

Test Suite Analysis:
Minimization and Ordering

ENSE 623: Systems Engineering

Dr. Mark Austin

Fred Faber
Julie McNeil

December 8, 2004

Table of Contents

Abstract ... 4
1 Introduction... 4

1.1 Overview of Verification Testing Process.. 4
2 Test Suite Minimization.. 5

2.1 Motivation... 5
2.2 Literature Review.. 5
2.3 Test Suite Minimization Theory ... 6

2.3.1 Terminology.. 6
2.3.2 Test Suite Minimization Approach... 7

2.4 Model Formulation ... 7
2.5 Tool Implementation... 9
2.6 Integration with Dynamic Requirements Selector.. 10

2.6.1 Overview of DRS.. 10
2.6.2 Integration of Dynamic Requirements Selector and Test Suite Minimizer.......... 12
2.6.3 Mathematical Formulation of DRS-TSM ... 12

2.7 Conclusion .. 16
3 Test Case Ordering Algorithm.. 16

3.1 Literature Review.. 17
3.2 Definitions... 17
3.3 Assumptions.. 21
3.4 Theory ... 23
3.5 Test Case Comparisons... 24

3.5.1 Selecting Goal States .. 24
3.5.2 Test Case Comparisons... 25

3.6 Algorithm Evolution ... 26
3.6.1 Naïve Algorithm ... 26
3.6.2 Naïve Algorithm, Ordered by Efficiency.. 27
3.6.3 Tree Algorithm, Ordered by Efficiency.. 30
3.6.4 Graph Algorithm, Greedy Heuristic ... 32
3.6.5 Graph Algorithm, Exhaustive Search ... 39

3.7 Implementation ... 39
3.7.1 Technical Overview.. 39
3.7.2 TestSuiteCreator ... 40
3.7.3 TestSuiteCoster ... 41
3.7.4 TestSuiteRunner.. 42
3.7.5 Comparators.. 42
3.7.6 Screen Shots.. 42

3.8 Experiments and Results... 44
3.8.1 Four Factor Experiment Overview ... 45
3.8.2 Experiment Conclusions ... 51

4 Conclusion .. 51
5 References... 52

 2

Index of Figures
Figure 1: Verification Process .. 4
Figure 2: Details of DRS Concept .. 11
Figure 3: Goal State Example ... 21
Figure 4: Identify the requirements of interest ... 28
Figure 5: Test Requirement 1 ... 28
Figure 6: Test Requirement 2 ... 29
Figure 7: Test Requirement 3 ... 29
Figure 8: Four Potentially Faulting Reqs. Identified .. 31
Figure 9: Testing Req. 1 and Req. 2 ... 31
Figure 10: No new information given by testing Req. 3 and Req. 4 together. Proceed directly to

goal states.. 32
Figure 11: (Tree) Identifying the Requirements of Interest... 34
Figure 12: (Tree) Running a least-cost test case.. 35
Figure 13: (Tree) Selecting a child test case... 35
Figure 14: (Tree) Running a goal state ... 36
Figure 15: (Tree) Identifying the faulting requirement... 36
Figure 16: (GGH) Identifying the Requirements of Interest ... 37
Figure 17: (GGH) Running a least cost test case... 37
Figure 18: (GGH) Running the least cost test case... 38
Figure 19: (GGH) Goal state is found... 38
Figure 20: Application Class Diagram ... 40

Index of Tables

Table 1: Excerpt of Test Case Data Input Table... 9
Table 2: Excerpt of Requirement Data Input Table.. 10

 3

Abstract
Our research has two important aspects. The first focuses on the issue of test suite minimization.

We developed a tool based on a LP to aid in the selection of test cases. The model seeks to

maximize the error detection rating and the coverage factor of the selected test suite, while

keeping within a given time and cost budget. As an extension, we next considered how to order

the given set of test cases. We developed an algorithm which orders test cases based on the goal

of minimizing the time to identify failures, thus minimizing the overall test cost.

1 Introduction
This document begins with an overview of the verification testing process and the motivation for

our project. Next, relevant research is discussed that contributed to our focus area. This is

followed by a detailed discussion of the Test Suite Minimization tool, including theory,

approach, implementation, and its integration with the Dynamic Requirements Selector tool. We

then discuss a new Test Suite Prioritization technique, including theory, implementation and

results. Finally, we present our conclusions and areas for future research.

1.1 Overview of Verification Testing Process
Once a system has been designed and developed, it must undergo verification. This is the

process of ensuring that the system and all its components meet the requirements and

specifications of the design. The goal of the verification testing phase is to find all errors

(incorrect internal system state) and failures (incorrect external behavior of system) and fix the

underlying faults, or causes (Waters 1991).

Verification

Requirements &
Specifications

System Design &
Development

Figure 1: Verification Process

This testing process must be structured and comprehensive to facilitate detection of all system

issues. The standard practice is to test first each component of the system at the unit-level. The

next level of testing is system integration testing (SIT), in which tests are run that verify several

 4

requirements at once. These tests are called test cases, and they are comprised of a set of

execution conditions and inputs for a particular objective. The test results are checked against

the expected results to verify compliance for the applicable requirements. The set of test cases

used for verification of a system is called the test suite. The test suite must cover all

requirements. The verification stage is not complete until every test case in the suite has passed

successfully.

2 Test Suite Minimization

2.1 Motivation
When testing a system, the end goal is to test all requirements thoroughly. Ideally, the test suite

will detect errors quickly and in a manner in which they could be assigned to root causes and

resolved efficiently. One method of testing is to cover extensively every single requirement

atomically and every potential interaction. This setup, however, is not feasible for large-scale

systems as the number of required test cases in the suite would grow unwieldy and become cost

prohibitive. Of course, if the test suite does not completely cover all requirements, then errors

may remain undetected. The test manager must trade-off these issues when selecting the

appropriate test cases for a test suite. The goal of our project is to develop a tool to aid in this

selection process.

2.2 Literature Review
In recent years, there has been an increase in research focus on test suite analysis. Much of this

research concentrates on how to reduce the size of test suites. Chen et al focused on reducing

test suite size for software systems [1998]. They reviewed a greedy heuristic that reduces the

suite size by selecting test cases based on the degree of ‘essentialness.’ This ranking is derived

from a factor that measures the redundancy of test cases. They also created a new heuristic to

improve upon the base heuristic. Cohen et al focused their research on reducing test suite size

for test cases that involved interaction testing [2003]. They reviewed applicable heuristics and

developed an integrated approach for finding coverage arrays. Of particular interest was the

recent research by Black et al in which an LP model was developed to determine the optimal set

of test cases [2004]. They developed a bi-criteria model which maximized error detection while

minimizing the test suite size. Their research did not focus on any factors regarding time or

costs.

 5

2.3 Test Suite Minimization Theory
After reviewing this research, we decided to build upon the bi-criteria model by including

additional factors beyond simple error detection. The scenario of interest is that in which an

existing system is upgraded with new features. Therefore, during the test phase, testing must be

done on both the new requirements and the existing functionality of the system. Because the

system is being extended, there are existing regression test cases that could be used again. These

cases, however, may not be the most efficient. Furthermore, they may cover requirements that

are no longer valid. Finally, new test cases must be developed for the new functionality. The

test manager must sort through all these test cases and select the few that will make up the test

suite.

Unfortunately, the bi-criteria model is difficult to use in the situation of selecting new, unproven

test cases. Estimates can be provided on the predicted error detection factor of each test case, but

this can produce mixed results. By adding new aspects to the bi-criteria minimization model, the

selection is based on a well-balanced set of factors and is not skewed by the use of just one

factor.

