V&V Methodology .. 2-7
Figure 4-1: Observatory System Context .. 4-1
Figure 4-2: TurnOnInstrument... 4-2
Figure 4-3: TurnOffInstrument .. 4-3
Figure 4-4: Observe ... 4-4
Figure 4-5: Observatory Class Diagram .. 4-7
Figure 4-6: Observatory (Level 1) ... 4-10
Figure 4-7: SupportModule (Level 2)... 4-11
Figure 4-8: TelescopeBlock (Level 2) ... 4-12
Figure 4-9: InstrumentModule (Level 2) ... 4-13
Figure 4-10: InstrumentManager (Level 3) ... 4-16
Figure 4-11: GuiderBlock (Level 3) .. 4-16
Figure 4-12: CAM1 (Level 3).. 4-20
Figure 4-13: DataRecorder .. 4-21
Figure 4-14: AttitudeControl ... 4-22
Figure 4-15: OpticalAssembly... 4-23
Figure 4-16: Guider.. 4-26
Figure 4-17: InstrumentManager ... 4-28
Figure 4-18: CameraManager .. 4-30
Figure 4-19: HomingCameraManager... 4-31
Figure 4-20: InstElectronics... 4-32
Figure 4-21: Shutter ... 4-33
Figure 4-22: FilterSubsystem... 4-35
Figure 4-23: CAM1FilterSubsystem.. 4-36
Figure 4-24: Detector... 4-38
Figure 4-25: DataBuffer... 4-40
Figure 4-26: Observatory Model ... 4-42
Figure 5-1: Observatory Simulator User Interface .. 5-3
Figure 5-2: Observatory Validator User Interface ... 5-5
Figure 5-3: Observatory Validator Report Summary .. 5-6
Figure 5-4: MSC Report on Implicit Signal Consumption.. 5-8
Figure 5-5: Model Validation against MSC TurnOnInstrument.. 5-9
Figure 5-6: Model Validation against MSC Observe .. 5-10
Figure 5-7: Observatory TTCN Test Suite Structure... 5-13

Page 1-1 12/7/04 6:19 PM

1 Introduction

1.1 Abstract

This class project involves the application of model-based systems engineering techniques to
automation of system validation and verification (V&V) activities. It identifies a conceptual
framework for automated V&V that is supported by contemporary commercial tools. The
applicability of the framework is then demonstrated through a small but realistic case study. A
commercial tool is used to define a formal model for the system described in the case study,
generate an executable simulation of that system, and use the simulation to validate the model
against high-level use cases and to convert the use cases into formally specified test cases.

1.2 Organization

This report is organized as follows. Section 1 introduces the topic of automated V&V, defining
terminology and discussing the potential benefits. Section 2 describes the conceptual framework
used for this project. This framework is based on a collection of standards for complementary
notations used to represent models and test cases which are supported by commercial tools.
Foremost among these notatons is the Specification and Description Language (SDL). Since my
interest in these techniques is primarily application oriented, this section includes a proposed
methodology intended to guide practitioners in applying these techniques to real systems, and a
brief survey of available tools. At the same time, this project began with a study of a Ph.D. thesis
by Burton1 involving the use of logic-based specification languages for automated V&V. An
attempt is made to understand what was learned from that research and compare Burton’s
approach to the SDL approach.

Section 3 introduces the project case study, which involves a system architecture for a remotely
controlled telescope, and documents the tool configuration used for this project. Section 4
applies the methodology from section 2 to this application, beginning with a definition of system
context and gradually developing a detailed SDL model. At the end of this section, a list of
problems encountered during the modeling work is documented for future reference. Section 5
documents how the model from section 4 was used to apply automated V&V techniques to the
case study. Screen shots and execution traces are used to demonstrate the results of simulation,
model checking and test case generation. Section 6 gives some suggestions for follow-up work.

1.3 Terminology

Since there is widespread confusion on the meaning of the V words and they are not always used
to refer to the same thing, it is prudent to begin with the usual definitions. System validation
refers to checking a body of requirements or other technical data (such as a design) to ascertain
compliance with higher-level requirements or stakeholder needs. System verification refers to
checking that a delivered system meets its requirements, usually by testing (although other
verification methods are employed where testing is costly or impossible). Note that the validation
activity (as defined here) must precede verification, as pointed out in O’Grady.2 Unfortunately,
in standard definitions of V&V the term “verification” is given first, which probably contributes

Page 1-2 12/7/04 6:19 PM

to the confusion on this topic; for this reason (following O’Grady) I have inverted the order in
the title of this paper.

1.4 Motivation

Both validation and verification are currently manual processes in most systems engineering
(SE) environments, and therefore slow and prone to human error. Automating these tasks holds
the potential to accomplish them more reliably and with less effort. The three major project
managment variables — risk, cost and delivery time — are often in conflict, but with regard to
V&V, improved technology raises the prospect that all three may be improved at the same time
(“better, faster, cheaper”).

A system architecture refers to the decomposition of a system into components (which may be
systems in their own right) and a specification for how the components communicate. Automated
validation of system architectures is feasible if the architectures can be formalized to the point
where the external behavior of the system can be predicted and compared to a model of expected
behavior from the original requirements. Large systems are often developed top-down in layers,
with the architecture of one layer giving rise to requirements at the layer below. Therefore,
validating an architecture against higher-level requirements is a means of validating lower-level
requirements. This process can be partially automated for all layers except the top, where
stakeholders must be involved in writing or reviewing the initial requirements to ensure that the
system will meet their needs. Automated validation can substantially reduce the risk of
requirements errors leading to product defects or a system that fails to meet stakeholder needs.
Automated validation makes it easier to catch such errors before detailed design begins, when
the cost of fixing them is much lower.

On the verification side, formal modeling makes it feasible to generate test cases automatically,
even for a system that does not yet exist (specification-based testing). There are two main
advantages to automating the verification process: reliability and cost. Automated test case
generation has the potential to be more reliable than manual techniques because it is more
precise and can find faults that a human engineer would miss. It should also improve
productivity by automating what is normally a labor-intensive process. Testing typically
consumes more than 50% of software development costs in safety-critical systems, with the bulk
of those costs in the construction and review of the test cases rather than their execution3.

Page 2-1 12/7/04 6:19 PM

2 Conceptual Framework

2.1 Formal Methods

As mentioned above, the key to automated V&V is developing a formal model of specified
system behavior. This means a model with precise and unambiguous semantics. Once a formal
model has been developed, it can be used to check the consistency of one specification with
another, and also as a basis to determine if an implementation (“application under test”)
conforms to the specification.

Finite state machines (FSMs) are a popular representation for formal modeling. The
mathematical definition of FSMs satisfies the requirement for precise, unambiguous semantics.
FSMs are not Turing-complete4 and thus fall short of the power of general computation, but this
can be an advantage as it makes their behavior easier to analyze. FSMs are well suited for
describing reactive and embedded systems, which must continually monitor their environment
and respond to any changes. Because they are represented graphically, FSMs allow specification
of behavior through a graphical editor rather than traditional programming, which is often easier
for the domain expert.

Taken individually, FSMs are inadequate to describe a complex system, because there is no
mechanism for abstraction and the number of states and transitions quickly becomes
unmanageable. However, this limitation has been addressed with extended finite state machines
(ESFMs), which allow for communicating networks of concurrent processes each represented by
an FSM. A further extension is Statecharts, which allows states to be partitioned into sub-states
and FSMs to be grouped into a hierarchy. The Unified Modeling Language (UML) provides
several types of diagrams for modeling behavior, but Statecharts are the only one with sufficient
formality for automated V&V. (To make things more confusing, UML 2.0 no longer uses the
term Statechart and goes back to “state machine”5).

2.2 Logic-Based V&V Approaches

This project began with a study of the Burton dissertation1, which involved generating a
Statechart model for a demonstration project in the safety-critical domain of aircraft engine
control. This model was translated into the logic-based specification language Z. (To
demonstrate the generality of the method, a second semi-formal method called PFS was also
used as an input representation and translated into Z.) Automated model checking and theorem-
proving techniques were then applied to check the requirements and generate the test cases. The
test cases themselves were represented formally, which enabled the use of conventional
constraint solving techniques (such as linear/integer programming) to generate test data.

Burton notes that formal methods based on logic-based specification languages such as Z and
VDM have yet to gain much acceptatnce in industry. The main reason is a mismatch between
the representation required by the formal methods (predicate calculus or some variant) and the
representations used in industry for engineering the safety-critical systems that would benefit
most from automated V&V. Logic-based formal languages remain difficult for most engineers
to use, and have the drawback of being very sensitive to change (even a small change in the

Page 2-2 12/7/04 6:19 PM

underlying requirements may force a major rewrite of the formal specification). These problems
make it very costly and often infeasible to write specifications for complex applications directly
in a formal language like Z and then validate them against higher-level requirements. Burton
states that “formal specifications can be extremely time consuming and costly to produce. Small
changes in the requirements can result in much rework of the specification and accompanying
analysis.”6 This was the motivation for beginning with a more “friendly” language for
knowledge capture and developing a translator. However, the proof heuristics used for test case
generation still had to be written in Z, so this architecture required expertise in both
representations.

My original intention to follow this approach in my project had to be abandoned for lack of
suitable tools. Research into Z translation turned up a few interesting academic projects such as
VISTA7 (VIsualization of STAtecharts, from the University of Texas), but little that was freely
available for download. One of the best Web resources in this field is “Formal Methods Links”,
by Mark Utting8. After exploring what seemed like dozens of blind alleys, I did find a freeware
tool called Nitpick (now Ladybug) that is based on a subset of Z9 and got it running on my
Macintosh at home, but its functionality was limited to model checking and did not include test
case generation. Many of the links on the Z User’s Group website10 were broken and many
others dated from the mid-90s, which seemed a bad sign.

One question about the Burton work that seems more important with hindsight is why it was
necessary to translate the model into Z in the first place. Burton makes it clear why Z is
unsuitable as a modeling language and then arrives at the solution of capturing a model from a
graphical language like Statecharts and translating it into Z. But why not use the Statechart
model directly, which has the advantage of already being supported by commercial tools?
Burton also mentions SDL and UML as “other popular graphical notations that are also
supported by commercial tools”, but goes on to say:

Statecharts go some way to satisfying Leveson’s requirements
on specification languages by hiding the formalism of the
model but retaining a well defined set of semantics (although
there are currently many different versions of the semantics
in circulation). Statecharts provide a means of visualizing
changes to the system state and can be a more intuitive way of
specifying functional behaviour than model-based notations
such as Z or VDM-SL. However, the languages and supporting
tools are often poorly integrated into the verification and
validation parts of the process. The semantics of the
notations tends to be complex and are often not obvious from
inspection of the diagrams alone. This complicates the task of
providing automated V&V support for these notations.11

This seems a rather weak argument: even if some tools are “poorly integrated” into the V&V
process, all of them don’t have to be. Tools will evolve in the direction demanded by the users,
so if users demand well integrated support for automated V&V, it will be provided. Logic-based
languages clearly have many potential advantages for V&V. A predicate-calculus representation
facilitates the use of theorem-proving techniques to prove properties about the specification and
the application under test. The idea of applying these same techniques to the test cases

Page 2-3 12/7/04 6:19 PM

themselves for optimization is also powerful. However, the lack of commercial support for these
languages (which have been around a long time) indicates that these advantages are not yet
compelling enough to overcome the usability difficulties and persuade a significant number of
users to switch. Because of the lack of standards and tools, each researcher in this area has to
develop their own translator. Do we want to spend our time doing automated V&V, or writing
translators? It may be an interesting area of research, but from an engineering perspective it
definitely seems like a backwater.

I was more interested in finding a tool that was powerful enough to cover a range of automated
V&V activities. Commercial tools tend to be of higher quality and better supported than the one-
of-a-kind academic packages available on the Web. I was fortunate to find one that was
available under an existing UMD academic license. Along the way, I found there were some
interesting concepts behind the tools.

2.3 Standard Notations for Formal Modeling

Before plunging into modeling a system, it is helpful to have at least a rudimentary knowledge of
three formal notations that have been developed to support model-based systems engineering:
SDL, MSC, and TTCN. SDL is used to specify system architectures and state-machine models.
MSC is used to represent requirements in the form of use cases and to trace execution. TTCN
provides an abstract yet formal representation for test cases. All of these are nonproprietary,
backed by standards, and can be represented in either a graphical form (for model capture and
display) or a textual form (for storage and interchange with other tools). Taken together, they
represent a powerful foundation for automated V&V.

2.3.1 Specification and Description Language (SDL)

SDL had its origins in the telecommunications industry. Mitschele-Thiel introduces SDL as
follows:

SDL is the main specification and description technique in the
telecommunications area. SDL has been standardized by the
International Telecommunications Union (ITU). In conjunction
with tools, SDL is used by the majority of companies in the
telecommunications industry, mainly to design communication
protocols and distributed applications. In addition, it is
employed during the standardization process of new protocol
specifications by international standardization organizations
such as ITU and ETSI. Besides its use in telecommunication,
there is growing interest in using SDL for the design of real-
time and safety-critical systems.12

SDL combines ESFMs with hierarchical data flow diagrams for structuring a system into a
hierarchy and passing signals between different nodes in the hierarchy. The top layer of an SDL
model is the system, which consists of one or more blocks. Blocks can contain either processes
(modeled as FSMs) or other blocks (thus blocks may be nested as many times as necessary), but
not a mixture of blocks and processes. Actual behavior is specified in the processes, which are
defined as FSMs. Within a process, transitions are specified through additional symbols, not by

Page 2-4 12/7/04 6:19 PM

drawing arrows between states. A transition is defined by specifying the input to be read and the
next state. As part of the transition, the process may also send an output to another process, set a
timer, or assign a local variable. More detailed logic may be specified by calling a procedure.

