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Abstract 
Our research has two important aspects.  The first focuses on the issue of test suite minimization.  

We developed a tool based on a LP to aid in the selection of test cases.  The model seeks to 

maximize the error detection rating and the coverage factor of the selected test suite, while 

keeping within a given time and cost budget.  As an extension, we next considered how to order 

the given set of test cases.  We developed an algorithm which orders test cases based on the goal 

of minimizing the time to identify failures, thus minimizing the overall test cost. 

1 Introduction 
This document begins with an overview of the verification testing process and the motivation for 

our project.  Next, relevant research is discussed that contributed to our focus area.  This is 

followed by a detailed discussion of the Test Suite Minimization tool, including theory, 

approach, implementation, and its integration with the Dynamic Requirements Selector tool.  We 

then discuss a new Test Suite Prioritization technique, including theory, implementation and 

results.  Finally, we present our conclusions and areas for future research.   

1.1 Overview of Verification Testing Process 
Once a system has been designed and developed, it must undergo verification.  This is the 

process of ensuring that the system and all its components meet the requirements and 

specifications of the design.  The goal of the verification testing phase is to find all errors 

(incorrect internal system state) and failures (incorrect external behavior of system) and fix the 

underlying faults, or causes (Waters 1991).     

 
Verification 

Requirements &  
Specifications 

System Design & 
Development 

 
 
 
 
 

Figure 1: Verification Process 

 
This testing process must be structured and comprehensive to facilitate detection of all system 

issues.  The standard practice is to test first each component of the system at the unit-level.  The 

next level of testing is system integration testing (SIT), in which tests are run that verify several 
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requirements at once.  These tests are called test cases, and they are comprised of a set of 

execution conditions and inputs for a particular objective.  The test results are checked against 

the expected results to verify compliance for the applicable requirements.  The set of test cases 

used for verification of a system is called the test suite.  The test suite must cover all 

requirements.  The verification stage is not complete until every test case in the suite has passed 

successfully. 

2 Test Suite Minimization 

2.1 Motivation 
When testing a system, the end goal is to test all requirements thoroughly.  Ideally, the test suite 

will detect errors quickly and in a manner in which they could be assigned to root causes and 

resolved efficiently.  One method of testing is to cover extensively every single requirement 

atomically and every potential interaction.  This setup, however, is not feasible for large-scale 

systems as the number of required test cases in the suite would grow unwieldy and become cost 

prohibitive.  Of course, if the test suite does not completely cover all requirements, then errors 

may remain undetected.  The test manager must trade-off these issues when selecting the 

appropriate test cases for a test suite.  The goal of our project is to develop a tool to aid in this 

selection process.   

2.2 Literature Review 
In recent years, there has been an increase in research focus on test suite analysis.  Much of this 

research concentrates on how to reduce the size of test suites.  Chen et al focused on reducing 

test suite size for software systems [1998].  They reviewed a greedy heuristic that reduces the 

suite size by selecting test cases based on the degree of ‘essentialness.’  This ranking is derived 

from a factor that measures the redundancy of test cases.  They also created a new heuristic to 

improve upon the base heuristic.  Cohen et al focused their research on reducing test suite size 

for test cases that involved interaction testing [2003].  They reviewed applicable heuristics and 

developed an integrated approach for finding coverage arrays.  Of particular interest was the 

recent research by Black et al in which an LP model was developed to determine the optimal set 

of test cases [2004].  They developed a bi-criteria model which maximized error detection while 

minimizing the test suite size.  Their research did not focus on any factors regarding time or 

costs.   
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2.3 Test Suite Minimization Theory 
After reviewing this research, we decided to build upon the bi-criteria model by including 

additional factors beyond simple error detection.  The scenario of interest is that in which an 

existing system is upgraded with new features.  Therefore, during the test phase, testing must be 

done on both the new requirements and the existing functionality of the system.  Because the 

system is being extended, there are existing regression test cases that could be used again.  These 

cases, however, may not be the most efficient.  Furthermore, they may cover requirements that 

are no longer valid.  Finally, new test cases must be developed for the new functionality.  The 

test manager must sort through all these test cases and select the few that will make up the test 

suite.   

 

Unfortunately, the bi-criteria model is difficult to use in the situation of selecting new, unproven 

test cases.  Estimates can be provided on the predicted error detection factor of each test case, but 

this can produce mixed results.  By adding new aspects to the bi-criteria minimization model, the 

selection is based on a well-balanced set of factors and is not skewed by the use of just one 

factor.   

2.3.1 Terminology 
A discussion of the some of the key terminology that is used in this paper is provided below.  

 

Error detection rating: The measure given to each test case as to the estimation of errors that 

will be detected.  This is based on historic performance of the test case or an educated prediction.  

The higher the rating, the more likely the test case is to reveal errors.  This rating is given at the 

test case level, not per requirement in the test case.  