2.3.1 Terminology
A discussion of the some of the key terminology that is used in this paper is provided below.

Error detection rating: The measure given to each test case as to the estimation of errors that

will be detected. This is based on historic performance of the test case or an educated prediction.

The higher the rating, the more likely the test case is to reveal errors. This rating is given at the

test case level, not per requirement in the test case.

Coverage rating: The measure given to each requirement in a test case as to how well it is tested

by that particular test case. This is a subjective rating based on the thoroughness of the test case

to test each particular requirement. As some requirements are complex, it is clear that not every

test case will cover the requirement to the same degree. Some may cover the basics of the

requirement, but not all the intricacies involved. This measure enables differentiation of test

cases based on requirement coverage levels.

 6

Requirement importance rating: The measure given to each requirement as to its importance for

testing. Essentially, this is a rating that is assigned to each requirement. The higher the rating,

the more important that requirement is. Features that are crucial to system performance can, and

should be tested more rigorously to ensure their success. Including this factor in test suite

selection enables extensive testing for the most important requirements.

2.3.2 Test Suite Minimization Approach
Our goal was to develop a tool to select an optimized set of test cases from a larger set. We

wanted this tool to perform a comprehensive analysis of test cases. Further, we felt it should

consider not only the error detection rating, but also the coverage rating of requirements in the

test cases. Additionally, we wanted the tool to select those test cases which most rigorously test

the more important requirements of a system.

We based the logic for the tool on a linear program to optimize the test suite selection. The goal

of this was to enable it to compute an optimal test suite when it is given various data parameters

as inputs. The following section details this linear program formulation.

2.4 Model Formulation
Due to the binary constraints, the model was formulated as an integer program. The model

determines which test cases should be included in the test suite (binary decision variables). The

objective of the model is to maximize the overall error detection rating and coverage factor of the

selected test suite. The weight of each term in the objective function can be altered based on the

test manager’s preferences. The coverage factor is a compound term that is based not only on

the individual coverage rating of each test case for a requirement, but also how important each

requirement is in the overall testing process.

The model is constrained by several issues. First and foremost, every requirement must be

covered at least once by the test suite. Additionally, the test suite must be within the time and

monetary budgets. The formulation is below:

Indices:

Set of requirements
 Set of test cases

m M
n N
∈ =
∈ =

 7

Decision Variables:

,

Indicator for test case selection
 Indicator for test case selection (requirement-level)

n

m n

T
TR

=
=

Parameters:

,

,

 Error detection rating for each test case
 Coverage rating for each requirement in test case
Indicator that test case covers the requirepment

Coverage importance rating for each requ

m

m n

m n

n

te
tv
tn
rv

=

=

=

= irement
 Total cost of test case
 Total time to run a test case

Total time budget for test phase
Total monetary budget for test phase

' Weight of error detection term in objective function
''

m

m

tc
tt
t
c
w
w

=

=

=
=
=
= Weight of coverage factor term in objective function

Objective Function:

, , ,
,

Maximize test suite error detection and coverage rating
' ''m m m n m n m n

m M m M n N
w te T w tv rv TR

∈ ∈ ∈

⋅ ⋅ + ⋅ ⋅ ⋅∑ ∑

Subject to:

, , ,

,

, :
for all ,

:
1 for all

m n m n m n

m n
m M

If a test case is selected all requirements in the test case are also selected
T tn TR m M n N

The test suite must cover all requirements at least once
TR n N

∈

⋅ ≤ ∈ ∈

≥ ∈∑

:

:

m m
m M

m m
m M

Within monetary budget for test phase
tc T c

Within timebudget for test phase
tt T t

∈

∈

⋅ ≤

⋅ ≤

∑

∑

 8

,

:
(0,1) for all ,

(0,1) for all
m n

m

Definevariable types
TR is binary m M n N
T is binary m M

∈ ∈

∈

2.5 Tool Implementation
The model was developed using Excel. Details for each test case and requirement are entered

into simple data tables (see below tables), which are then used to populate more extensive tables

to construct the constraints. This information is passed to the Excel Solver which returns the

optimal test suite to the user.

Requirement Coverage:
Indicator of coverage and respective rating

1 2 3 TC
Test Case

Cost
Estimate

Time
Estimate
(hours)

Error
Detection

Rating Incl.? Cvg. Incl.? Cvg. Incl.? Cvg.
1 Generic (1, 4, 6, 10) $45,000 90 25 1 50
2 Generic (2, 3, 5, 8, 9) $98,000 180 50 1 50 1 50
3 Generic (1, 3, 7, 11, 12) $85,000 105 50 1 75 1 75
4 Generic (3, 6, 8, 12) $65,000 110 50 1 75
5 Generic (2, 5, 6, 12) $25,000 140 25 1 50
6 Generic (1, 4, 9, 10) $80,000 180 75 1 25
7 Generic (2, 4, 5, 9, 11) $40,000 80 50 1 50
8 Generic (3, 5, 8, 12) $30,000 95 25 25 1 25
9 Generic (2, 6, 8, 11, 12) $85,000 180 50 1 25

10 Generic (4, 7, 8, 9) $45,000 200 50
11 Generic (5, 7, 10, 11) $28,000 120 75
12 Generic (1, 5, 8, 10) $15,000 80 25 1 50

Table 1: Excerpt of Test Case Data Input Table

 9

R# Requirement/Features
Test Coverage

Importance
1 Extended battery life (200 min talk, 200 hours standby) 8
2 Digital camera with zoom and flash 7
3 Color display (65,000 TFT) 3
4 MS Pocket software, Media Player 7
5 Mobile Web 3
6 Ultra Lightweight (under 3 oz) 4
7 Speaker phone capability 5
8 32 MB RAM 6
9 Flip phone-style 7

10 FM Radio and MP3 player 4
11 Polyphonic MIDI/iMelody Sound 3
12 Alarm clock, calculator, currency converter 3

Table 2: Excerpt of Requirement Data Input Table

The model efficiently handles small scale problems. Due to the linear nature and simplicity of

constraint construction, larger scale problems should not cause any issues. Commercial

optimization packages can easily solve this model for requirement and test case sizes in the

thousands.

2.6 Integration with Dynamic Requirements Selector

2.6.1 Overview of DRS
In our prior research, we developed the Dynamic Requirements Selector tool. Given that a major

issue in requirements engineering is the business trade-off analysis among system requirements,

we developed a tool to facilitate this process. The particular scenario for use is that of a system

upgrade in which new features are to be added to an existing system. With constraints

concerning time, budget and other technical issues, not every feature can be selected for

inclusion in the system. As such, the system stakeholders must perform trade-off analysis among

the proposed features to maximize the utility of the new system design.

The tool considers conflicting interests of various stakeholders, budget limitations, and

interaction of requirements. Of particular interest are the relationships among requirements. For

instance, if one requirement is selected, it might reduce the cost of implementing another

particular requirement. Or, perhaps the inclusion of one requirement increases the importance of

another. The below figure helps illustrate the principles of the model.

 10

R. Party Rank
Sales 7
Mrkt 5
Eng. 9

R. Party Link
Sales R2 (-2)
Mrkt. R2 (+1)

Business Level

R. Party Rank
Sales 2
Mrkt 3
Eng. 9

R. Party Link
Eng. R3 (-2)
Mrkt. R1 (-1)

Business Level

R. Party Rank
Sales 10
Mrkt 10
Eng. 10

R. Party Link

Business Level

R2 ($9,000, 50 hr)
$ Link (R3, $500)
Time Link (R1, -40)

Engineering Level

R3 ($1,500, 10 hr)
Must Have (True)

Engineering Level

Financial Availability: $10,000
Time Availability: 80 hr.