Processes communicate by exchanging signals, which are propagated from one diagram to
another through use of named input/output ports. Delays may be modeled on communication
channels13; this could be used, for example, to simulate network performance or model light-time
delay when communicating with a distant spacecraft. Processes may be dynamically created or
destroyed. Processes are concurrent and asynchronous, but may be synchronized by exchanging
signals. All signals and local variables must be explicitly declared in the highest-level agent
(system, block or process) that uses them. Processes do not have access to the local data of other
processes. Signals can activate transitions in other processes, generating other signals that
propagate through the system. When there are no more transitions to execute in the model, time
is allowed to advance. When a timer expires, it generates an event within the process that set it,
which is treated like an internal signal. There are a lot more subtleties to the language, of course,
but the above paragraph is enough to get started. The full ITU Z.100 specification14 is freely
available on the Web. While this is hardly a learning guide, it proved indispensable on several
occasions when I needed to know some detail of the language.

The original Z.100 recommendation for SDL was in 198015, and the standard has been updated
roughly every four years. A major extension occurred in 1992 (SDL-92) with support for object
orientation through the definition of classes for agents (referred to as types) with single
inheritance. The latest update, SDL-2000, extends the ESFM model to allow for composite
states, making the SDL model equivalent to Statecharts.16

While Mitschele-Thiel dismisses the abstract structuring constructs of SDL (system and block
diagrams) as merely a static structuring construct that “does not have a major influence on the
implementation”17, I see this as the most important aspect of SDL for large-scale systems
engineering. Data flow diagrams are an indispensable technique for defining system architecture.
In most SE environments these diagrams are widely used, but they are drawn with a general-
purpose graphics tool (e.g. Visio or Powerpoint), with no notion of legal syntax or consistency
checking, and even complex systems are often depicted with a flat diagram. UML provides
some capabilities for modeling system architecture (component diagrams, deployment diagrams,
and in UML 2, component structure diagrams), but there is no mechanism for formally
connecting diagrams at different levels in a hierarchy. SDL makes it easy to draw hierarchical
diagrams with formalized interfaces, so that each level can contain the requisite amount of detail
without becoming overly cluttered. This model can be checked for consistency across diagrams
(such as a signal at one level not connecting to a signal at the next higher level).

When a system is partitioned into blocks (or a block into lower-level blocks), a decision must be
made on which lower-level entity handles each signal coming into the system from outside, and
how the lower-level entities collaborate to support the interfaces at the higher level. This
amounts to allocating interface requirements to subsystems, an important aspect of requirements
engineering. In complex systems, many requirements problems arise not from misunderstanding
of the requirement itself, but from confusion over which subsystems are responsible for handling
the requirement and how they communicate (a problem familiar to anyone who has worked in a

Page 2-5 12/7/04 6:19 PM

large organization). Keeping the different levels of requirement consistent is a hard problem in
practice, and formalizing the architecture permits the detection of inconsistencies that might
otherwise go unnoticed until much later.

As its name implies, SDL is intended as both a specification language (through the system
arcthitecture expressed as a hierarchy of system and block diagrams) and a design language
(through the process behavior, which can be as detailed as needed). One problem with FSMs
from an SE perspective is that the definition can be too detailed. Systems engineers need to
enforce a clear boundary between their model of the system and the system itself. For systems
containing hardware elements, this separation of perspective is enforced because the hardware
elements must be simulated. For software-only systems, it is harder to know where to stop.
Models can be used to generate an application, and tools like Rational Rose18are designed to do
just that, but this is not an SE activity. Therefore, defining state-machine behavior in detail may
be neither necessary nor desirable from an SE perspective. On the other hand, defining complex
system architectures is an SE activity. SDL’s abstraction features enable detailed exploration of
the system architecture while the processes underlying that architecture are kept very simple,
exposing just enough behavior to support the interfaces. This project was intended in part to
illustrate how a complex system can be modeled with little or no knowledge of the detailed
behavior of its components.

2.3.2 Message Sequence Charts (MSCs)

The MSC language , another ITU standard, is both a requirements language and a trace language.
As a requirements language, MSCs formalize a use case by defining sequences of messages that
are to be exchanged between objects and between objects and external actors. Each object or
actor is drawn with a vertical bar, which is called its lifeline. Time is implicitly on the vertical
axis while communication between processes is horizontal. This concept is familiar from UML
sequence diagrams, but MSCs are a bit more formal.

MSCs come in two flavors, “system level” and “process level.” A system-level MSC represents
the system as a single column, showing only the messages exchanged between the system and its
environment. (In both SDL and MSC, all external interfaces to an agent are shown as going to
“the environment”; there is no way to make distinctions among external actors.) A process-level
MSCs depicts the internal communications of the system, showing messages exchanged between
individual processes and between processes and the environment.

As a trace language, an MSC records the dynamic behavior of an execution trace of the system,
showing the actual messages exchanged. The use of the same notation for requirements and
execution traces permits easy comparison for V&V purposes.

There is also something called a high-level message sequence chart (hMSC), which appears to be
a way to structure and organize MSCs, but I had no time to investigate that in this project.

Page 2-6 12/7/04 6:19 PM

2.3.3 Test and Test Control Notation (TTCN)

TTCN is also referred to as Tree and Tabular Combined Notation. It is an ISO standard for the
reprsentation of test cases as event trees. A TTCN test suite is “a collection of test cases together
with all the declarations and components needed.”19TTCN provides an abstract representation for
a test suite, suitable for user inspection and editing. Later, the TTCN suite can be compiled into
the target language to generate test driver software. TTCN is designed for black-box testing: the
application under test can be perturbed and observed only at predefined interfaces, called points
of control and observation (PCOs).

2.4 SDL Tools

A good tool will make just about any job easier, but in the case of model-based SE, the use of
automated tools is not merely a convenience: it is the whole point of building the model. SDL
tools can perform the following functions:

• Graphical editing and syntax checking
• Model checking (also referred to as static analysis; this checks consistency between

different model elements)
• Animation of a specification via executable simulation
• State-space exploration (a more advanced form of model checking which searches the

execution space of the system to look for paths that might lead to an error)
• Validation of an SDL architecture against an MSC use case
• Test case generation, guided either by manually driven simulation or by MSCs

Telelogic appears to be the market leader in this area through its Tau/SDL20 product. According
to Mitschele-Thiel, the best-known SDL tools as of 2001 were Tau/SDL and ObjectGEODE21.
ObjectGEODE, originally developed by CS Verilog, has since been acquired by Telelogic. A
quick Web survey did turn up some competitors, such as Solinet’s SAFIRE-SDL product22and
Cinderella23. A new tool called ezSDL24from United Computer Scientists, Ltd. has just been
released.

All these appear to be high-end tools marketed to large organizations. Cinderella is the only one
whose website gave pricing information, and it showed prices of $2500 for the SDL portion and
another $1600 for the MSC tools (TTCN was not mentioned). I chose Tau/SDL for this project.
Its advertising literature was impressive, and UMD happened to have a license for the product
through the CS department. This license had been allowed to expire, but with the help of Prof.
Victor Basili, it was renewed in time to use it on the project.

Page 2-7 12/7/04 6:19 PM

2.5 Proposed Methodology

The activity diagram in Figure 2-1 depicts the proposed process for automated V&V (taken in
part from the Tau/SDL methodology guidelines).

Figure 2-1: Automated V&V Methodology

The first three steps are familiar. First a set of high-level, informal text requirements is
collected. Second, an initial set of use cases is defined. Here these are represented in the form of
system-level MSCs. Third, a domain model (class diagram) for the key objects in the domain is
developed. This class diagram is not used in SDL, which has relatively poor features for object-
oriented data structures, but it is recommended anyway in order to understand the domain better
in preparation for system architecture definition.

The next step is to define the architecture of the system as SDL system and block diagrams. The
SDL model is normally developed top-down, although it is also possible to assemble it bottom-

Page 2-8 12/7/04 6:19 PM

up from reusable components. In this process it is assumed that no suitable components exist.
After checking and reviewing the system architecture, the process-level behavior is defined.
This opens the way to generating an executable simulation of the system.

Once the executable is generated, the system is simulated to validate the system architecture and
process-level design. The simulation is run and inspected by hand, so validation is still a manual
process at this point. The next step, however, is to validate that the system-level use cases
(MSCs) developed at the beginning can be executed as expected using the SDL model. If this
validation is successful, the process proceeds to verification, which is accomplished by using the
MSCs to generate a TTCN test suite. This test suite can be run against the actual application
once it is developed. In an incremental development model, the system is elaborated with
additional MSCs and the process is repeated as often as necessary.

Page 3-1 12/7/04 6:19 PM

3 Project Formulation

3.1 Remote Astronomy Case Study

The case study chosen for this project was control of a remote astronomical observatory, a
continuation of the project from ENSE 621. This application is modeled after a space
observatory such as Hubble or James Webb, but because there is nothing in the model that
requires the telescope to be in space, it was abstracted as a remote observing platform which
could be anywhere. In this extremely simplified model, the observatory supports only a single
instrument (a camera). The observer can turn the instrument on, turn it off, or use it to take an
exposure with a specified duration and bandpass filter. Before an exposure is taken, the
telescope must be slewed to the target and guide stars must be acquired to stabilize the pointing.
During the exposure, photons arrive from the environment, are captured and focused by the
telescope, and are stored in a detector within the camera. After the exposure is complete, the
instrument is commanded to “read out” its data into an internal data buffer. Subsequent
exposures can also add data to the buffer. When a series of exposures is complete, the observer
commands the instrument to dump the data buffer to secondary storage (a data recorder). A
subsequent command will download the data from the recorder.

While this is a greatly oversimplified description of how a real observatory is operated, it still
gives rise to a complex architecture to model the observatory, providing an adequate basis for
evaluating the suitability of SDL for this type of problem. The point of the project was to
demonstrate a process for automated V&V, not to model the application in detail. I had
originally planned to add some contingency scenarios to work in more reactive behavior. This
extension would not have been difficult, but had to be dropped for lack of time.

3.2 Tau/SDL Configuration

The Tau/SDL software (version 4.6) was installed on a Windows platform at home. Tau/SDL
requires installation of a third-party C compiler in order to produce executable applications.
Borland and Visual C++ were recommended. I downloaded the recommended freeware Borland
C++, installed it, and verified that it could be used to compile a trivial “hello, world” program.

Tau/SDL apparently offers no way for the user to configure the system with the C compiler; it
just uses the operating system to find the compiler and then runs it. This worked the first time
(I’m not sure what would happen if more than one compiler were installed). The only hitch is
that the C compiler version available from Borland (version 5.5) was newer than the one listed as
supported in the Telelogic documentation (version 5.02). It is possible this configuration change
may have introduced incompatibilities, which could explain some of the strange behavior
documented in section 4.6 below.

Page 4-1 12/4/04 12:23 PM

4 System Definition

4.1 System Context

The use-case diagram in Figure 4-1 defines the system context for the Observatory case study.
There are three external actors, an Observer (who operates the Observatory and receives the
data) and two from the sky, a Target and GuidingSource. In this simple model, there are three
use cases: TurnOnInstrument, TurnOffInstrument, and Observe. The Observer participates in all
three. The Target and GuidingSource participate only in the Observe use case.

Figure 4-1: Observatory System Context

4.2 Use Case Definitions

The use cases in this project were represented as system-level MSCs for future use in validating
the SDL model. Figure 4-2 and Figure 4-3 show the externally visible behavior for
TurnOnInstrument and TurnOffInstrument, which is so simple as to be trivial. The Observer
(acting through the Environment) sends an InstrumentOn command to the Observatory, which

Page 4-2 12/4/04 12:23 PM

responds after some time with an InstrumentReady signal. TurnOffInstrument is similar: the
environment sends an InstrumentOff command, and the Observatory responds with confirmation
via InstrumentPowerOff.

Note that the InstrumentOff use case includes the InstrumentOn use case as a preamble. Since
these use cases are intended to be used formally in validating the model, we have to be careful
about their definition. When the model is started, the instrument state is initialized to
PoweredOff, but in order to test the InstrumentOff use case, it should be in the Ready state. I
wasn’t sure how to define preconditions for an MSC or refer to one MSC in another (perhaps this
is what the hMSC construct is for), so to avoid any ambiguity, I simply duplicated the
TurnOnInstrument behavior as the first step in both TurnOffInstrument and Observe. For a more
complex set of use cases, it would be necessary to find a more modular approach.