System Level

R1 ($4,400, 20 hr)
Inclusion (R3)

Engineering Level

Figure 2: Details of DRS Concept

 11

Given these constraints, a non-linear model was developed to select the optimal requirements for

implementation. The model seeks to maximize the total importance rating of the requirements

selected, while maintaining the constraints of the project. Clearly, the dependencies of

requirements impose the non-linearity aspect on the model.

2.6.2 Integration of Dynamic Requirements Selector and Test Suite Minimizer
By integrating the two models, a powerful model was created that selects not only the

requirements, but also the optimal test suite for those requirements. This model is particularly

useful for certain systems where test costs are excessively high. Thus, it would make sense to

consider the testing cost when selecting the requirements.

The resulting model essentially keeps all the constraints from the individual models. The

objective function now considers three terms – the requirements ranking, the error detection

rating and the coverage factor of the test suite. The decision variables and constraints are linked

through the addition of the requirement selection indicator in the calculations for test suite

selection. Thus, requirements that are not selected do not need to be tested. As a side note, a

selected test case may include extraneous requirements that were not selected. For the purposes

of this model, we assumed those aspects of the test case could be ignored and would not impact

the cost/time or error detection rating of the test case.

2.6.3 Mathematical Formulation of DRS-TSM
The model was formulated as a non-linear program, due to the correlation of rank, time and costs

of requirements and the correlation of test cases and requirements. The objective of this model is

to maximize the three terms discussed earlier. The decisions are the selection of requirements

and test cases for the system (binary variables). The constraints for requirements include time

and cost budgets, requirement correlations, inclusion/exclusion relationships and ‘Must Have’

determinations. The constraints on test cases are similar to the earlier formulation.

Indices:
Set of requirements

 Set of test cases
m M
n N
∈ =
∈ =

 12

Decision Variables:

,

Indicator for test case selection (0,1)
 Indicator for test case selection (requirement-level) (0,1)

Indicator for requirement selection (0,1)
 Total rank of requirement
Adjusted cost of

n

m n

n

n

j

T
TR
R
TK n
AC

=
=

=
=
= requirement (1..)

Adjusted time of requirement (1..)

Adjusted rank of requirement by shareholder (1..)
j

js

j j n

AT j j n

AR j s j n

=

= =

= =

Parameters:

,

,

Test Cases:
 Error detection rating for each test case

 Coverage rating for each requirement in test case
Coverage importance rating for each requirement

Indicator that test case cove

m

m n

n

m n

te
tv
rv
tn

=
=

=
= rs the requirement
 Total cost of test case
 Total time to run a test case

Total time budget for test phase
Total monetary budget for test phase

' Weight of error detection term in objective f

m

m

tc
tt
t
c
w

=
=

=
=
= unction

'' Weight of coverage factor term in objective functionw =

 13

Requirements:
 Indicator that requirement is a 'Must Have' (0,1)
 Rank of requirement by shareholder
 Weight given by shareholder for requirement

Cost to implement requirement
T

n

ns

ns

n

n

m n
k n s
w s n
c n
t

=
=
=

=
= ime to implement requirement

Total budget for project
Total time for project

Indicator of inclusion: if req. is selected, req. must be included (0,1), (1..)

Indicator of exclusion: i
nj

nj

n
tc
tt
in n j j n

ex

=
=
= =

= f req. is selected, req. must be excluded (1,2), (1..)

Cost differential of req. if req. is selected (1..)

Time differential of req. if req. is selected (1..)

Rank different

nj

nj

njs

n j

cd j n j n

td j n j n

rd

=

= =

= =

= ial by shareholder of req. if req. is selected (1..)

''' Weight of requirement ranking in objective function

s j n j n

w

=

=

j n

:

Objective Function:

, ,
,

Maximize test suite error detection and coverage and requirement ranking
' '' '''m m m n m n n n

m M m M n N n N
w te T w tv TR w R TK

∈ ∈ ∈ ∈

⋅ ⋅ + ⋅ ⋅ + ⋅ ∗∑ ∑ ∑

Subject to:

:

:

m m
m M

m m
m M

Within monetary budget for test phase
tc T c

Within timebudget for test phase
tt T t

∈

∈

⋅ ≤

⋅ ≤

∑

∑

, , ,

,

:
for all ,

:
1 for all

m n m n n m n

m n
m M

Arequirement of a test case is factored only when both the requirement and test case are selected
T tn R TR m M n N

The test suite must cover all requirements at least once
TR n N

∈

⋅ ⋅ ≤ ∈ ∈

≥ ∈∑

' '
for all n n

All Must Have requirements included
R m n N≥ ∈

 14

1

1 1

:

* for all ,
n n

js n nj n nj
n n n

Adjustment to Rank

AR R rd R rd j N s S
−

= = +

= ∗ + ∈ ∈∑ ∑

()
:

* for all , n js ns ns
s S

Total Rank of Requirement

TK AR k w n N j N
∈

= + ∈∑ ∈

∈

∈

1

1 1

:

* * for all
n n

j n nj n nj
n n n

Adjustment to Time

AT R td R td j N
−

= = +

= +∑ ∑

1

1 1

:

* * for all
n n

j n nj n nj
n n n

Adjustment to Cost

AC R cd R cd j N
−

= = +

= +∑ ∑

:

2* * for all ,n j nj n

All Inclusion Relationships are Satisfied
R R in R n N j+ ≥ ∈ ∈ N

:

for all ,n j nj

All Exclusion Relationships are Satisfied
R R ex n N j N+ ≤ ∈ ∈

()
()

:

*j n n
n N j n

The requirements selected are within monetary budget

AC c R tc
∈ =

+ ≤∑

()
()

:

*j n n
n N j n

The requirements selected are within timebudget

AT t R tt
∈ =

+ ≤∑

,

:
(0,1) for all ,

(0,1) for all
(0,1) for all

m n

m

n

Definevariable types
TR is binary m M n N
T is binary m M
R is binary n N

∈ ∈

∈
∈

Smaller scale models can be solved in Excel using the Solver in an efficient time frame. Due to

the complexity of the non-linear program, larger scale problems require a more advanced

optimization solver, such as Dash Optimization’s Xpress SLP.

 15

2.7 Conclusion
Our primary objective was to create a tool to analyze an existing test suite in order to create a

reduced, optimized test suite. We modeled the logic for this tool as a linear program and

successfully and implemented it in MS Excel. We then integrated it with an existing tool, the

Dynamic Requirement Selector. As such, we successfully completed our research objective.

3 Test Case Ordering Algorithm
Test case prioritization involves sequencing the test cases within a test suite in a manner that will

increase some measure of effectiveness. A commonly used metric is the rate of fault detection.

This is a measure of how quickly faults are detected after the commencement of a test suite run.

This is a sensible metric to use as it is desirable to identify faulting components as soon as

possible in order to repair them quickly.

An extension of this idea is the goal of identifying one particular faulting requirement with as

much certainty as possible. This is advantageous in the case that one faulting requirement causes

several test cases to fail, hence masking other potentially faulting requirements. Additionally,

this early identification may facilitate a quick repair to the system. This is especially of interest

in the case of nightly software builds; being able to identify a faulting requirement quickly may

enable a quality-assurance team to contact the responsible engineer before he leaves the office

for the day (instead of having to page him in the middle of the night).

An additional facet of a test case prioritization technique is the inclusion of cost-efficiency

methods. These methods help address the cost-effectiveness trade-off that is inherently present

when selecting and running a test suite.

Given this motivation, the goal of the model presented below is:

Given:

1. A set of test cases

2. A set of requirements that are tested by these test cases

3. That one of these requirements has caused a previously run test case to fail

Do:

 16

1. Determine a cost-minimizing sequence of test cases to run to identify a faulting

requirement

2. Update the sequence with new information a test case is run

Terminate when:

1. A goal state fails; when this happens, the requirements associated with this goal state

can be examined further to determine exactly which one is faulting (unless the goal

state is atomic)

3.1 Literature Review
Most recent studies on test case prioritization focus on ordering an entire test suite at its onset in

order to increase the effectiveness of some performance measure. An example of a metric used

is the Weighted Average of the Percentage of Faults Detected (APFD) as introduced by Elbaum

et al. This metric is an indicator of the rate of fault detections uncovered by the testing process

[2000]. There have been several extensions to this work, including that done by Elbaum et al

[2002], and that done by Aggrawal et al [2004]. These work all assumes that once a test suite is

ordered it will be run until completion.

3.2 Definitions
In addition to the terms described above, the following terms are used throughout the discussion

of test suite reduction:

Requirement of Interest: A requirement that is potentially faulting. In other words, it is a

requirement that is of interest to test. This is compared to a requirement not of interest, which is

a requirement that is known not to be faulty.

Test Case Joined Cost: This term refers to the value that is calculated by combining a weighted

measure of a test case’s financial cost and temporal cost. This is done to create one cost value

per test case. For example:

• Test Case X Financial Cost = $30

• Test Case X Temporal Cost = 10 hours

• alpha value = .50

• Test Case X Joined Cost = (alpha) * (FinancialCost) + (1 – alpha) * (TemporalCost)

 17

• Test Case X Joined Cost = 25

There are no units to this cost as its use is only to compare the cost of one test case to the cost of

another test case.

Closeness of Requirements (closeness): This term refers to the relationships among the

requirements contained in test case; it is, in fact, a simplified measure of the correlation among

requirements in a test case with respect to the frequency with which they appear together in a test

case. This is defined as a percentage [1-100]. This measure is typically used as input when

constructing test cases, as illustrated in the following example:

• Assume the range of requirements in a test suite is 1 - 100. Envision this is a looped

continuum such as:

Req. 1 Req. 100

• Assume there are to be 10 requirements included in the test case

• Assume the measure of closeness is 90%

• Assume that the test case will contain Requirement 40 (an arbitrary decision, but

necessary as a starting point)

Given these parameters, the following calculations will be performed:

1. Pivot Requirement for test case = Requirement 40

2. Number of Requirements eligible to be added to this test case:

o # of Requirements = size_test_case * [100% + (100% - closeness)]

o # of Requirements = 10 * [2 - .90]

o # of Requirements = 10 * 1.10

o # of Requirements = 11

 18

3. Range in which requirements may be selected1:

o Range = Pivot +/- [1 + (# of Requirements / 2)]

o Range = 40 +/- [1 + 11/2]

o Range = 40 +/ 6

As a result of this closeness parameter, among the 9 additional requirements that will be added to

this test case will fall within +/- 6 of Requirement 40 (i.e. between Requirement 34 and

Requirement 46). If, for instance, Requirement 3 were used instead of Requirement 40 as the

pivot, the range would be [Requirement 1 – Requirement 9 UNION Requirement 97 –

Requirement 100] (which is why the notion of the looping continuum was introduced above).

Test Case Size Skew: This term refers to the distribution of the sizes of test cases within a suite

(i.e. the number of requirements contained in a test case). It, like the closeness parameter, is

used primarily when constructing a test suite. Measures of test case size skew (skew) are used in

combination with a normal distribution that is used as a random number generator (RNG). The

output of this RNG is the size of the next test case that is to be created (an additional input

necessary for this calculation is the total number of test cases that are to be created). The skew

measure is simply a descriptor of the mean and the standard deviation that are used to create the

normal distribution. In the scope of this paper, there is only a discrete set of values used to

describe the test case size skew:

• VERY_LEFT_SKEW

o distribution mean = 20% * total_number_test_cases

o distribution standard deviation = 20% * total_number_test_cases

• LEFT _SKEW

o distribution mean = 33% * total_number_test_cases

o distribution standard deviation = 20% * total_number_test_cases

• CENTER_SKEW

o distribution mean = 50% * total_number_test_cases

o distribution standard deviation = 20% * total_number_test_cases

• RIGHT_SKEW

1 The calculation is roughly this, with some adjustments for integer division in the implementation

 19

o distribution mean = 66% * total_number_test_cases

o distribution standard deviation = 20% * total_number_test_cases

• VERY_RIGHT_SKEW

o distribution mean = 80% * total_number_test_cases

o distribution standard deviation = 20% * total_number_test_cases

Note that if the RNG generates a number of out range (e.g. -3), the RNG will be re-queried until

a valid number is produced.

These measures may be used to shift the skew of the size of test cases to a particular range of

sizes relative to the total number of test cases used. As an alternative, a uniform distribution may

also be used as a RNG; this distribution takes the form:

• CENTER_NO_SKEW

o distribution min = 0

o distribution max = total_number_test_cases

Test Case Goal State (Goal State): A goal state refers to a test case that is used to determine if a

particular requirement is faulting. There is one goal state for each requirement; if this goal state

fails during testing, it is assumed that the associated requirement is at fault.

Ideally, a goal state will be atomic. That is, it will contain one and only one requirement. In a

given test suite, such test cases may not be present; in such a scenario, non-atomic test cases will

be used as goal states (i.e. test cases that test more than one requirement). These cases will be

selected a measure of the certainty with which it can be determined that a test case failure is

related to a particular requirement. Obviously, in the atomic case, this correlation is 100%; if the

test case fails, it is due to the one requirement it contains. In the non-atomic case, this

correlation may be measured as a rough probability: essentially, the higher the probability that a

test case has failed due to a particular requirement, the better that test case is as a goal state for

that requirement. A simple example is given below, and more quantitative calculations are given

later in the paper:

 20

Req.
3

Tests only Req. 3

Req. 3 Goal State

Req.
{3,4,5,
6,7,8}

Tests Req. 3, Req. 4, Req. 5,
Req. 6, Req. 7 and Req. 8

Req. 4 Goal State
NOT Req. 8 Goal State
NOT Req. 3 Goal State

Req.
{3,8} Tests Req. 3, Req. 4, and Req. 8

NOT Req. 4 Goal State
Req. 8 Goal State

NOT Req. 3 Goal State

Figure 3: Goal State Example

3.3 Assumptions
There were several assumptions made during the work described in the paper. The major

assumptions were:

• Smaller test cases are more expensive than larger test cases

In many systems, it is easier and less expensive to test an assembled system than to

test components individually. An example of this is a financial firm’s enterprise

information system. Assume this system receives data feeds from several different

disparate sources. Assume also that the enterprise information system needs one

module per feed. In this case, it may be significantly less expensive to test the system

once all modules are constructed. This may be the case because no additional work

 21

must be done to simulate the feed reception. On the other hand, it may be

considerably difficult to test the system if all reception modules are not complete.

Simulated data feeds would have to be constructed, which would increase the cost of

testing.

• Duplicate goal states can be used

In some instances, a goal state may be associated with more than one requirement.

This is allowable in this model.

• A test case failure reveals only that one of its included requirements fails and no

more

This assumption is based on the fact that many test cases provide only binary results:

fail or pass. If a test case provided more results (e.g. the requirement that caused it to

fail), then the objective of this model would be met immediately upon any test case

failure.