Figure 4-2: TurnOnInstrument

Page 4-3 12/4/04 12:23 PM

Figure 4-3: TurnOffInstrument

Figure 4-4 shows the Observe use case, a specific test scenario that is used as a basis for the
automated V&V work in this project. After turning the instrument on, the Observer sends an
Expose command. This command specifies the instrument to be used (CAM1), the celestial
coordinates (right ascension and declination) of the target to be observed, the celestial
coordinates of the guiding source, the exposure duration (5 time units), and the filter name
(VIS_FILTER). Note that the exposure does not begin immediately; the system must wait for a
GSLock signal from the environment, confirming that the telescope pointing has been stabilized
enough to provide meaningful data. (The planned contingency scenarios involved failure to
establish lock or loss of lock after it had been achieved.)

Page 4-4 12/4/04 12:23 PM

Figure 4-4: Observe

After sending the GSLock signal, the exposure begins. PhotonArrival signals begin arriving
from the target (also part of the environment). This model assumes that photons arrive in
packets, with a specified number of counts. While this is not physically realistic, it is convenient
for testing: a large number of counts can be simulated with a small number of signals. In this
scenario, five distinct PhotonArrival signals with slightly different count values are sent during
the exposure.

When the specified exposure time has elapsed, the Observatory sends an ExposureComplete
signal to the Observer. Additional exposures could then be taken, but in this scenario, the
Observer immediately sends a DumpDataBuffer command to get the data off the instrument and

Page 4-5 12/4/04 12:23 PM

onto the recorder. When this has been accomplished, the Observatory responds with a
BufferDumpComplete signal. The Observer then sends a DownloadData command and the
Observatory responds with a DataAvailable signal. In this simplified model, the only “data” that
is returned is a count of photons received during the set of exposures that produced the data on
the recorder. This is sufficient to test that there is a meaningful relationship between input and
output. For this use case to be verified, the model must be capable of processing five independent
PhotonArrival signals, adding them, and returning the sum when the DownloadData command is
received.

Page 4-6 12/4/04 12:23 PM

4.3 Domain Model

Figure 4-5 gives the class diagram for the Observatory system. This information is not used in
the model itself, but following the proposed methodology (section 2.5), it is performed as an
exercise in order to improve understanding of the domain prior to developing the model. The
model shows the Observatory as an aggregation of three subsystems, a Telescope,
InstrumentModule, and SupportModule. (In the relatively crude SDL object model used to
develop this class diagram, there is no symbol for generalization and no distinction between
aggregation and composition.) The SupportModule contains the DataRecorder. The Observatory
receives data from an Astronomical_Object, which may be either a Target or a Guiding_Source.

The InstrumentModule contains a Guider and a ScienceInstrument, which may be either a
Camera or a Spectrograph. A ScienceInstrument contains an InstElectronics subsystem, a
FilterSubsystem, a Detector, and a DataBuffer. The FilterSubsystem contains a FilterWheel,
which consists of one or more Filters. If the ScienceInstrument is a Camera, it additionally
contains a Shutter to block external light to permit certain types of calibrations.

This model serves as a basis for the system architecture developed in section 4.4, but the entities
defiend here do not match the SDL agents exactly. That is because the architecture definition
inevitably led to a more precise understanding of the system and resulted in the definition of
additional entities that may be logical (representing software) ather than physical. The class
diagram is intended to be more high-level and conceptual, and was not updated to reflect the
particular architecture defined for this system.

Page 4-7 12/7/04 6:19 PM

Figure 4-5: Observatory Class Diagram

Page 4-8 12/7/04 6:19 PM

4.4 SDL Architecture

The architecture of the Observatory system is defined in seven SDL agents: one system diagram
and six block diagrams. As many as three levels of abstraction were needed before the process
level was reached.

Figure 4-6 shows the top-level system diagram. All the responsibilities of the system, in terms of
supporting the external interfaces from the use cases, must be defined at this level. The use cases
defined five commands from the Observer: InstrumentOn, InstrumentOff, Expose,
DumpDataBuffer, and DownloadData. The signals returned to the Observer are
InstrumentReady, InstrumentPowerOff, ExposureComplete, BufferDumpComplete, and
DataAvailable. Further, there are two physical signals from the environment that must be
processed: GSLock and PhotonArrival. These represent interface requirements that the system
must support. Each “channel” to the environment is given a global name so it is visible to agents
at lower levels; this serves to identify the external interfaces on those diagrams. By convention,
separate channels are defined for input and output.

Note that the above interface requirements must not only be defined, but also allocated to
subsystems (blocks). The Observatory comprises three subsystems: InstrumentModule,
SupportModule, and TelescopeBlock. InstrumentModule handles all the commands from the
observer that go to an instrument. SupportModule, which will contain the data recorder, handles
the DownloadData command. The PhotonArrival physical signal goes to the TelescopeBlock.
The GSLock physical signal goes to the InstrumentModule, which will contain the guiding
sensor.

Further, internal interfaces may be introduced to define signals that are not visible to the
environment but are needed to communicate among subsystems. In this architecture there are
two internal interfaces. The interface between InstrumentModule and SupportModule allows the
InstrumentData to be transferred when the data buffer is dumped to the recorder. The interface
between InstrumentModule and TelescopeBlock allows the InstrumentModule, which receives
the Expose command, to tell the TelescopeBlock to slew to the target. The TelescopeBlock
sends a SlewComplete signal when the slew is finished. The TelescopeBlock also passes the
PhotonArrival physical signal on to the InstrumentModule for processing.

Page 4-9 12/7/04 6:19 PM

system Observatory 1(1)
SIGNAL
BufferDumpComplete(charstring),
DataAvailable(integer),
DownloadData,
DumpDataBuffer(charstring),
Expose(charstring, Integer, Integer,
Integer, Integer, Duration, charstring),
ExposureComplete(charstring),
GSLock,
InstrumentData(integer),
InstrumentOn(charstring),
InstrumentOff(charstring),
InstrumentReady(charstring),
InstrumentPowerOff(charstring),
PhotonArrival(integer),
Slew (integer, integer),
SlewComplete;

InstrumentModule

SupportModule
TelescopeBlock

C1

InstrumentOn,
InstrumentOff,
Expose,
DumpDataBuffer

C2

InstrumentReady,
InstrumentPowerOff,
ExposureComplete,
BufferDumpComplete

C9

InstrumentData

C5
GSLock

C7

Slew

C3

DownloadData

C8
PhotonArrival,
SlewComplete

C6

PhotonArrival
C4

DataAvailable

Page 4-10 12/7/04 6:19 PM

Figure 4-6: Observatory (Level 1)

Figure 4-7 shows the diagram for a much simpler agent, SupportModule. This one has only one
process, DataRecorder, which handles all the interfaces. The channel names (C3, C9, and C4)
match the interface responsibilities from the Observatory diagram that were allocated to
SupportModule: DownloadData, InstrumentData, and DataAvailable. Additional signal routes,
SM1-SM3, are defined to pass these signals into the DataRecorder process.

The DataRecorder process (the large hexagon in the figure) is defined as an instance of the
DataRecorder process type: a class that encapsulates behavior (shown as a smaller hexagon
with double lines). All the processes in this model but one are defined as process types to
illustrate this object-oriented capability. Process types can be reused in any application that
supports the same interfaces. The declaration (1,1) states that the block is initialized with one
instance of this process and that the maximum number of instances is also one. The SDL
capability for dynamic creation of process instances was not used in this project, since most
processes correspond to physical components that always exist.

Page 4-11 12/7/04 6:19 PM

block SupportModule 1(1)

DataRecorder(1,1):
DataRecorder

DataRecorder

C3 SM1
DownloadData

DR1

SM3
DataAvailable

DR3C4

C9 SM2
InstrumentData

DR2

Figure 4-7: SupportModule (Level 2)

Figure 4-8 shows the TelescopeBlock, which is a bit more interesting. This block comprises two
processes, OpticalAssembly and AttitudeControlSystem. Recall from the Observatory diagram
that TelescopeBlock had two input channels, C6 and C7, and one output channel, C8. The
OpticalAssembly block, which contains the physical telescope, simply passes the PhotonArrival
signal through to its environment (note that the block has no visibility to anything that happens
outside its scope). This is the behavior required from the Observatory diagram, which showed
PhotonArrival as coming from the environment and being passed through from TelescopeBlock
to InstrumentModule. However, since the component is still being modeled by an active
process, the InstrumentModule must define the behavior to process the input and generate the
output. If this does not happen, the signal will be blocked.

Page 4-12 12/7/04 6:19 PM

The AttitudeControlSystem block is equally simple: it handles the Slew command and sends a
SlewComplete signal to its environment when done. Both blocks are defined as process types, as
before.

block TelescopeBlock 1(1)

OpticalAssembly(1,1):
OpticalAssembly

AttitudeControlSystem(1,1):
AttitudeControl

AttitudeControl OpticalAssembly

C6 TB1
PhotonArrival

AC1

TB2

PhotonArrival

AC2
C8

C7
TB3

Slew

AC3

TB4
SlewComplete

AC4

Figure 4-8: TelescopeBlock (Level 2)

Figure 4-9 shows the InstrumentModule block, which contains most of the complexity in this
model. In order to manage this complexity, three additional blocks are defined. The
InstManagerBlock manages all the interfaces with the observer. The guiding function is
assigned to the GuiderBlock, while the single instrument in our model (CAM1) handles all
instrument commanding and data processing.

This block, unlike the previous two, has internal interfaces between subsystems, and so
additional signals are declared. The InstManagerBlock sends a DropLock command to the

Page 4-13 12/7/04 6:19 PM

GuiderBlock at the start of an exposure, in preparation for a slew to a new target. After a slew is
complete, it sends a LocateGS command to the GuiderBlock, which is answered by a GSLocated
signal. If the guide star is successfully located, the InstManagerBlock can send an AcquireGS
command to the GuiderBlock. The GuiderBlock must wait for a GSLock signal from its
enviroment before sending the LockEstablished signal to the InstManagerBlock.

The InstManagerBlock passes the four instrument commands from the environment
(InstrumentOn, InstrumentOff, Expose, and DumpDataBuffer) on to CAM1 and relays the result
signals back to the environment. The Expose Command is changed to DoExposure at this point
to simplify the interface. In addition, the physical PhotonArrival signal is passed into the
instrument.

block InstrumentModule 1(1)
SIGNAL
AcquireGS,
DoExposure (Duration, charstring),
DropLock,
GSLocated,
LocateGS (integer, integer),
LockEstablished;

InstManagerBlock

GuiderBlock

CAM1

C1
IM1

InstrumentOn,
InstrumentOff,
Expose,
DumpDataBuffer

IM7
LocateGS,
AcquireGS,
DropLock

IM8
GSLocated,
LockEstablished

IM2

InstrumentReady,
InstrumentPowerOff,
ExposureComplete,
BufferDumpComplete

C2

IM3
Slew

C7 IM9
InstrumentOn,
InstrumentOff,
DoExposure,
DumpDataBuffer,
PhotonArrival

IM10
InstrumentReady,
InstrumentPowerOff,
ExposureComplete,
BufferDumpComplete,
InstrumentData

IM5

InstrumentData
C9

C5
IM6

GSLock

C8 IM4
PhotonArrival,
SlewComplete

Figure 4-9: InstrumentModule (Level 2)

Page 4-14 12/7/04 6:19 PM

Figure 4-10 shows the InstrumentManager block, which consists of a single process called
InstrumentManager. This process receives all the inputs from the environment and generates all
the outputs. The same goes for GuiderBlock (Figure 4-11). Blocks like these, containing a single
process, would be unnecessary if not for the SDL restriction that blocks and processes may not
be mixed in the same diagram.

Page 4-15 12/7/04 6:19 PM

block InstManagerBlock 1(1)

InstrumentManager

IM7IM1 IMP1
InstrumentOn,
InstrumentOff,
Expose,
DumpDataBuffer

IMP7
LocateGS,
AcquireGS,
DropLock

IMP2
InstrumentReady,
InstrumentPowerOff,
ExposureComplete,
BufferDumpComplete

IM2

IMP9
InstrumentOn,
InstrumentOff,
DoExposure,
DumpDataBuffer,
PhotonArrival

IM9
IMP3

Slew
IM3

IMP5
InstrumentData

IM5

IM8IMP8
GSLocated,
LockEstablished

IM4 IMP4
PhotonArrival,
SlewComplete IM10IMP10

InstrumentReady,
InstrumentPowerOff,
ExposureComplete,
BufferDumpComplete,
InstrumentData

Page 4-19 12/7/04 6:19 PM

Figure 4-10: InstrumentManager (Level 3)

block GuiderBlock 1(1)

Guider(1,1):
Guider

Guider

IM7 GB1
LocateGS,
AcquireGS,
DropLock

GD1

GB2
GSLocated,
LockEstablished

GD2IM8

IM6 GB3
GSLock

GD3

Figure 4-11: GuiderBlock (Level 3)

Page 4-19 12/7/04 6:19 PM

Page 4-18 12/7/04 6:19 PM

Figure 4-12 shows the CAM1 block, which manages the instrument behavior. This block has six
processes. Five of these represent physical components: InstElectronics, Shutter,
FilterAssembly, Detector, and DataBuffer. The large process in the center, CameraManager, is a
logical entity that manages the instrument commanding and coordinates the other processes. All
these processes are defined as instances of process types, which is the reason for the large
number of internal labels (representing interfaces from the process type) that clutter the diagram.
The CameraManager is defined as an instance of a special process type called
HomingCameraManager that inherits from CameraManager; this will be explained in section
4.5.