• A test case only needs to be run once to determine if any of its included

requirements are faulting

To illustrate why this is an important assumption, consider the following:

o Test Case X has an EDR of 50%

o Test Case X includes Requirement Z

o Test Case X is run, and it succeeds

At this point the model presented in this paper will assume that Requirement Z is not

faulting. Unfortunately, there is room for Type II error in this assumption. That is,

because the EDR of Test Case X is only 50%, there is a chance that Requirement Z is

faulty but Test Case X failed to notice the fault. To limit this error, the test case may

be run consecutively several times until the probability that Requirement Z is faulting

AND Test Case X misses the failure becomes less than some nominal amount. An

example of how to do this is:

o Assume the same parameters as above

o Assume a certainty measure of 99%; that is, do not assume a test case

provides accurate results until there is less than a 1% chance of a Type II

error. This is achieved by running the test case several times consecutively.

This calculation is:

 22

P(Type II Error) =

P(test_case_misses_failure AND req_faulting)(Times TC is run)

o Repeat the test case until it fails, or it has been run the appropriate number of

times without failing

• Absolute calculations can be substituted for relative calculations

Along with minimizing the Type II error, there are a series of additional Bayesian

calculations that may be included to update the probabilities of failure of each test

case as the suite is run. For the large part, however, simplifications have eliminated

such calculations in the prioritization model herein. This is done because it is only

the relative cost of test cases (compared with each other) that is important in the

model. That is, it is not important to know that a test case costs exactly x dollars and

y hours to run, but it is only important to know that a test case costs z times more than

another test case.

• All requirements have equal probabilities of faulting

Although the model can account for heterogeneously distributed probabilities, it is

assumed that all requirements have the same probability of failing. This is done to

simplify the experimental results as well as ease the computational stress of testing

running the algorithms.

3.4 Theory
The test case prioritization techniques presented below are used to identify, with certainty, only

one faulting requirement. These are not meant to be techniques that are used to order test cases

at the onset of a test suite run. On the contrary, they are meant to be used as truncation

techniques once a test case fails during the normal run of a test suite. This is done in order to

save the cost of running the entire test suite once it’s known that at least one requirement is

faulting. The alternative to truncation is to continue running the entire suite even after it’s known

that at least one requirement is faulting. This may result in wasted resources as the one faulting

requirement may cause other test cases to fail, which will have to be re-run once the requirement

is repaired. Recognizing this immediately after the first failure of the test suite occurs will

prevent such unnecessary resource use. Notice that a truncation technique will never be more

expensive than the non-truncation technique. This is because a truncation technique will never

run a test case that already has been run by the test suite, or that is not included in the test suite.

 23

The worst case scenario for a truncation technique is that it runs all the remaining test cases in a

suite, which is exactly what will happen every time in the non-truncation method.

The problem as stated above is similar to a typical search algorithm: given a set of items

(potentially faulting requirements), and a set of test cases (the remaining test cases within a

suite), search the test case set to identify one particular item (the goal state of the faulting

requirement). An additional goal is to minimize the cost of this search. This cost is calculated as

the sum total of the costs of each test case that is run.

Given these objectives, one may immediately consider the simple and intuitive solution of

implementing a simple linear search algorithm. This algorithm simply would run each goal state

sequentially until one goal state fails. This method would be simple to implement, but it would

suffer from an O(n) running time. For these reasons, this paper will refer to such an algorithm as

the “Naïve” algorithm.

An alternative to the Naïve solution would be to perform a binary search on the requirements.

Considering the goal states for the requirements as leaves, and the other test cases as nodes may

help the reader visualize this method. Such an algorithm would be non-trivial to construct, but it

would yield an efficient O(log(n)) running time. This is the algorithm on which the prioritizing

models presented in this paper are based.

3.5 Test Case Comparisons
To prioritize the test suite sequence, it was necessary to develop quantitative methods to compare

test cases. This was especially important in two instances: selecting goal states, and ordering the

sequence of test cases to run.

3.5.1 Selecting Goal States
Each requirement included in the test suite was linked to exactly one goal state. This goal state,

by definition, is the state whose failure is most probabilistically associated with a given

requirement. In other words, for a given requirement, the requirement’s goal state is the test case

that “tests a bigger percentage of that requirement than of any other requirement.” This is part of

 24

the criteria used to calculate the value that is used to rank potential goal states. The test case

with the minimum ranking value is selected as the goal stated. The first step of its calculation is:

• Percentage tested = coverage(Req. in Question) / ∑ coverage(All Non-Faulting Reqs.

Tested)

• Rank value = 1 / Percentage tested

Note that the metric, “coverage,” was used. This is done to scale the percentage in accordance

with how well a test case covers its requirements. Additionally, the EDR of a test case is used in

order to determine how well it tests its requirements. This is incorporated as:

• Rank value = 1 / (Percentage tested * EDR)

Goal states are also selected based on cost-efficiency. To incorporate this into the measurement,

the following calculation is done:

• Rank value = (Cost Test Case) / (Percentage tested * EDR)

This is the final value that is used to determine the attractiveness of a test case as a goal state for

a given requirement.

3.5.2 Test Case Comparisons
Determining the least expensive test case, given a set of candidates, is a similar process to

selecting goal states: a rank value is calculated for each test case, and the test case with the

minimum value is selected to be run. The calculation for this is:

• Total Req. Coverage = ∑ coverage(All Non-Faulting Reqs. Tested)

• Rank value = (Cost Test Case) / (Total Req. Coverage * EDR)

Qualitatively, a test case that tests more requirements is more attractive than a test case that tests

fewer requirements. This is because a test case that covers more requirements effectively

contains more information; when it passes, all its requirements can be considered as non-

faulting; when it fails, only its requirements become of interest.

Of critical importance is that this value gets updated as the test suite runs. To understand this,

consider the following case:

 25

• Test Case X contains requirements { 2, 3, 4 } (all with coverage of 100%), has an EDR

of 100%, and a cost of 50

• Test Case Y contains requirements { 1, 3, 4 } (all with coverage of 100%), has an EDR

of 100%, and a cost of 55

• Test Case Z contains requirements { 6, 7 } (all with coverage of 100%), has an EDR of

100%, and a cost of 60

The rank values of these test cases will be:

• Test Case X: = 50 / (3 * 1.00) = 50/3 = 16.67

• Test Case Y: = 55 / (3 * 1.00) = 55/3 = 18.33

• Test Case Z: = 60 / (2 * 1.00) = 60/2 = 30.00

As such, Test Case X is selected first to be run. Assume that it passes. This means that

Requirement 3 and Requirement 4 are non-faulting. Therefore, the only information that is

offered by Test Case Y is whether Requirement 1 is faulting. This needs to be reflected in the

rank values, and is appropriately done so by:

• Test Case Y: = 55 / (1 * 1.00) = 55/1 = 55.00

• Test Case Z: = 60 / (2 * 1.00) = 60/2 = 30.00

At this point Test Case Z will be selected to be run next as it provides more information than

Test Case Y.

3.6 Algorithm Evolution

3.6.1 Naïve Algorithm
The Naïve algorithm of identifying a faulting requirement is as follows:

• Identify the goal state for each requirement of interest

• Select randomly a goal state and run it

o If the goal state fails, the search is complete

o If the goal state passes, randomly select another goal state and repeat

 26

This algorithm is the simplest to implement. It has a running time of O(# requirements) and

provides no optimization.

3.6.2 Naïve Algorithm, Ordered by Efficiency
This algorithm is identical to the Naïve algorithm above, except that it more deterministically

chooses the sequence in which it will run goal states. To do this, the goal states are sorted in

order of an efficiency measure, as defined below:

• Assume goal state X is associated with Requirement 1

• Requirement 1 has probability to fail = pf(1)

• Efficiency2 = (Test Case Joined Cost) / pf(1)

This algorithm is used as the baseline Naïve algorithm in the experimental runs that are

presented below.