The CAM1 block is responsible for four commands from its environment: InstrumentOn,
InstrumentOff, DoExposure, and DumpDataBuffer. These all go first to CameraManager for
coordination. However, the physical signal, PhotonArrival, is routed directly to the Shutter and
then passed through to the FilterAssembly and Detector.

CAM1 is also responsible for five outputs to the environment: InstrumentReady,
InstrumentPowerOff, ExopsureComplete, BufferDumpComplete, and InstrumentData. The first
four are logical signals and are handled by CameraManager. InstrumentData, however,
represents a physical data flow and is generated by DataBuffer when the buffer is dumped.

The internal interfaces between CameraManager and the other processes are all rather simple.
InstElectronics handles the InstrumentOn command and generates an InstrumentReady signal
when done. The InstrumentOff command is also sent to InstElectronics, but in that case the
CameraManager does not wait for a response. The Shutter accepts OpenShutter and
CloseShutter commands and responds with ShutterOpen and ShutterClosed. The FilterAssembly
accepts PositionFilter and HomeFilter commands and responds with FilterInPlace. The Detector
accepts an Integrate command and sends an ExpComplete signal when done. The Detector also
accepts a ReadOut command, sends InstrumentData to the DataBuffer, and sends an
ROComplete signal when done. Finally, the DataBuffer accepts a DumpDataBuffer command,
sends InstrumentData to the environment, and sends a BufferDumpComplete signal when done.

Page 4-19 12/7/04 6:19 PM

block CAM1 1(1)
SIGNAL
OpenShutter, CloseShutter, ShutterOpen, ShutterClosed,
PositionFilter (charstring), HomeFilter, FilterInPlace,
ReadOut, ExpComplete, ROComplete, Integrate (Duration);

Shutter(1,1):
Shutter

CameraManager(1,1):
HomingCameraManager

InstElectronics(1,1):
InstElectronics

DataBuffer(1,1):
DataBuffer Detector(1,1):

Detector

FilterAssembly(1,1):
CAM1FilterSubsystem

CameraManager HomingCameraManager

FIlterSubsystem CAM1FilterSubsystem
Detector

InstElectronics
DataBuffer Shutter

IM10

IM9

CB17 PhotonArrival

SH4

CB6
ShutterOpen,
ShutterClosed

SH2CM6

CB3
InstrumentOn, InstrumentOff

CM3

IE1

CB4
InstrumentReady

IE2

CM4

CB2

InstrumentReady, InstrumentPowerOff,
ExposureComplete, BufferDumpComplete CM2

CB5
OpenShutter,
CloseShutter

CM5 SH1

CB14
DumpDataBuffer

CM14

DB2

CB16

InstrumentData

DB4

CB15
BufferDumpComplete

DB3

CM15

CB9
Integrate,
ReadOut

CM9

DT1

CB10
ExpComplete,
ROComplete

DT2

CM10

CB13
InstrumentData

DT4DB1

CB7

PositionFilter,
HomeFilter

CM7

FA1

CB8
FilterInPlace

FA2

CM8

CB12
PhotonArrival

FA4DT3

CB11 PhotonArrival

SH3

FA3

CB1

InstrumentOn, InstrumentOff, DoExposure,
DumpDataBuffer CM1

Page 4-20 12/7/04 6:19 PM

Figure 4-12: CAM1 (Level 3)

4.5 SDL Process-Level Design

The above architecture for the Observaatory defines 11 processes (actually 13, since two are
inherited). This section defines the state-machine logic for these processes,

Figure 4-13 shows the DataRecorder process. (My apologies for the appearance of the ovals on
these figures; they were exported to Word nice and sharp, but something seems to have been lost
in transfer across the network.) The start symbol and all input symbols are labeled VIRTUAL to
make the behavior overridable. The process uses a local variable to keep track of the amount of
data on the recorder. The initial state is Empty. When an InstrumentData signal arrives, the
process records the amount of data received and transitions to Readable. If additional data arrive
in that state, the amount of data is incremented.

When a DownloadData command arrives in the Readable state (the double lines indicate that this
is a priority input), the process outputs a DataAvailable signal with the total data on the recorder.
It then resets the amount of data to zero and transitions back to Empty.

Note that not every input is accepted in every state. If a DownloadData command arrives when
the state is Empty, no behavior is defined. In that case, the default SDL action is to have the
process “consume” the signal and ignore it. The signal does not remain in the input queue
waiting for the process to reach a state where it can be handled.

Page 4-21 12/7/04 6:19 PM

process type DataRecorder 1(1)

DCL
RecorderData Integer,
InputSize integer;

VIRTUAL

RecorderData := 0

Empty

VIRTUAL
InstrumentData
(InputSize)

RecorderData :=
InputSize

Readable

Readable

VIRTUAL
DownloadData

DataAvailable
(RecorderData)

RecorderData := 0

EMPTY

VIRTUAL
InstrumentData
(InputSize)

RecorderData :=
RecorderData +

InputSize

-

DR2

InstrumentData

DR1

DownloadData

DR3

DataAvailable

Figure 4-13: DataRecorder

Figure 4-14 shows the AttitudeControl process, which is responsible for the Slew command.
The process keeps track of the current telescope pointing. The initial state is Stationary. When a
Slew command is received, the process saves the destination pointing and enters the Slewing
state. A timer is set to reflect the fact that telescope motions take time (in this model, 10 time
units). When the timer expires, the process sets the current pointing to the destination pointing,
outputs a SlewComplete signal, and transitions to Stationary.

Page 4-22 12/7/04 6:19 PM

process type AttitudeControl 1(1)
DCL
RightAscension Integer, Declination Integer,
DestRA Integer, DestDec Integer;
TIMER SlewTimer;

VIRTUAL

RightAscension := 0

Declination := 0

Stationary

Stationary

VIRTUAL Slew
(DestRA,
DestDec)

SET(Now+10,
SlewTimer)

Slewing

Slewing

VIRTUAL
SlewTimer

RightAscension :=
DestRA

Declination :=
DestDec

SlewComplete

Stationary

AC3

Slew

AC4

SlewComplete

Figure 4-14: AttitudeControl

Figure 4-15 shows the OpticalAssembly process. Since this is a passive component, the flow is
trivial. The process is always in the same state (called Focus), and all it does is accept the
PhotonArrival signal and pass it back to the environment on a different channel.

Page 4-23 12/7/04 6:19 PM

process type OpticalAssembly

DCL
Counts Integer;

VIRTUAL

Focus

PhotonArrival
(Counts)

PhotonArrival
(Counts)
via AC2

-

AC1

PhotonArrival

AC2

PhotonArrival

Figure 4-15: OpticalAssembly

Figure 4-16 shows the process type for Guider. It is initialized to the Idle state. When it receives
a LocateGS command, it sets a 2-unit timer and transitions to Locating. When the timer expires,
it outputs a GSLocated signal and transitions to Ready.

Page 4-24 12/7/04 6:19 PM

When in the Ready state, the guider can accept an AcquireGS command. It then transitions to
Acquiring and waits for the GSLock signal from the environment. When that is received, it
outputs the LockEstablished signal and enters the Guiding state. (A more advanced
implementation would provide for a timeout in case the LockEstablished signal is never
received.)

Once the guider is in the Guiding state, it remains there until it receives a DropLock command,
whereupon it transitions to Idle. Again, a possible extension would accept a loss of lock signal
from the environment while guiding and notify the environment of the problem.

Page 4-25 12/7/04 6:19 PM

process type Guider 1(1)
DCL
GuidingRA Integer, GuidingDec Integer;
TIMER GuidingTimer;

VIRTUAL

Idle

VIRTUAL
LocateGS
(GuidingRA,
GuidingDec)

SET (Now+2,
GuidingTimer)

Locating

VIRTUAL
DropLock

-

Locating

VIRTUAL
GuidingTImer

GSLocated

Ready

Ready

VIRTUAL
AcquireGS

Acquiring

GSLock

LockEstablished

Guiding

Guiding

VIRTUAL
DropLock

Idle

GD1
LocateGS,
AcquireGS,
DropLock

GD2
GSLocated,
LockEstablished

GD3
GSLock

Page 4-26 12/7/04 6:19 PM

Figure 4-16: Guider

The InstrumentManager process is shown in Figure 4-17. This process is more complex than
those above. From the InstrumentModule block, it is responsible for handling four commands
(InstrumentOn, InstrumentOff, Expose, and DumpDataBuffer) and one physical signal
(PhotonArrival), as well as numerous status messages. This is also the only process that is not
implemented as a reusable process type, mainly because its behavior depends on the instrument
configuration of the observatory, which was considered to be inherently application-specific. The
initial state of InstrumentManager is Ready (meaning ready for another command). However,
the InstrumentOn, InstrumentReady, InstrumentOff, and InstrumentPowerOff commands can be
processed and relayed between CAM1 and the environment in any state.

When the Expose command is received, InstrumentManager sends the DropLock signal, issues a
Slew command (which eventually goes to the TelescopeBlock), and transitions to Slewing.
Recall that slews are modeled to take time. When the SlewComplete signal is received,
InstrumentManager issues a LocateGS command to the guider and transitions to GSLocate.
When the guider responds with the GSLocated signal, the process issues an AcquireGS
command and transitions to GSAcquire. When the LockEstablished signal is received,
InstrumentManager issues a DoExposure command to CAM1 and transitions to Exposing.
Recall that this depends on receipt of a GSLock signal external to the model. If this signal is
never received, InsrumentManager will be stuck in GSAcquire and the exposure will never be
executed (see the above comment on the need for a timeout mechanism).

Two input signals are specific to the Exposing state: PhotonArrival and ExposureComplete (the
latter has priority if both are present). The PhotonArrival signal is simply passed through to
CAM1. The ExposureComplete signal is passed back to the environment and results in a
transition to Ready.

When the DumpDataBuffer command is received, InstrumentManager passes it on to CAM1 and
enters the Dumping state. Two inputs are specific to this state: InstrumentData (which has
priority) and BufferDumpComplete. InstrumentData is passed on to the environment (and
eventually the DataRecorder). BufferDumpComplete is passed back to the external
environment.

Page 4-27 12/7/04 6:19 PM

process InstrumentManager 1(1)

DCL
DestSI Charstring, TargetRA Integer, TargetDec integer,
GuidingRA integer, GuidingDec integer, Exptime Duration,
ExpFilter charstring, Counts integer, DataSize integer;

Dumping

InstrumentData
(DataSize)

InstrumentData
(DataSize)
via IMP5

-

BufferDumpComplete
(DestSI)

BufferDumpComplete
(DestSI)
via IMP2

Ready

Ready

Expose
(DestSI,TargetRA,
TargetDec,
GuidingRA,
GuidingDec, Exptime,
ExpFilter)

DropLock

Slew
(TargetRA,
TargetDec)

Slewing

Ready

DumpDataBuffer
(DestSI)

DumpDataBuffer
(DestSI)
via IMP9

Dumping

Slewing

SlewComplete

LocateGS
(GuidingRA,
GuidingDec)

GSLocate

GSLocated

AcquireGS

GSAcquire

LockEstablished

DoExposure
(Exptime,
ExpFilter)
via IMP9

Exposing

PhotonArrival
(Counts)

PhotonArrival
(Counts)
via IMP9

-

ExposureComplete
(DestSI)

ExposureComplete
(DestSI) via IMP2

Ready

*

InstrumentOff
(DestSI)

InstrumentOff
(DestSI)
VIA IMP9

-

InstrumentOn
(DestSI)

InstrumentOn
(DestSI)
VIA IMP9

-

*

InstrumentPowerOff
(DestSI)

InstrumentPowerOff
(DestSI) via IMP2

-

InstrumentReady
(DestSI)

InstrumentReady
(DestSI) via IMP2

-

Page 4-28 12/7/04 6:19 PM

Figure 4-17: InstrumentManager

Figure 4-18 shows the process for CameraManager, which manages the CAM1 instrument. The
initial state is PoweredOff. When the InstrumentOn command is received, CameraManager
relays it to the InstElectronics and transitions to WarmingUp. When an InstrumentReady signal
is received, the process relays it to the environment and transitions to Ready.

The behavior for turning off the instrument is a little different. The InstrumentOff signal may be
processed in any state, and has priority over other inputs. When it is received, CameraManager
relays it to the InstElectronics, sends an InstrumentPowerOff signal to the environment without
waiting for confirmation from the InstElectronics, and transitions to PoweredOff. The rationale
for this deviation from the usual protocol is that there is nothing more to do: the instrument has
been turned off, and the environment might as well know that immediately, particularly since it
might be a safety-critical situation.

The DoExposure command, which initiates the actual exposure, can only be processed in the
Ready state. The first thing that happens is an OpenShutter command and a transition to
OpeningShutter. When confirmation is received that the shutter is open, CameraManager sends
a PositionFilter command to the FilterAssembly and transitions to MovingFilter. When
confirmation is received that the filter is in place, CameraManager sends an Integrate signal to
the Detector and transitions to Exposing.