An example of this algorithm is provided below. The ovals represent test cases. The

requirements included in each test case are included within each oval and are abbreviated, for

example as “R1” for Requirement 1. Requirement 3 is the faulting requirement in this example.

2 Notice that a lower Efficiency value is more desirable. This is an arbitrary measure that was

adopted for primarily implementation purposes, the details of which are given in 3.5.1 -

 Selecting Goal States

 27

R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4

Step 1
Order the requirements

Figure 4: Identify the requirements of interest

R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4
Step 1

Step 2

Total Cost:12

<Passes!>

Figure 5: Test Requirement 1

 28

R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4
Step 1

Step 2 Step 3

Total Cost:

12 + 12 = 24

<Passes!> <Passes!>

Figure 6: Test Requirement 2

R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4
Step 1

Step 2 Step 3 Step 4

Total Cost:

12 + 12 + 12 = 36

<Fails!><Passes!> <Passes!>

Figure 7: Test Requirement 3

 29

3.6.3 Tree Algorithm, Ordered by Efficiency
The Tree Algorithm adopts a binary search-like procedure to identify the faulting requirement.

Essentially, this is done by the following:

• Identify the goal state for each requirement of interest

• A tree-like data structure is built.

o The root of the tree is a dummy node. Its children are the set of test cases that

are not a subset of any other test case

o Every test case is added to the such that each parent node is a superset of all

its children

o By the constraint above, the goal states are added as the leaf nodes

• A depth-first search on the tree is performed

o Each node that is visited represents a test case. As soon as the node is visited,

it is marked as “visited.” The test case that is associated with the node is then

run.

 If the test case fails, the search continues to all of its unvisited

children. If the node is a goal state, the search is terminated.

 If the test case passes, all children of the node are deemed “visited”.

The search then returns to the parent of the node and continues.

An example of this algorithm is provided below. The ovals represent test cases. The

requirements included in each test case are included within each oval and are abbreviated, for

example as “R1” for Requirement 1. Requirement 3 is the faulting requirement in this example.

 30

R1 R2 R3 R4

R2R1

R3 R4R1 R2

R4R3

Step 1
Construct the Tree

Cost = 10
Cost = 10

Cost = 12 Cost = 12
Cost = 12 Cost = 12

Total Cost: 0

Figure 8: Four Potentially Faulting Reqs. Identified

R1 R2 R3 R4

R2R1

R3 R4R1 R2

R4R3

Step 1

Step 2
<Pass>

Cost = 10
Cost = 10

Cost = 12 Cost = 12
Cost = 12 Cost = 12

Total Cost:

0 + 10 = 10

Figure 9: Testing Req. 1 and Req. 2

 31

R1 R2 R3 R4

R2R1

R3 R4R1 R2

R4R3

Step 1

Step 3

Step 2
<Pass>

<Fails!>

Cost = 10
Cost = 10

Cost = 12 Cost = 12
Cost = 12 Cost = 12

Total Cost:

10 + 12 = 22

Figure 10: No new information given by testing Req. 3 and Req. 4 together. Proceed directly to goal states.

3.6.4 Graph Algorithm, Greedy Heuristic
The Tree Algorithm presented above presents an attractive alternative to the Naïve Algorithm. It

is not, however, a completely accurate representation of the problem. To understand why this is,

recall that the algorithm looked only at the test cases that were children of a node as candidates

for the next test case to run; this was an adaptation that was made to reduce the algorithm into a

variant of depth-first search. Unfortunately, this logic limits the set of test cases that are

available to run at a given time. This, however, is not representative of the true problem scenario

in which any test case in the test suite may be run following termination of any other test case.

To account for this discrepancy, an algorithm more representative of the true problem must be

used. The algorithm developed to fill this, the Graph Algorithm, is similar to the Tree

Algorithm, but with greater flexibility. This algorithm translates the tests cases not into a tree,

but into a fully connected graph. The links of this graph represent transitions from one test case

to another. Because it is fully connected, there are no restrictions on the sequence of test cases

that may be run.

 32

Predictably, the Graph Algorithm, Greedy Heuristic (GGH) uses a greedy heuristic to determine

the sequence of test cases to run. This is conceptually a simple technique, as the following steps

illustrate:

• Identify the goal state for each requirement of interest

• Rank all the test cases using the algorithm given in 3.5.2 - Test Case Comparisons

• Select the least-cost test case and run it

o If the test case fails

 If the test case is a goal state, the search terminates

 Else, this information is fed back into the algorithm, the test cases are

re-ranked, and the algorithm repeats by selecting the next least-cost

test case

o If the test case passes

 This information is fed back into the algorithm, the test cases are re-

ranked, and the algorithm repeats by selecting the next least-cost test

case

This is a greedy algorithm because it looks only at the cost of the next test case to run; it does not

perform any further look-ahead. In fact, this can be considered an adoption of Dijkstra's

minimum cost algorithm used on a fully connected graph.

Due to the nature of the problem, the complete GGH algorithm is more complex than the

algorithm outlined above. This complexity arises in the way in which the GGH may prune

candidate test cases from the set of available test cases. That is, the GGH algorithm may find it

unnecessary to run a test case, even if it is the least-cost test case in the available set. This

typically is done when it is determined that a test case offers no new information, or redundant

information. The reasons why this may be done include the following:

• The test case examines only one requirement, and is not a goal case

• The test case does not examine a subset of the previously run test case

This pruning is done after the selection of the least-cost goal state.

 33

An example of the GGH Algorithm compared to the Tree algorithm is given below. First the

Tree Algorithm is shown, and then the GGH is shown. Note that not all connections are given so

as to illustrate the difference between the Tree Algorithm and the GGH Algorithm.

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 1
Identifying the Requirements of Interest

Figure 1 (Tree) Identifying the Requirements of Interest

 34

Step 2
Cost = 8

Figure 22: (Tree) Running a least-cost test case

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 3
Cost = 8 + 10 = 18

Child node is preferred
over the least cost node

Figure 33: (Tree) Selecting a child test case

 35

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 4
Cost = 8 + 10 + 12 = 20

Goal state passes

Figure 14: (Tree) Running a goal state

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 5
Cost = 8 +10 + 12 + 12 = 32

Figure 15: (Tree) Identifying the faulting requirement

 36

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 1
Identifying the Requirements of Interest

Figure 46: (GGH) Identifying the Requirements of Interest

Step 2
Cost = 8

Figure 5 (GGH) Running a least cost test case

 37

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 3
Cost = 8 + 8 = 16

Figure 18: (GGH) Running the least cost test case

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 3
Cost = 8 + 8 + 12 = 28

All these are pruned

TC 3 Passed,
therefore

Req. A passes

Figure 19: (GGH) Goal state is found

 38

For this same test suite and the same faulting requirement, the Tree Algorithm will have a cost

that is less than the GGH Algorithm. This illustrates the advantage of selecting the next test case

to be run from the entire set of available cases. It also illustrates the advantage of pruning this

set.

3.6.5 Graph Algorithm, Exhaustive Search
An alternative to the Greedy Heuristic is a completely exhaustive search. This technique would

examine every possible path that may be taken, and would return the probabilistically least cost

path as the sequence to run. At every test case run, this path would be updated.

Because of the nature of the search included, this Exhaustive Search algorithm would be able to

provide lesser-cost sequences than the prioritization better algorithm than the Greedy Heuristic.

Despite this, the algorithm is not a better practical choice. This is because the algorithm would

have running time O(nn) (n = # of test cases). Therefore, the Greedy Heuristic was determined to

be the best algorithm to use to test the graph prioritization method.