Once the exposure integration begins, the CameraManager has nothing to do until it is complete
(note that it is not responsible for handling the physical PhotonArrival signals). When the
ExpComplete signal is received, the process issues a CloseShutter signal and transitions to
ClosingShutter. When the ShutterClosed signal is received, the process issues a ReadOut
command to the Detector and transitions to ReadingOut. When the ROComplete signal is
received, CameraManager issues an ExposureComplete signal to the environment and transitions
back to Ready.

The remaining command to handle is DumpDataBuffer. CameraManager relays this to the
DataBuffer and transitions to Dumping. When the BufferDumpComplete signal is received,
CameraManager relays it to the environment and transitions to Ready.

Page 4-29 12/7/04 6:19 PM

process type CameraManager 1(1)
DCL
ExpFilter charstring, ExpTime Duration, SelfSI charstring;

VIRTUAL

PoweredOff

VIRTUAL
InstrumentOn
(SelfSI)

InstrumentOn
(SelfSI) via CM3

WarmingUp

VIRTUAL
InstrumentReady
(selfSI)

InstrumentReady
(selfSI) via CM2

Ready

*

VIRTUAL
InstrumentOff
(SelfSI)

InstrumentOff
(SelfSI) via CM3

InstrumentPowerOff
(SelfSI) via CM2

PoweredOff

Ready

VIRTUAL
DoExposure
(ExpTime,
ExpFilter)

OpenShutter

OpeningShutter

VIRTUAL
ShutterOpen

PositionFilter
(ExpFilter)

MovingFilter

MovingFilter

VIRTUAL
FilterInPlace

Integrate (ExpTime)

Exposing

Exposing

VIRTUAL
ExpComplete

CloseShutter

ClosingShutter

VIRTUAL
ShutterClosed

ReadOut

ReadingOut

VIRTUAL
ROComplete

ExposureComplete
(selfSI)

Ready

VIRTUAL
DumpDataBuffer
(selfSI)

DumpDataBuffer
(selfSI)
via CM14

Dumping

VIRTUAL
BufferDumpComplete
(SelfSI)

BufferDumpComplete
(selfSI)
via CM2

Ready

CM1
InstrumentOn,
InstrumentOff,
DoExposure,
DumpDataBuffer

CM7
PositionFIlter

CM8
FilterInPlaceCM2

InstrumentReady,
InstrumentPowerOff,
ExposureComplete,
BufferDumpComplete

CM9
Integrate,
ReadOut

CM3
InstrumentOn,
InstrumentOff

CM10
ExpComplete,
ROComplete

CM4
InstrumentReady

CM14
DumpDataBuffer

CM15
BufferDumpCompleteCM5

OpenShutter,
CloseShutter

CM6
ShutterOpen,
ShutterClosed

Page 4-30 12/7/04 6:19 PM

Figure 4-18: CameraManager

The above is a description of generic behavior defined for the CameraManager class. However,
in order to experiment with inheritance in SDL, the CAM1 block actually defines the
CameraManager process as an instance of a specialized type, called HomingCameraManager.
The latter is defined as a very simple fragment of behavior (Figure 4-19). Recall that the basic
CameraManager, upon receiving the ExpComplete signal while Exposing, simply issued the
CloseShutter command and transitioned to ClosingShutter. Any behavior specified for a
state/input combination in an FSM essentially amounts to a method, which may be overridden.

In HomingCameraManager, the intent to override behavior is indicated by prefacing the
ExpComplete input (which was defined as VIRTUAL in the superclass) with REDEFINED.
The redefined behavior is to issue a HomeFilter command to the FilterAssembly, which returns
the filter wheel to a default state which is appropriate when not exposing. When the
FilterAssembly completes the motion and sends the FilterInPlace signal,
HomingCameraManager proceeds with the default behavior by issuing the CloseShutter
command and transitioning to ClosingShutter. (Actually, it would have been better to close the
shutter first and insert the filter homing command only after the ShutterClosed signal is
received.)

Page 4-31 12/7/04 6:19 PM

inherits CameraManager;

process type HomingCameraManager

Exposing

REDEFINED
ExpComplete

HomeFilter

HomingFilter

FilterInPlace

CloseShutter

ClosingShutter

CM7

HomeFilter

Figure 4-19: HomingCameraManager

The remaining processes, for the instrument components, are simpler. Figure 4-20, for the
InstElectronics, handles the InstrumentOn and InstrumentOff commands. The initial state of the
instrument is Cold. When the InstrumentOn command is received, the process sets a timer for

Page 4-32 12/7/04 6:19 PM

100 time units and transitions to WarmingUp. When the timer expires, the InstrumentReady
signal is issued and the process enters the Warm state.

A priority input, which can be processed either in Warm or WarmingUp, is the InstrumentOff
command. The response is simply to transition to Cold (no output needed).

process type InstElectronics 1(1)

DCL
SelfSI charstring;
TIMER ElectronicsTimer;

VIRTUAL

Cold

VIRTUAL
InstrumentOn
(selfSI)

SET(Now+100,
ElectronicsTimer)

WarmingUp

WarmingUp

VIRTUAL
ElectronicsTimer

InstrumentReady
(selfSI)

Warm

VIRTUAL
InstrumentOff
(selfSI)

Cold

VIRTUAL
InstrumentOff
(selfSI)

Cold

IE1

InstrumentOn,
InstrumentOff

IE2

InstrumentReady

Figure 4-20: InstElectronics

Figure 4-21 shows the Shutter process, which is responsible for processing the OpenShutter and
CloseShutter commands and the PhotonArrival physical signal. The initial state is Closed. The
OpenShutter command results in an immediate ShutterOpen confirmation signal and a transition
to Open. The CloseShutter command results in an immediate ShutterClosed confirmation signal
and a transition to Closed.

Page 4-33 12/7/04 6:19 PM

The PhotonArrival signal can be processed and passed through to the FilterAssembly only when
the shutter is Open. This signal has priority over CloseShutter (a mistake, because if there were
a continuous stream of photons it would mean the shutter could never be closed!).

process type Shutter
DCL
Counts Integer;

VIRTUAL

Closed

VIRTUAL
OpenShutter

ShutterOpen

Open

Open

VIRTUAL
PhotonArrival
(Counts)

PhotonArrival
(Counts) via SH3

-

VIRTUAL
CloseShutter

ShutterClosed

Closed

SH1
OpenShutter,
CloseShutter

SH2
ShutterOpen,
ShutterClosed

SH3
PhotonArrival

SH4
PhotonArrival

Figure 4-21: Shutter

Page 4-34 12/7/04 6:19 PM

Figure 4-22 shows the generic process type FilterSubsystem. This process type handles one
command, PositionFilter, and one physical signal, PhotonArrival. The process keeps track of the
filter position, which is initially UNKNOWN. The state is always Positioned (there is no
modeling of the time to move the filter). When the PositionFilter command is received, the new
position is saved as the current position and the FilterInPlace signal is issued. The
FilterSubsystem is modeled as always transmitting photons, so when the priority PhotonArrival
signal is received, it is passed through to the Detector. Once again it is a mistake to give priority
to physical signals over commands: the PositionFilter command would be blocked as long as
there was a PhotonArrival signal to process.

In the CAM1 block, however, the FilterAssembly is declared to be an instance of
CAM1FilterSubsystem (Figure 4-23), which specializes FilterSubsystem in order to support the
HomeFilter command. The initialization of the filter position is redefined to CLEAR_FILTER.
When the HomeFilter command is received, the current position is reset to CLEAR_FILTER and
the FilterInPlace signal is issued. Note that there is no need to declare this input as
REDEFINED, since it was not supported in the FilterSubsystem superclass. Note also that
there is no need to declare the CurrentPosition local variable, since it was declared in the
superclass.

Page 4-35 12/7/04 6:19 PM

process type FIlterSubsystem 1(1)

DCL
Counts Integer,
CurrentPosition charstring,
NewPosition charstring;

VIRTUAL

CurrentPosition :=
'Unknown'

Positioned

VIRTUAL
PositionFilter
(NewPosition)

CurrentPosition :=
NewPosition

FilterInPlace

-

VIRTUAL
PhotonArrival
(Counts)

PhotonArrival
(Counts) via FA4

-

FA1
PositionFilter

FA2
FilterInPlace

FA3
PhotonArrival

FA4
PhotonArrival

Figure 4-22: FilterSubsystem

Page 4-36 12/7/04 6:19 PM

inherits FilterSubsystem;

process type CAM1FilterSubsystem

REDEFINED

CurrentPosition :=
'CLEAR_FILTER'

Positioned

Positioned

HomeFilter

CurrentPosition :=
'CLEAR_FILTER'

FilterInPlace

-

FA1
HomeFilter

Figure 4-23: CAM1FilterSubsystem

Figure 4-24 shows the process for Detector, which is responsible for two commands, Integrate
and ReadOut, and one physical signal, PhotonArrival. The Detector keeps track of the photons
received during the exposure. Upon initialization, it sets this count to 0 and enters the Idle state.

Page 4-37 12/7/04 6:19 PM

When the Integrate command is received, the Detector sets a timer for the ExpTime that was
specified as an argument to the command, and transitions to Integrating. (Note that this is the
first time in this project that a timer was set with a variable duration; this will only work if the
variable is declared to be of the special type Duration.)

When the Detector is in the Integrating state, the physical PhotonArrival signal finally reaches a
place where it can be processed (again it is a mistake to make it a priority input). The Detector
increments the count by the number of photons received. When the exposure timer expires, the
Detector issues the ExpComplete signal to the CameraManager and transitions to DataAvailable.
At this point the photon data is stored on the physical detector, but not yet in buffer memory.

When the ReadOut command is received, the Detector issues the InstrumentData signal with the
total number of counts, transferring the data to the DataBuffer. The Detector then resets the
number of counts to 0, issues the ROComplete signal to the CameraManager, and transitions to
Idle, making it ready for a new exposure.

Page 4-38 12/7/04 6:19 PM

process type Detector 1(1)
DCL
ExposureCounts Integer,
ExpTime Duration,
NewCounts Integer;
TIMER DetectorTimer;

VIRTUAL

ExposureCounts := 0

Idle

VIRTUAL
Integrate
(ExpTime)

SET
(Now+ExpTime,
DetectorTimer)

Integrating

Integrating

VIRTUAL
PhotonArrival
(NewCounts)

ExposureCounts :=
ExposureCounts +

NewCounts

-

VIRTUAL
DetectorTimer

ExpComplete

DataAvailable

DataAvailable

VIRTUAL
ReadOut

InstrumentData
(ExposureCounts)

ExposureCounts := 0

ROComplete

Idle

DT1
Integrate,
ReadOut

DT2
ExpComplete,
ROComplete

DT3
PhotonArrival

DT4
InstrumentData

Figure 4-24: Detector

Page 4-39 12/7/04 6:19 PM

The last process, DataBuffer, is shown in Figure 4-25. This process is similar to Recorder. The
buffer keeps track of the number of photons it stores, initially zero. The initial state is Empty.
When the InstrumentData signal is received in this state, the DataBuffer sets the buffer count to
the size of the instrument data from the signal and transitions to Readable. In this state,
additional InstrumentData signals may be processed; these result in the buffer count being
incremented by the size of input data.

When the priority input DumpDataBuffer is received in the Readable state, the process issues the
InstrumentData signal to dump the buffer to the DataRecorder and resets the buffer count to 0,
issues the BufferDumpComplete signal to the CameraManager, and transitions to Empty.

Figure 4-26 shows the finished model as it appears in the Tau/SDL Organizer window.

Page 4-40 12/7/04 6:19 PM

process type DataBuffer 1(1)
DCL
BufferData Integer,
InputSize Integer,
selfSI charstring;

VIRTUAL

BufferData := 0

Empty

VIRTUAL
InstrumentData
(InputSize)

BufferData := InputSize

Readable

Readable

VIRTUAL
InstrumentData
(InputSize)

BufferData :=
BufferData + InputSize

-

VIRTUAL
DumpDataBuffer
(selfSI)

InstrumentData
(BufferData) via DB4

BufferData := 0

BufferDumpComplete
(selfSI)

Empty

DB1
InstrumentData

DB2

DumpDataBuffer

DB3
BufferDumpComplete

DB4
InstrumentData

Figure 4-25: DataBuffer

Page 4-41 12/7/04 6:19 PM

Page 4-42 12/7/04 6:19 PM

Figure 4-26: Observatory Model

4.6 Bugs and Limitations

The following modeling problems (listed in decreasing order of severity) were encountered
during this project. I was able to work around all of them, but they are documented for future
reference. Some of these may be due to my own lack of famliarity with SDL rather than a
deficiency in the language or the Tau/SDL tool.

• Real Numbers. Use of real numbers in SDL caused the executable application to crash.
This also happened in some of Telelogic’s own tutorials, but not in the main
“DemonGame” tutorial, which uses only integers. The workaround was to redeclare all
reals as integers. This detracted from the realism of the simulation in a few places, but
did not prevent any logical paths from being modeled.

• Generic Dispatch. The instrument commands from the observer specifiy the instrument
being used. The intent was that the InstrumentManager process would dispatch to the
process designated by that argument. However, I was unable to find a way to do this in
SDL. The ID of a dynamically created process can be saved when the process is created,
but I couldn’t figure out how to invoke a static process by reference (character strings
didn’t work). This didn’t matter for the project, since there is only one instrument
anyway, but in a real observatory there would typically be several instruments and it
would be desirable to address them directly rather than having to go through the
equivalent of an extended case statement.