3.7 Implementation
A framework was created to test the Greedy Graph Algorithm against the Naïve Algorithm. This

was done so that large test suites with large sets of requirements could be analyzed. Moreover,

given key parameters, the framework was used to create test suites with different key

characteristics. This was done to determine the key variables that affected the success of the

algorithms tested.

The framework was written as a JavaTM
 application that read and produced XML and text-

delimited files. XML files were used as a simple way to define a test suite; these were useful for

small examples. The text-delimited files were used to analyze the data in MS Excel.

3.7.1 Technical Overview
The testing framework was a relatively simple application. To some extent it was interfaced as a

decoupled OO application, but to the same extent it was a design-once, run-once framework.

The basic structure is shown below:

 39

TestSuiteCreator

TestSuiteCoster

TestSuiteXmlWriter

TestSuiteXmlReader

TestSuiteRunner

TestSuiteDataWriter

Figure 20: Application Class Diagram

3.7.2 TestSuiteCreator
The TestSuiteCreator is a class that was used to create test suites. The key parameters given to

the TestSuiteCreator were as follows:

• Number of test cases: This indicates how many test cases to include in the suite

• Number of requirements: This indicates how many requirements are to be tested by the

suite

• Closeness of requirements: This indicates the frequency with which the same set of

requirements are included in test cases together

• Test Case Size Skew: This describes the shape curve that represents the distribution of

the sizes of the test cases created

• Test Case EDR Mean: This is the mean value of the normally distributed Error Detection

Rate value that is associated with each created test case

• Test Case EDR Sigma: This is the standard deviation of the normally distributed Error

Detection Rate value that is associated with each created test case

• TC - Requirement Coverage Mean: This is the mean value of the normally distributed

Coverage value that is associated with each requirement tested by a particular test case

 40

• TC – Requirement Coverage Sigma: This is the standard deviation of the normally

distributed Coverage value that is associated with each requirement tested by a particular

test case

3.7.3 TestSuiteCoster
The TestSuiteCoster is a class that determines the cost of each test case for a given test suite.

This is a key component of the framework, as minimizing cost is a primary objective of the

research problem. The TestSuiteCoster is driven by the assumption that smaller test cases will

cost more than larger test cases, but is also parameterized to be flexible in this notion. Such

parameterization is done using the following variables (note that costing for the Financial and

Temporal costs are done identically, and so only the financial costs are described below):

• Financial Base Cost: This is the base financial cost, down from which all pricing

adjustment will be made. In other words, it is the maximum financial cost that a test case

can be given

• Financial Overhead Amount: This is the percentage of the financial cost of a test case

than can not be affected by scaling down for a lower EDR. This is described below in

more detail.

• Financial Random Amount: This is the maximum percentage of the financial cost that

can be either added or subtracted to the amount as a result of a random fluctuation

The TestSuiteCoster follows the proceeding method when costing a test case:

1. Sets the financial cost (fc) to be the Financial Base Cost

2. Scales the fc linearly according to:

a. how many requirements the test case covers

b. how well the test case covers each of these requirements

3. Determines the Financial Overhead Amount

a. Determines the scaleable amount = fc – (Financial Overhead Amount)

b. Scales the scaleable amount according to the EDR of the test case

c. Adds this reduced amount back to the Financial Overhead Amount

d. Sets this sum to be the new value of fc

4. Introduces a random fluctuation using the Financial Random Amount parameter

a. Scales fc by a random percent of the Financial Random Amount parameter

 41

This costing method is truly an approximation, but the consistency it introduces allows for

reasonable creation of test suites and experimentation with test suites.

3.7.4 TestSuiteRunner
The TestSuiteRunner provides the main functionality of the framework. It is this class that

implements the algorithms that are tested.

3.7.5 Comparators
The majority of the sorting was performed using custom implementations of the Comparator

class. This was done to take advantage of the JDK1.5 built-in merge sort implementation.

Additionally, the use of Comparators facilitated algorithm enhancement and adjustments

through the use of sub-classing existing Comparators.

3.7.6 Screen Shots
For the authors’ amusement, a screen shot of the application is provided below:

 42

 43

3.8 Experiments and Results
To test the effectiveness of the Graph Greedy Heuristic Algorithm (GGH), four experiments

were run. These experiments sought to measure the effect of changing one of four major test

suite parameters. In each experiment, three different scenarios were tested:

1. Set the parameter in question at a low value

2. Set the parameter at a medium value

3. Set the parameter at a high value.

For each of these scenarios, 30 simulation runs were completed. In each run, the GGH

Algorithm and Naïve Algorithm were applied to the same test suite, containing the same faulting

 44

requirement, in order to find the cost of identifying the appropriate goal state. These costs were

then compiled and t-tested.

3.8.1 Four Factor Experiment Overview
Four factors were isolated and tested in order to determine their influence on the effectiveness of

the GGH Algorithm as compared to the Naïve Algorithm. For each of the experiments run, the

baseline test was the same. Its parameters were:

• Number Requirements of Interest: 270

• Number of Test Cases: 600

• Closeness: 90%

• Test Case Size Skew: LEFT_SKEW

Each parameter was then varied twice in order to test its effect on the efficiency of both

algorithms. The results are given below.

3.8.1.1 Number of Requirements
The Naïve Algorithm has running time O(n), where n is the number of requirements of interest.

As such, for a small number of requirements, it may be more efficient to use this algorithm than

the GGH. Investigating the accuracy of this theory was the driver behind first experiment.

 45

Algorithm Costs vs. Varying Number of Requirements

4000.0000

6000.0000

8000.0000

10000.0000

12000.0000

14000.0000

16000.0000

18000.0000

20000.0000

135 270 405

Number Requirements

C
os

t Naïve Cost
GGH Cost

Number of
Reqs. Naïve Cost GGH Cost T-Value 95% T-Crit.
135 13976.1901 13630.7524 0.1318 2.0017
270 17346.3226 11598.9739 1.7247 2.0017
405 17626.1015 6911.2533 4.4221 2.0017

As the graph illustrates above, as the number of requirements increases, it becomes more

attractive to use the GGH Algorithm. This is confirmed by the T-Value of the last run as it is

above the critical value for a two-tailed 95% interval. Therefore, for test suites with large

numbers of requirements, it is significantly less expensive to use the GGH Algorithm than the

Naïve Algorithm.3

3.8.1.2 Number of Test Cases
Both the Naïve and GGH Algorithms benefit by having a large number of test cases from which

to choose goal states. This is a simple concept – the more cases from which to chose, the more

effective and efficient the selected goal cases should be. In addition to this, the GGH Algorithm

3 The exact determination of what a “large” number has not been made yet

 46

may benefit by larger sets of test cases because of the additional options it has from which to

choose. That the cost differential between the Naïve and GGH algorithms would lessen as the

number of test cases increases was the hypothesis tested by this experiment.

Algorithm Costs vs. Varying Number of Test Cases

37500.00

32500.00

27500.00

22500.00 GGH Cost

Number of
TC's Naïve Cost GGH T-Value T-Crit
300 17424.1237 3745.2008 4.7883 2.0017
600 17346.3226 11598.9739 1.7247 2.0017
900 33455.5291 17040.9244 2.7882 2.0017

As seen above, it is not entirely conclusive that the cost differential between the Naïve and GGH

Algorithms lessens as the number of test cases increases. A possible reason for this is that the

percentage increase in test cases from 300 to 900 was too small to reflect a general trend. Note

also that the costs for both algorithms increases as the number of test cases increases. This might

be a result of a greater number of near-atomic test cases becoming available to use as goal states.