• Services. One problem with graphical programming is the need to keep diagrams small
enough to fit on a page. For the most complex processes, such as InstrumentManager
and CameraManager, it would have been desirable to break them up into separate
diagrams. SDL is supposed to offer a construct called “services” that is designed for this
purpose25, but Tau/SDL did not appear to support it.

• Specialization to instances. There does not appear to be a way to specialize a process
type to a process instance, rather than having to define a subtype. This would have been
very useful for the specialization of FilterSubsystem. The process that accepts the “home
filter” command cannot really be generic (because the home position must be specified,
and this could be different for each instrument), but I could not specialize to an instance,
so I had to create the artificial process type CAM1FilterSubsystem.

Page 5-1 12/7/04 6:19 PM

5 Validation and Verification Using Executable Model

5.1 System Simulation

Once an executable application is generated from a model, Tau/SDL brings up a Simulator user
interface, which can be customized for the particular application. The user can send signals from
the environment, single step through the model, run until there are no more transitions to
execute, or run until a certain value of the modeled system time. Breakpoints can be set at
interesting points in the process. Execution can be traced textually at a variety of verbosity
settings and graphically by bringing up the applicable SDL diagram when execution is stopped.
Another means of tracing execution is to record a detailed MSC of all process state transitions
and signals exchanged between processes and between processes and the environment.

Commonly sent signals are saved for convenience using a macro facility, which is invoked via a
button. Figure 5-1 shows a typical screen shot during the Observatory simulation. The SDL
diagram for Detector is shown at the point it consumes the Integrate signal.

Page 5-2 12/7/04 6:19 PM

Page 5-3 12/7/04 6:19 PM

Figure 5-1: Observatory Simulator User Interface

The simulator was used to “sanity check” the model using a simple observing scenario with a
single photon event (Appendix A). The scenario begins with the instrument on. The Expose
command is sent from the environment and the Go command is given. The model runs until the
guider reaches the Acquiring state and then stops, because as anticipated, it has to wait for a
GSLock signal from the environment. After that signal is sent followed by another Go command,
the system runs until it hits the Integrate breakpoint shown in Figure 5-1. This breakpoint is
necessary because the PhotonArrival events have to come in from the environment. If the
simulation is not stopped, the exposure would just complete with no data.

(Note: I considered including the target and guiding source in the model in order to automate this
part of the simulation. This would have also had advantages in simulating failure scenarios.
Instead of sending a loss of lock signal to the guider, for example, it would be possible to
capriciously delete the guiding source and let the guider process itself conclude that lock had
been lost. However, I decided against this due to the added complexity and because I wasn’t
sure about the conceptual implications of trying to validate a model that includes elements
external to the system.)

After the breakpoint was hit, the system was run for two more time units and then given a
PhotonArrival signal with 10 counts, followed by another Go command. This time the system
runs until the ExposureComplete signal is returned to the environment. After sending a
DumpDataBuffer command followed by Go, the system returns the expected
BufferDumpComplete signal. The DownloadData command followed by Go then results in a
DataAvailable signal with 10 counts.

A detailed process-level MSC was also generated for this simulation. The diagram is not shown
because it is much larger than a single page, but it amounts to a graphical representation of the
trace in Appendix A.

5.2 Architecture Validation

The next step is to validate the model in a more automated way, using a separate executable
application called a Validator. The difference is that the simulator is used to run the model
under specified inputs, while the purpose of the Validator is to explore the potential behavior of
the model using state-space search techniques (“what-if” analysis). The Validator can be used
both to explore the system in an unguided mode looking for errors, and to perform a guided
exploration in order to check whether a given system-level MSC is satisfiable.

Figure 5-2 shows the Validator user interface after initialization. All 11 processes have been
created and set to the start state.

The first thing to try with a Validator is to perform an unguided state-space search and look for
errors. Tau/SDL explores the space at random up to a predefined depth (which allows the user to
trade off thoroughness and speed). The initial run generated seven reports with warnings on

Page 5-4 12/7/04 6:19 PM

“implicit signal consumption”, as shown in Figure 5-3. This means that a signal can be sent to a
process when it is not in a state that accepts input from that signal, so the signal is ignored. (I
didn’t realize this was a problem when I developed the model, but I presume it is bad SDL
practice, else the tool wouldn’t go to the trouble of warning me about it.)

Validator reports are represented as process-level MSCs giving a graphical trace of the sequence
of events that led to the problem. One of the seven reports (selected for simplicity because it was
wholly internal to a process) is detailed in Figure 5-4. Note that this MSC has 12 columns, one
for each process plus one for the environment. (There is an unimportant error that prevents the
initial state from being shown for the DataBuffer and DataRecorder processes.) In this scenario,
the instrument is turned on and then turned off again before it has warmed up, so that when the
warmup timer expires in the InstElectronics process, the process is in the Cold state where it
cannot process the signal. This is the correct behavior (we certainly don’t want the instrument
going on after it has been turned off), but it would have been cleaner to reset the timer after
turning off the instrument so that the signal didn’t get generated in the first place.

Page 5-5 12/7/04 6:19 PM

Figure 5-2: Observatory Validator User Interface

Page 5-6 12/7/04 6:19 PM

Figure 5-3: Observatory Validator Report Summary

Page 5-7 12/7/04 6:19 PM

Page 5-8 12/7/04 6:19 PM

Figure 5-4: MSC Report on Implicit Signal Consumption

The tool also reports the percentage of “symbol coverage” (that is, paths executed in the model)
as the result of a search. Unfortunately, for this particular model I was unable to get coverage
greater than 36% as the result of unguided exploration. It wasn’t an issue of maximum search
depth; the algorithm simply completed its search and terminated without exploring most of the
model.

The next step is to validate the model against the use cases (system-level MSCs) developed at the
start of the process (secton 4.2). The tool searches for a path through the state space that will
produce the expected outputs given the specified inputs. Figure 5-5 gives a screen shot of the
validation results for the trivial use case TurnOnInstrument. The tool reports that the MSC is
successfully verified (it is a matter of semantics whether one thinks of this as verifying the MSC
or validating the model) and produces a report in the form of a detailed process-level MSC that
shows the execution trace that would be produced by running the scenario. Since this is not a
simulation, there are no side effects from this search.

Figure 5-6 shows the validation results for the main success use case Observe. Once again the
system reports successful validation and produces an MSC report to demonstrate it, though in
this case some other reports are produced as well. The tool reports 86% symbol coverage,
demonstrating that the predefined scenario is far more effective in exercising the system than
unguided exploration.

Page 5-9 12/7/04 6:19 PM

Figure 5-5: Model Validation against MSC TurnOnInstrument

Page 5-10 12/7/04 6:19 PM

Figure 5-6: Model Validation against MSC Observe

Page 5-11 12/7/04 6:19 PM

5.3 Test Case Generation

Test case generation in Tau/SDL begins with creation of a TTCN test suite template from the
model. The test suite is then filled in with test cases and associated declarations. Tau/SDL
provides several different options for generating test cases: this can be done by capturing the
results from a simulation, by converting an MSC use case, or as the result of random exploration.
(Of course, it is also possible to edit the TTCN directly to create or modify test cases by hand.)
Only the MSC method, a simple and automated approach, was attempted in this project.

This method is similar to the process of validating the model against a system-level MSC,
discussed above. Once again the Validator application is opened and the system searches for a
path through the model that satisfies the MSC. This time, however, instead of just generating a
report showing how the MSC could be implemented, the tool generates a TTCN test case from
the MSC and inserts it into the test suite. This will only work if the validation step is successful.
After saving the test case to a TTCN file, the new test case appears in the TTCN view.

Figure 5-7 shows the TTCN structure that results from applying this method to the three MSCs
from section 4.2. The test case section near the bottom of the screen shows that three test cases
have been inserted, one for each use case. Also note that six points of control and observation
(PCOs) have been defined, and that these have the same names as the external interface channels
defined in the top-level Observatory SDL diagram.

Once such a test suite has been generated, it can be compiled into C, printed, or exported into
HTML (as here). The full test suite is given in Appendix B. A detailed examination of the test
cases (even without knowledge of TTCN) shows that the test suite is the result of integrating the
MSCs into the SDL structure. The following parts of the suite have been populated:

• PCO declarations: as mentioned above, this declares the six channels which serve as
points of control and observation to the Observatory in the SDL model.

• Test Component Declarations: this declares the signals that can be passed along those
channels, along with the typed parameters for each signal.

• Alias Definitions: This declares an “alias” for each specific signal that is sent to the
Observatory or expected from the Observatory through the PCOs according to the MSCs.
The aliases give the signal name together with parameters. If a signal appears more than
once (as is the case for TurnOnInstrument and InstrumentReady, which begin all three
use cases), the alias is reused rather than defining a duplicate.

• Test Cases: The test cases are represented as sequence of events. Each event has a
behavior description identifying the PCO, the signal passed through the PCO, the alias
used to define the details of the signal, and whether the signal is an input to the system
(“!”) or an expected output (“?”).

Page 5-12 12/7/04 6:19 PM

Test cases follow the structure of the MSCs. Thus, for example, the Observe test case
begins with the InstrumentOn command, and ends with an expected DataAvailable signal
with a value of 120. If the expected events all occur in the right order, the test case
passes. Otherwise, it fails.

Page 5-13 12/7/04 6:19 PM

Figure 5-7: Observatory TTCN Test Suite Structure

Page 6-1 12/7/04 6:19 PM

6 Future Work

This project has demonstrated the use of a commercial tool to animate an SDL model with a
complex architecture, validate the model against use cases, and generate test cases from the
combination of the model and a set of use cases. Much work remains to be done to better
understand the notations involved and the process arising from them. In order to further
investigate the practical usefulness of these techniques, a number of issues remain to be
addressed:

1. There are a host of technical issues regarding how this process would scale to a real
systems enginering environment. In addition to addressing the bugs and language issues
from section 4.6, there are a number of software engineering issues. First, how can SDL
be used with abstract data types? In a real system architecture, data types tend to be
complex and abstract, not defined at the level of programming language declarations as in
this project. The Telelogic documentation refers to the Abstract Syntax Notation (ASN)
standard for addressing this issue, but I didn’t have time to investigate further. Second,
the naming of channels between SDL agents. Wherever two agents communicate
laterally or hierarchically, these names have to be visible to both so that one diagram can
refer to another, but if the namespace is global I could easily see this becoming difficult
to manage in a large system. Some guidance on naming conventions would be useful.
Third, in a large model it would be desirable to have different engineers on a team work
on different parts of the model at the same time. This raises issues of concurrent access
and configuration management; it is not clear how Tau/SDL addresses them.

2. There are also questions about automating use of the tool itself. Recall that in the
Observatory simulation, a breakpoint had to be set in order to send the necessary signals
from the environment. In the simulator user interface, breakpoints have to be redefined
each time a new simulation is started, so this got old very quickly. Ideally one should be
able to define “simulation scripts” for repetition and regression testing of a simulation,
rather than having to use the GUI each time. The documentation mentions a co-
simulation facility whereby a TTCN test suite is used to drive a simulation; this is worth
investigating further.

3. Most fundamentally, there are questions about the effectiveness of the automated V&V
techniques used. At a minimum, to say a model has been “validated” each path should
have been exercised at least once. In this example, unguided exploration was ineffective
in covering the model, and while use case execution did better, it was not clear how to get
to 100% coverage. Turning to verification, the technique of generating test cases from
MSCs is good at covering the main success scenarios and establishing usability, but faults
tend to occur on unexpected combinations of inputs, and MSC-based testing will miss
these. One approach is simply to write additional MSCs for each contingency, but this
will run into diminishing returns. Test heuristics (a technique used in the Burton thesis)
can be very useful here, and it is not clear how these can be represented using Tau/SDL.
For example, it was noted in section 4 that several processes were implemented in a way
that could lead to deadlock on bright targets. It is not reasonable to expect a black-box
testing technique to anticipate this type of fault, but a good test engineer would think of

Page 6-2 12/7/04 6:19 PM

stressing the system by looking at extreme cases, such as how the system handles targets
that are either very faint or very bright. A test case for bright targets would have caught
this particular fault, and also determined how well the system responded to a high input
data rate. Further investigation is needed on how to automate generation of contingency
and stressed scenarios.

Page A-1 12/7/04 6:19 PM

 Appendix A. Execution Trace for Observe Simulation

Command : output-via Expose 'CAM1' 180 30 180 30 5 'VIS_FILTER' -
Signal Expose was sent to InstrumentManager:1 from env:1
Process scope : InstrumentManager:1

Command : Go

*** TRANSITION START
* PId : InstrumentManager:1
* State : Ready
* Input : Expose
* Sender : env:1
* Now : 100.0000
* Parameter(s) : 'CAM1', 180, 30, 180, 30, 5.0000, 'VIS_FILTER'
* OUTPUT of DropLock to Guider:1
* The signal caused an immediate null transition
* OUTPUT of Slew to AttitudeControlSystem:1
* Parameter(s) : 180, 30
*** NEXTSTATE Slewing

*** TRANSITION START
* PId : AttitudeControlSystem:1
* State : Stationary
* Input : Slew
* Sender : InstrumentManager:1
* Now : 100.0000
* Parameter(s) : 180, 30
* SET on timer SlewTimer at 110.0000
*** NEXTSTATE Slewing

*** TIMER signal was sent
* Timer : SlewTimer
* Receiver : AttitudeControlSystem:1
*** Now : 110.0000

*** TRANSITION START
* PId : AttitudeControlSystem:1
* State : Slewing
* Input : SlewTimer
* Sender : AttitudeControlSystem:1
* Now : 110.0000
* ASSIGN RightAscension := 180
* ASSIGN Declination := 30
* OUTPUT of SlewComplete to InstrumentManager:1
*** NEXTSTATE Stationary

*** TRANSITION START
* PId : InstrumentManager:1
* State : Slewing
* Input : SlewComplete
* Sender : AttitudeControlSystem:1
* Now : 110.0000
* OUTPUT of LocateGS to Guider:1
* Parameter(s) : 180, 30

Page A-2 12/7/04 6:19 PM

*** NEXTSTATE GSLocate

*** TRANSITION START
* PId : Guider:1
* State : Idle
* Input : LocateGS
* Sender : InstrumentManager:1
* Now : 110.0000
* Parameter(s) : 180, 30
* SET on timer GuidingTimer at 112.0000
*** NEXTSTATE Locating

*** TIMER signal was sent
* Timer : GuidingTimer
* Receiver : Guider:1
*** Now : 112.0000

*** TRANSITION START
* PId : Guider:1
* State : Locating
* Input : GuidingTimer
* Sender : Guider:1
* Now : 112.0000
* OUTPUT of GSLocated to InstrumentManager:1
*** NEXTSTATE Ready

*** TRANSITION START
* PId : InstrumentManager:1
* State : GSLocate
* Input : GSLocated
* Sender : Guider:1
* Now : 112.0000
* OUTPUT of AcquireGS to Guider:1
*** NEXTSTATE GSAcquire

*** TRANSITION START
* PId : Guider:1
* State : Ready
* Input : AcquireGS
* Sender : InstrumentManager:1
* Now : 112.0000
*** NEXTSTATE Acquiring

Command : output-via GSLock -
Signal GSLock was sent to Guider:1 from env:1
Process scope : Guider:1

Command : Go

*** TRANSITION START
* PId : Guider:1
* State : Acquiring
* Input : GSLock
* Sender : env:1
* Now : 112.0000

Page A-3 12/7/04 6:19 PM

* OUTPUT of LockEstablished to InstrumentManager:1
*** NEXTSTATE Guiding

*** TRANSITION START
* PId : InstrumentManager:1
* State : GSAcquire
* Input : LockEstablished
* Sender : Guider:1
* Now : 112.0000
* OUTPUT of DoExposure to CameraManager:1
* Parameter(s) : 5.0000, 'VIS_FILTER'
*** NEXTSTATE Exposing

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : Ready
* Input : DoExposure
* Sender : InstrumentManager:1
* Now : 112.0000
* Parameter(s) : 5.0000, 'VIS_FILTER'
* OUTPUT of OpenShutter to Shutter:1
*** NEXTSTATE OpeningShutter

*** TRANSITION START
* PId : Shutter:1
* State : Closed
* Input : OpenShutter
* Sender : CameraManager:1
* Now : 112.0000
* OUTPUT of ShutterOpen to CameraManager:1
*** NEXTSTATE Open

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : OpeningShutter
* Input : ShutterOpen
* Sender : Shutter:1
* Now : 112.0000
* OUTPUT of PositionFilter to FilterAssembly:1
* Parameter(s) : 'VIS_FILTER'
*** NEXTSTATE MovingFilter

*** TRANSITION START
* PId : FilterAssembly:1
* In type: FIlterSubsystem
* State : Positioned
* Input : PositionFilter
* Sender : CameraManager:1
* Now : 112.0000
* Parameter(s) : 'VIS_FILTER'
* ASSIGN CurrentPosition := 'VIS_FILTER'
* OUTPUT of FilterInPlace to CameraManager:1
*** NEXTSTATE Positioned

Page A-4 12/7/04 6:19 PM

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : MovingFilter
* Input : FilterInPlace
* Sender : FilterAssembly:1
* Now : 112.0000
* OUTPUT of Integrate to Detector:1
* Parameter(s) : 5.0000
*** NEXTSTATE Exposing

Breakpoint matched by transition
PId : Detector:1
State : Idle
Input : Integrate
Sender : CameraManager:1
Now : 112.0000

Command : Proceed-Until 114.0

*** TRANSITION START
* PId : Detector:1
* State : Idle
* Input : Integrate
* Sender : CameraManager:1
* Now : 112.0000
* Parameter(s) : 5.0000
* SET on timer DetectorTimer at 117.0000
*** NEXTSTATE Integrating

Command : output-via PhotonArrival 10 -
Signal PhotonArrival was sent to OpticalAssembly:1 from env:1
Process scope : OpticalAssembly:1

Command : Go

*** TRANSITION START
* PId : OpticalAssembly:1
* State : Focus
* Input : PhotonArrival
* Sender : env:1
* Now : 114.0000
* Parameter(s) : 10
* OUTPUT of PhotonArrival to InstrumentManager:1
* Parameter(s) : 10
*** NEXTSTATE Focus

*** TRANSITION START
* PId : InstrumentManager:1
* State : Exposing
* Input : PhotonArrival
* Sender : OpticalAssembly:1
* Now : 114.0000
* Parameter(s) : 10
* OUTPUT of PhotonArrival to Shutter:1
* Parameter(s) : 10

Page A-5 12/7/04 6:19 PM

*** NEXTSTATE Exposing

*** TRANSITION START
* PId : Shutter:1
* State : Open
* Input : PhotonArrival
* Sender : InstrumentManager:1
* Now : 114.0000
* Parameter(s) : 10
* OUTPUT of PhotonArrival to FilterAssembly:1
* Parameter(s) : 10
*** NEXTSTATE Open

*** TRANSITION START
* PId : FilterAssembly:1
* In type: FIlterSubsystem
* State : Positioned
* Input : PhotonArrival
* Sender : Shutter:1
* Now : 114.0000
* Parameter(s) : 10
* OUTPUT of PhotonArrival to Detector:1
* Parameter(s) : 10
*** NEXTSTATE Positioned

*** TRANSITION START
* PId : Detector:1
* State : Integrating
* Input : PhotonArrival
* Sender : FilterAssembly:1
* Now : 114.0000
* Parameter(s) : 10
* ASSIGN ExposureCounts := 10
*** NEXTSTATE Integrating

*** TIMER signal was sent
* Timer : DetectorTimer
* Receiver : Detector:1
*** Now : 117.0000

*** TRANSITION START
* PId : Detector:1
* State : Integrating
* Input : DetectorTimer
* Sender : Detector:1
* Now : 117.0000
* OUTPUT of ExpComplete to CameraManager:1
*** NEXTSTATE DataAvailable

*** TRANSITION START
* PId : CameraManager:1
* In type: HomingCameraManager
* State : Exposing
* Input : ExpComplete
* Sender : Detector:1
* Now : 117.0000

Page A-6 12/7/04 6:19 PM

* OUTPUT of HomeFilter to FilterAssembly:1
*** NEXTSTATE HomingFilter

*** TRANSITION START
* PId : FilterAssembly:1
* In type: CAM1FilterSubsystem
* State : Positioned
* Input : HomeFilter
* Sender : CameraManager:1
* Now : 117.0000
* ASSIGN CurrentPosition := 'CLEAR_FILTER'
* OUTPUT of FilterInPlace to CameraManager:1
*** NEXTSTATE Positioned

*** TRANSITION START
* PId : CameraManager:1
* In type: HomingCameraManager
* State : HomingFilter
* Input : FilterInPlace
* Sender : FilterAssembly:1
* Now : 117.0000
* OUTPUT of CloseShutter to Shutter:1
*** NEXTSTATE ClosingShutter

*** TRANSITION START
* PId : Shutter:1
* State : Open
* Input : CloseShutter
* Sender : CameraManager:1
* Now : 117.0000
* OUTPUT of ShutterClosed to CameraManager:1
*** NEXTSTATE Closed

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : ClosingShutter
* Input : ShutterClosed
* Sender : Shutter:1
* Now : 117.0000
* OUTPUT of ReadOut to Detector:1
*** NEXTSTATE ReadingOut

*** TRANSITION START
* PId : Detector:1
* State : DataAvailable
* Input : ReadOut
* Sender : CameraManager:1
* Now : 117.0000
* OUTPUT of InstrumentData to DataBuffer:1
* Parameter(s) : 10
* ASSIGN ExposureCounts := 0
* OUTPUT of ROComplete to CameraManager:1
*** NEXTSTATE Idle

*** TRANSITION START

Page A-7 12/7/04 6:19 PM

* PId : DataBuffer:1
* State : Empty
* Input : InstrumentData
* Sender : Detector:1
* Now : 117.0000
* Parameter(s) : 10
* ASSIGN BufferData := 10
*** NEXTSTATE Readable

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : ReadingOut
* Input : ROComplete
* Sender : Detector:1
* Now : 117.0000
* OUTPUT of ExposureComplete to InstrumentManager:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Ready

*** TRANSITION START
* PId : InstrumentManager:1
* State : Exposing
* Input : ExposureComplete
* Sender : CameraManager:1
* Now : 117.0000
* Parameter(s) : 'CAM1'
* OUTPUT of ExposureComplete to env:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Ready

Command : output-via DumpDataBuffer 'CAM1' -
Signal DumpDataBuffer was sent to InstrumentManager:1 from env:1
Process scope : InstrumentManager:1

Command : Go

*** TRANSITION START
* PId : InstrumentManager:1
* State : Ready
* Input : DumpDataBuffer
* Sender : env:1
* Now : 117.0000
* Parameter(s) : 'CAM1'
* OUTPUT of DumpDataBuffer to CameraManager:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Dumping

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : Ready
* Input : DumpDataBuffer
* Sender : InstrumentManager:1
* Now : 117.0000
* Parameter(s) : 'CAM1'

Page A-8 12/7/04 6:19 PM

* OUTPUT of DumpDataBuffer to DataBuffer:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Dumping

*** TRANSITION START
* PId : DataBuffer:1
* State : Readable
* Input : DumpDataBuffer
* Sender : CameraManager:1
* Now : 117.0000
* Parameter(s) : 'CAM1'
* OUTPUT of InstrumentData to InstrumentManager:1
* Parameter(s) : 10
* ASSIGN BufferData := 0
* OUTPUT of BufferDumpComplete to CameraManager:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Empty

*** TRANSITION START
* PId : InstrumentManager:1
* State : Dumping
* Input : InstrumentData
* Sender : DataBuffer:1
* Now : 117.0000
* Parameter(s) : 10
* OUTPUT of InstrumentData to DataRecorder:1
* Parameter(s) : 10
*** NEXTSTATE Dumping

*** TRANSITION START
* PId : CameraManager:1
* In type: CameraManager
* State : Dumping
* Input : BufferDumpComplete
* Sender : DataBuffer:1
* Now : 117.0000
* Parameter(s) : 'CAM1'
* OUTPUT of BufferDumpComplete to InstrumentManager:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Ready

*** TRANSITION START
* PId : DataRecorder:1
* State : Empty
* Input : InstrumentData
* Sender : InstrumentManager:1
* Now : 117.0000
* Parameter(s) : 10
* ASSIGN RecorderData := 10
*** NEXTSTATE Readable

*** TRANSITION START
* PId : InstrumentManager:1
* State : Dumping
* Input : BufferDumpComplete
* Sender : CameraManager:1

Page A-9 12/7/04 6:19 PM

* Now : 117.0000
* Parameter(s) : 'CAM1'
* OUTPUT of BufferDumpComplete to env:1
* Parameter(s) : 'CAM1'
*** NEXTSTATE Ready

Command : output-via DownloadData -
Signal DownloadData was sent to DataRecorder:1 from env:1
Process scope : DataRecorder:1

Command : Go

*** TRANSITION START
* PId : DataRecorder:1
* State : Readable
* Input : DownloadData
* Sender : env:1
* Now : 117.0000
* OUTPUT of DataAvailable to env:1
* Parameter(s) : 10
* ASSIGN RecorderData := 0
*** NEXTSTATE Empty

Command :