The costs of such near-atomic test cases are generally higher than the cost of a large test case,

and therefore this may contribute to the increasing trend. If this is the reason for this general

increase, its effect would be expected to diminish as the number of test cases grew large enough

2500.00

7500.00

12500.00

17500.00
Cost

Naïve Cost

300 600 900
Number Test Cases

 47

to provide one atomic test case as a goal state for each requirement. Beyond this number of test

cases there would be no reason for the general cost to increase because of this hypothesized

effect.

3.8.1.3 Closeness of Requirements in Test Cases
An increase in the closeness of requirements in test cases was expected to benefit the GGH

Algorithm more than the Naïve algorithm. This is because a high correlation of requirements in

test cases was predicted to provide a greater amount of information than a low correlation of

requirements. For example, in a highly correlated suite, if a test case containing Requirements

{1,2,3,…..10} passed, then it would be expected that many smaller test cases would contain an

exact subset of these requirements and therefore could all be eliminated. In a lesser correlated

suite, not as many exact subsets would be expected to be found. This was the reason why an

increase in closeness was expected to result in a lesser cost for the GGH algorithm.

Algorithm Costs vs. Measure of Closeness

27500.0000

22500.0000

17500.0000

Closeness Naïve Cost GGH T-Value T-Crit

5 25677.4144 8883.5462 3.9174 2.0017

2500.0000

7500.0000

12500.0000

5 55 90
Closeness

Cost Naïve Cost
GGH Cost

 48

55 12296.5426 11194.0877 0.4311 2.0017
90 17346.3226 11598.9739 1.7247 2.0017

As seen above, it seems as if the opposite of the predicted theory is true. That is, the less

correlated the requirements are in a test case, the more effective the GGH algorithm is. Upon

reflection of the results, this seems to be a sensible theory. This is related to the pruning that is

done in the GGH algorithm: Having a large set of test cases that contains randomly placed

requirements offers a large opportunity to discover new information; the pruning encourages new

discovery and discourages selecting test cases that offer redundant information. As such, each

new test case that is selected and avoids being pruned will offer a relatively significant amount of

new information. For this reason, a test suite with a lower measure of closeness may be a better

candidate on which to run the GGH than a test suite with a higher measure of closeness.

3.8.1.4 Test Case Cardinality Skew
The measure of test case size skew was predicted to affect the costs of the algorithms run in the

following ways:

• A left skew will provide larger amounts of small test cases. These will provide a larger,

but more expensive, set of goal cases from which to chose. As a result, as the skew was

moved to the left, the overall cost of both algorithms was expected to increase

• A right skew will provide larger amounts of large test cases. These will offer a large

amount of information to the GGH Algorithm. As a result, as the skew was moved to the

right, the cost of the GGH Algorithm was expected to decrease.

 49

Algorithm Costs vs. Measure of Test Case Skew

8000.0000

9000.0000

10000.0000

11000.0000

12000.0000

13000.0000

14000.0000

15000.0000

16000.0000

17000.0000

18000.0000

1 2 4

Number Requirements

C
os

t Naïve Cost
GGH Cost

Skew Naïve Cost GGH T-Value T-Crit
1 16333.9106 12358.3748 0.9975 2.0017
2 17346.3226 11598.9739 1.7247 2.0017
4 16610.6174 11410.8743 1.3496 2.0017

As predicted above, the cost of the GGH Algorithm decreased as the skew moved to the right.

The first point of the hypotheses, however, was not observed by the experiment. A cause for this

may be the number of requirements used in the experiment. A larger number of requirements

may have driven both algorithms to select a much larger set of small test cases as goal states. As

a result this predicted effect may have been amplified to a point where it would have been

observable. This not being the case, however, it cannot be concluded that moving the skew to

the left has a general effect on the cost of both algorithms.

Note additionally that there is no significant difference between the costs of the algorithms over

the range of test case skew that was tested in this experiment. This suggests that neither

algorithm offers a clear advantage for use in an environment that has a particular value of test

case skew.

 50

3.8.2 Experiment Conclusions
In the four experiments that were run, there was not one instance in which the Naïve algorithm

proved to be significantly more efficient than the GGH Algorithm. This is to say that in every

scenario tested, the GGH Algorithm offered at least the same performance as the Naïve

Algorithm. Additionally, in several cases, the GGH Algorithm proved that it offered

significantly greater performance. As such, the GGH Algorithm has been shown to be a

consistently better technique for the test case prioritization problem than the Naïve method.

4 Conclusion
This paper covered test suite minimization and ordering. We developed a non-linear program to

select both requirements and the optimal test suite to test those requirements. We then created an

algorithm to identify a faulting requirement in a more efficient manner than a simple linear

implementation.

 51

5 References
1. Aggrawal, K.K., Y. Singh, A. Kaur. 2004. Code coverage based technique for

prioritizing test cases for regression testing. ACM SIGSOFT Software Engineering
Notes. 29(5).

2. Austin, M. 2004. System validation and verification. University of Maryland - ENSE

623 Systems Engineering Course Notes. 1-94.

3. Black, J., E. Melachrinoudis, D. Kaeli. 2004. Bi-criteria models for all-uses test suite

reduction. Proceedings of the 26th International Conference on Software Engineering.

4. Chen, T.Y., M.F. Lau. 1998. A new heuristic for test suite reduction. Information and
Software Technology. (40) 347-354.

5. Cohen, M.B., P.B. Gibbons, W.B. Mugridge, C.J. Colbourn. 2003. Constructing Test

Suites for Interaction Testing. IEEE. 38-47.

6. Elbaum, S., A.G. Malishevsky, G. Rothermel. 2002. Test case prioritization: a family of

empirical studies. IEEE Transactions on Software Engineering. 28(2) 159-182.

7. Elbaum, S., A.G. Malishevsky, G. Rothermel. 2000. Prioritizing test cases for regression
testing. ISSTA ’00. 102-112.

8. A.G. Malishevsky, G. Rothermel, S. Elbaum. 2002. Modeling the cost-benefits trade-

offs for regression testing techniques. Proceedings of the International Conference on
Software Maintenance.

9. Offutt, A.J., J. Pan, J. Voas. Procedures for reducing the size of coverage-based test sets.

NSF-CCR-93-11967.

10. Vaysburg, B., L. Tahat, B. Korel. 2002. Dependence analysis in reduction of
requirement based test suites. ACM. 107 – 111.

11. Waters, R. 1991. System validation via constraint modeling. MIT AI Laboratory ACM

SIGPLAN Notices. 26(8).

 52

	Abstract
	Introduction
	Overview of Verification Testing Process

	Test Suite Minimization
	Motivation
	Literature Review
	Test Suite Minimization Theory
	Terminology
	Test Suite Minimization Approach

	Model Formulation
	Tool Implementation
	Integration with Dynamic Requirements Selector
	Overview of DRS
	Integration of Dynamic Requirements Selector and Test Suite
	Mathematical Formulation of DRS-TSM

	Conclusion

	Test Case Ordering Algorithm
	Literature Review
	Definitions
	Assumptions
	Theory
	Test Case Comparisons
	Selecting Goal States
	Test Case Comparisons

	Algorithm Evolution
	Naïve Algorithm
	Naïve Algorithm, Ordered by Efficiency
	Tree Algorithm, Ordered by Efficiency
	Graph Algorithm, Greedy Heuristic
	Graph Algorithm, Exhaustive Search

	Implementation
	Technical Overview
	TestSuiteCreator
	TestSuiteCoster
	TestSuiteRunner
	Comparators
	Screen Shots

	Experiments and Results
	Four Factor Experiment Overview
	Number of Requirements
	Number of Test Cases
	Closeness of Requirements in Test Cases
	Test Case Cardinality Skew

	Experiment Conclusions

	Conclusion
	References