Page B-1 12/7/04 6:19 PM

 Appendix B. Observatory TTCN Test Suite

ObservatoryTest.mp

Test Suite Overview

o Test Suite Structure

o Test Case Index

o Test Step Index

o Default Index

• Declarations Part

o Test Suite Type Definitions

 Simple Type Definitions

 Structured Type Definitions

 ASN.1 Type Definitions

 CharString

 ASN.1 Type Definitions By Reference

o Varieties of Encoding Definition

 Encoding Definitions

 Encoding Variations

 Invalid Encoding Definitions

o Test Suite Operation Definitions

o Test Suite Operation Procedural Definitions

o Test Suite Parameter Declarations

 PIX_T_Global

o Test Case Selection Expression Definitions

o Test Suite Constant Declarations

o Test Suite Constant Declarations By Reference

o Test Suite Variable Declarations

o Test Case Variable Declarations

o PCO Type Declarations

 PCO_Type

o PCO Declarations

Page B-2 12/7/04 6:19 PM

 C1

 C2

 C3

 C4

 C5

 C6

o Coordination Point Declarations

o Timer Declarations

 T_Global

o Test Component Declarations

o Test Components Configuration Declarations

o ASP Type Definitions

 TTCN ASP Type Definitions

 ASN.1 ASP Type Definitions

 InstrumentOn

 InstrumentOff

 Expose

 DumpDataBuffer

 InstrumentReady

 InstrumentPowerOff

 ExposureComplete

 BufferDumpComplete

 GSLock

 DownloadData

 PhotonArrival

 DataAvailable

 ASN.1 ASP Type Definitions By Reference

o PDU Type Definitions

 TTCN PDU Type Definitions

 ASN.1 PDU Type Definitions

Page B-3 12/7/04 6:19 PM

 ASN.1 PDU Type Definitions By Reference

o CM Type Definitions

 TTCN CM Type Definitions

 ASN.1 CM Type Definitions

o Alias Definitions

• Constraints Part

o Test Suite Type Constraint Declarations

 Structured Type Constraint Declarations

 ASN.1 Constraint Declarations

o ASP Constraint Declarations

 TTCN ASP Constraint Declarations

 ASN.1 ASP Constraint Declarations

 cObserve_001

 cObserve_002

 cObserve_003

 cObserve_004

 cObserve_005

 cObserve_006

 cObserve_007

 cObserve_008

 cObserve_009

 cObserve_010

 cObserve_011

 cObserve_012

 cObserve_013

 cObserve_014

 cTurnOffInstrument_001

 cTurnOffInstrument_002

o PDU Constraint Declarations

 TTCN PDU Constraint Declarations

Page B-4 12/7/04 6:19 PM

 ASN.1 PDU Constraint Declarations

o CM Constraint Declarations

 TTCN CM Constraint Declarations

 ASN.1 CM Constraint Declarations

• Dynamic Part

o Test Cases

 Observe

 TurnOffInstrument

 TurnOnInstrument

o Test Step Library

o Defaults Library

 OtherwiseFail

Test Suite Structure

Suite Name ObservatoryTest.mp
Standards Ref
PICS Ref
PIXIT Ref
Test Method(s)
Comments
Test Group Reference Selection Ref Test Group Objective Page Nr
Detailed Comments

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page Nr
 Observe
 TurnOffInstrument
 TurnOnInstrument
Detailed Comments

Test Step Index

Test Step Group Reference Test Step Id Description Page Nr
Detailed Comments

Default Index

Page B-5 12/7/04 6:19 PM

Default Group Reference Default Id Description Page Nr
 OtherwiseFail
Detailed Comments

Simple Type Definitions

Type Name Type Definition Type Encoding Comments
Detailed Comments

CharString

Type Name CharString
Encoding Variation
Comments
Type Definition
IA5String
Detailed Comments

ASN.1 Type Definitions By Reference

Type Name Type Reference Module Identifier Encoding Variation Comments Type Definition
Detailed Comments

Encoding Definitions

Encoding Rule Name Reference Default Comments
Detailed Comments

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PIX_T_Global INTEGER
Detailed Comments

Test Case Selection Expression Definitions

Expression Name Selection Expression Comments
Detailed Comments

Test Suite Constant Declarations

Constant Name Type Value Comments
Detailed Comments

Test Suite Constant Declarations By Reference

Page B-6 12/7/04 6:19 PM

Constant Name Type Value Reference Module Identifier Comments Value
Detailed Comments

Test Suite Variable Declarations

Variable Name Type Value Comments
Detailed Comments

Test Case Variable Declarations

Variable Name Type Value Comments
Detailed Comments

PCO Type Declarations

PCO Type Role Comments
PCO_Type LT
Detailed Comments

PCO Declarations

PCO Name PCO Type Role Comments
C1 PCO_Type LT
C2 PCO_Type LT
C3 PCO_Type LT
C4 PCO_Type LT
C5 PCO_Type LT
C6 PCO_Type LT
Detailed Comments

Coordination Point Declarations

CP Name Comments
Detailed Comments

Timer Declarations

Timer Name Duration Unit Comments
T_Global PIX_T_Global s
Detailed Comments

Test Component Declarations

Component Name Component Role Nr PCOs Nr CPs Comments
Detailed Comments

Page B-7 12/7/04 6:19 PM

InstrumentOn

ASP Name InstrumentOn
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString
}
Detailed Comments

InstrumentOff

ASP Name InstrumentOff
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString
}
Detailed Comments

Expose

ASP Name Expose
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString,
 iNTEGER2 INTEGER,
 iNTEGER3 INTEGER,
 iNTEGER4 INTEGER,
 iNTEGER5 INTEGER,
 dURATION_NOT_IMPLEMENTED6 DURATION_NOT_IMPLEMENTED,
 charString7 CharString
}
Detailed Comments

DumpDataBuffer

ASP Name DumpDataBuffer
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {

Page B-8 12/7/04 6:19 PM

 charString1 CharString
}
Detailed Comments

InstrumentReady

ASP Name InstrumentReady
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString
}
Detailed Comments

InstrumentPowerOff

ASP Name InstrumentPowerOff
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString
}
Detailed Comments

ExposureComplete

ASP Name ExposureComplete
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString
}
Detailed Comments

BufferDumpComplete

ASP Name BufferDumpComplete
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 charString1 CharString
}

Page B-9 12/7/04 6:19 PM

Detailed Comments

GSLock

ASP Name GSLock
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
}
Detailed Comments

DownloadData

ASP Name DownloadData
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
}
Detailed Comments

PhotonArrival

ASP Name PhotonArrival
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 iNTEGER1 INTEGER
}
Detailed Comments

DataAvailable

ASP Name DataAvailable
PCO Type PCO_Type
Comments
Type Definition
SEQUENCE {
 iNTEGER1 INTEGER
}
Detailed Comments

ASN.1 ASP Type Definitions By Reference

Page B-10 12/7/04 6:19 PM

ASP Name PCO Type Type Reference Module Identifier Comments Type Definition
Detailed Comments

ASN.1 PDU Type Definitions By Reference

PDU Name PCO Type Type Reference Module Identifier Enc Rule Enc Variation Comments Type Definition
Detailed Comments

Alias Definitions

Alias Name Expansion Comments
Detailed Comments

cObserve_001

Constraint Name cObserve_001
Group
ASP Type DataAvailable
Derivation Path
Comments
Constraint Value
{ iNTEGER1 120 }
Detailed Comments

cObserve_002

Constraint Name cObserve_002
Group
ASP Type DownloadData
Derivation Path
Comments
Constraint Value
{ }
Detailed Comments

cObserve_003

Constraint Name cObserve_003
Group
ASP Type BufferDumpComplete
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

Page B-11 12/7/04 6:19 PM

cObserve_004

Constraint Name cObserve_004
Group
ASP Type DumpDataBuffer
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

cObserve_005

Constraint Name cObserve_005
Group
ASP Type ExposureComplete
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

cObserve_006

Constraint Name cObserve_006
Group
ASP Type PhotonArrival
Derivation Path
Comments
Constraint Value
{ iNTEGER1 25 }
Detailed Comments

cObserve_007

Constraint Name cObserve_007
Group
ASP Type PhotonArrival
Derivation Path
Comments
Constraint Value
{ iNTEGER1 28 }
Detailed Comments

Page B-12 12/7/04 6:19 PM

cObserve_008

Constraint Name cObserve_008
Group
ASP Type PhotonArrival
Derivation Path
Comments
Constraint Value
{ iNTEGER1 21 }
Detailed Comments

cObserve_009

Constraint Name cObserve_009
Group
ASP Type PhotonArrival
Derivation Path
Comments
Constraint Value
{ iNTEGER1 22 }
Detailed Comments

cObserve_010

Constraint Name cObserve_010
Group
ASP Type PhotonArrival
Derivation Path
Comments
Constraint Value
{ iNTEGER1 24 }
Detailed Comments

cObserve_011

Constraint Name cObserve_011
Group
ASP Type GSLock
Derivation Path
Comments
Constraint Value
{ }
Detailed Comments

cObserve_012

Page B-13 12/7/04 6:19 PM

Constraint Name cObserve_012
Group
ASP Type Expose
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1", iNTEGER2 180, iNTEGER3 30, iNTEGER4 180, iNTEGER5 30,
dURATION_NOT_IMPLEMENTED6 5.0000, charString7 "VIS_FILTER" }
Detailed Comments

cObserve_013

Constraint Name cObserve_013
Group
ASP Type InstrumentReady
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

cObserve_014

Constraint Name cObserve_014
Group
ASP Type InstrumentOn
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

cTurnOffInstrument_001

Constraint Name cTurnOffInstrument_001
Group
ASP Type InstrumentPowerOff
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

cTurnOffInstrument_002

Page B-14 12/7/04 6:19 PM

Constraint Name cTurnOffInstrument_002
Group
ASP Type InstrumentOff
Derivation Path
Comments
Constraint Value
{ charString1 "CAM1" }
Detailed Comments

Observe

Test Case Name Observe
Group
Purpose
Configuration
Default OtherwiseFail
Comments
Selection Ref
Description
Nr Label Behaviour Description Constraints Ref Verdict Comments
1 START T_Global
2 C1 ! InstrumentOn cObserve_014

3 C2 ?
InstrumentReady cObserve_013

4 C1 ! Expose cObserve_012
5 C5 ! GSLock cObserve_011

6 C6 !
PhotonArrival cObserve_010

7 C6 !
PhotonArrival cObserve_009

8 C6 !
PhotonArrival cObserve_008

9 C6 !
PhotonArrival cObserve_007

10 C6 !
PhotonArrival cObserve_006

11 C2 ?
ExposureComplete cObserve_005

12 C1 !
DumpDataBuffer cObserve_004

13 C2 ?
BufferDumpComplete cObserve_003

14 C3 !
DownloadData cObserve_002

15
 C4 ?
DataAvailable
CANCEL T_Global

cObserve_001 PASS

Page B-15 12/7/04 6:19 PM

Detailed Comments

TurnOffInstrument

Test Case Name TurnOffInstrument
Group
Purpose
Configuration
Default OtherwiseFail
Comments
Selection Ref
Description
Nr Label Behaviour Description Constraints Ref Verdict Comments
1 START T_Global
2 C1 ! InstrumentOn cObserve_014

3 C2 ?
InstrumentReady cObserve_013

4 C1 ! InstrumentOff cTurnOffInstrument_002

5
 C2 ?
InstrumentPowerOff
CANCEL T_Global

cTurnOffInstrument_001 PASS

Detailed Comments

TurnOnInstrument

Test Case Name TurnOnInstrument
Group
Purpose
Configuration
Default OtherwiseFail
Comments
Selection Ref
Description
Nr Label Behaviour Description Constraints Ref Verdict Comments
1 START T_Global
2 C1 ! InstrumentOn cObserve_014

3
 C2 ?
InstrumentReady
CANCEL T_Global

cObserve_013 PASS

Detailed Comments

OtherwiseFail

Default Name OtherwiseFail
Group
Objective

Page B-16 12/7/04 6:19 PM

Comments
Description
Nr Label Behaviour Description Constraints Ref Verdict Comments
1 C1 ?OTHERWISE FAIL
2 C2 ?OTHERWISE FAIL
3 C5 ?OTHERWISE FAIL
4 C3 ?OTHERWISE FAIL
5 C6 ?OTHERWISE FAIL
6 C4 ?OTHERWISE FAIL
7 ?TIMEOUT FAIL
Detailed Comments

Generated by TTCN Suite, Copyright (C) Telelogic AB

Page 7-1 12/7/04 6:19 PM

7 References and Web Resources

1 Simon Burton, “Automated Generation of High Integrity Test Suites from Graphical Specifications”, Ph.D. thesis,
University of York, 2003.
2 Jeffrey O’Grady, System Validation and Verification, 1998, p. 4.
3 Burton, p. 15.
4 http://en.wikipedia.org/wiki/Finite_state_machine
5 Hans-Erik Eriksson, Magnus Penker, Brian Lyons and David Fado, UML 2 Toolkit, 2004.
6 Burton, p. 14.
7 http://www.utdallas.edu/~rmili/lab/vistamain.htm
8 http://www.cs.waikato.ac.nz/~marku/formalmethods.html
9 http://www-2.cs.cmu.edu/~nitpick/
10 http://vl.zuser.org/#tools
11 Burton, p. 15.
12 Andreas Mitschele-Thiel, Systems Engineering with SDL, 2001, p. 3.
13 Mitschele-Thiel, p. 144.
14 Specification and Description Language (SDL) ITU-T Z.100, 11/2000.
15 http://www.sdl-forum.org/SDL/index.htm
16 Mitschele-Thiel, p. 162.
17 Mitschele-Thiel, p. 143.
18 http://www-306.ibm.com/software/awdtools/developer/rosexde/
19 http://www.iec.org/online/tutorials/ttcn/index.html
20 http://www.telelogic.com/products/tau/sdl/index.cfm
21 Mitschele-Thiel, p. 142.
22 http://www.solinet.com/safire.htm
23 http://www.cinderella.dk/
24 http://www.ucs.com.pt/ez/Products.htm
25 Mitschele-Thiel, p. 157.