 

Coverage rating: The measure given to each requirement in a test case as to how well it is tested 

by that particular test case.  This is a subjective rating based on the thoroughness of the test case 

to test each particular requirement.  As some requirements are complex, it is clear that not every 

test case will cover the requirement to the same degree.  Some may cover the basics of the 

requirement, but not all the intricacies involved.  This measure enables differentiation of test 

cases based on requirement coverage levels.   
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Requirement importance rating: The measure given to each requirement as to its importance for 

testing.  Essentially, this is a rating that is assigned to each requirement.  The higher the rating, 

the more important that requirement is.  Features that are crucial to system performance can, and 

should be tested more rigorously to ensure their success.  Including this factor in test suite 

selection enables extensive testing for the most important requirements.  

2.3.2 Test Suite Minimization Approach 
Our goal was to develop a tool to select an optimized set of test cases from a larger set.  We 

wanted this tool to perform a comprehensive analysis of test cases.  Further, we felt it should 

consider not only the error detection rating, but also the coverage rating of requirements in the 

test cases.  Additionally, we wanted the tool to select those test cases which most rigorously test 

the more important requirements of a system.   

 

We based the logic for the tool on a linear program to optimize the test suite selection.  The goal 

of this was to enable it to compute an optimal test suite when it is given various data parameters 

as inputs.  The following section details this linear program formulation. 

2.4 Model Formulation 
Due to the binary constraints, the model was formulated as an integer program.  The model 

determines which test cases should be included in the test suite (binary decision variables).  The 

objective of the model is to maximize the overall error detection rating and coverage factor of the 

selected test suite.  The weight of each term in the objective function can be altered based on the 

test manager’s preferences.  The coverage factor is a compound term that is based not only on 

the individual coverage rating of each test case for a requirement, but also how important each 

requirement is in the overall testing process.  

 

The model is constrained by several issues.  First and foremost, every requirement must be 

covered at least once by the test suite.  Additionally, the test suite must be within the time and 

monetary budgets.  The formulation is below:  

 
Indices: 

Set of requirements
 Set of test cases

m M
n N
∈ =
∈ =
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Decision Variables: 

,

Indicator for test case selection
 Indicator for test case selection (requirement-level)

n

m n

T
TR

=
=

 

 
Parameters: 

,

,

 Error detection rating for each test case
 Coverage rating for each requirement in test case
Indicator that test case covers the requirepment

Coverage importance rating for each requ

m

m n

m n

n

te
tv
tn
rv

=

=

=

= irement
 Total cost of test case
 Total time to run a test case

Total time budget for test phase
Total monetary budget for test phase

' Weight of error detection term in objective function
''

m

m

tc
tt
t
c
w
w

=

=

=
=
=
= Weight of coverage factor term in objective function

  

 
Objective Function: 

, , ,
,

Maximize test suite error detection and coverage rating
' ''m m m n m n m n

m M m M n N
w te T w tv rv TR

∈ ∈ ∈

⋅ ⋅ + ⋅ ⋅ ⋅∑ ∑  

 
Subject to: 

, , ,

,

, :
for all ,

:
1 for all 

m n m n m n

m n
m M

If a test case is selected all requirements in the test case are also selected
T tn TR m M n N

The test suite must cover all requirements at least once
TR n N

∈

⋅ ≤ ∈ ∈

≥ ∈∑

 

 
:

:

m m
m M

m m
m M

Within monetary budget for test phase
tc T c

Within timebudget for test phase
tt T t

∈

∈

⋅ ≤

⋅ ≤

∑

∑
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,

:
(0,1) for all ,

(0,1) for all
m n

m

Definevariable types
TR is binary m M n N
T is binary m M

∈ ∈

∈

 

2.5 Tool Implementation 
The model was developed using Excel.  Details for each test case and requirement are entered 

into simple data tables (see below tables), which are then used to populate more extensive tables 

to construct the constraints.  This information is passed to the Excel Solver which returns the 

optimal test suite to the user.   

 

Requirement Coverage:  
Indicator of coverage and respective rating 

1 2 3 TC 
# Test Case 

Cost 
Estimate 

Time 
Estimate 
(hours) 

Error 
Detection 

Rating Incl.? Cvg. Incl.? Cvg. Incl.? Cvg.
1 Generic (1, 4, 6, 10) $45,000 90 25 1 50         
2 Generic (2, 3, 5, 8, 9) $98,000 180 50     1 50 1 50 
3 Generic (1, 3, 7, 11, 12) $85,000 105 50 1 75     1 75 
4 Generic (3, 6, 8, 12) $65,000 110 50         1 75 
5 Generic (2, 5, 6, 12) $25,000 140 25     1 50     
6 Generic (1, 4, 9, 10) $80,000 180 75 1 25         
7 Generic (2, 4, 5, 9, 11) $40,000 80 50     1 50     
8 Generic (3, 5, 8, 12) $30,000 95 25       25 1 25 
9 Generic (2, 6, 8, 11, 12) $85,000 180 50     1 25     

10 Generic (4, 7, 8, 9) $45,000 200 50             
11 Generic (5, 7, 10, 11) $28,000 120 75             
12 Generic (1, 5, 8, 10) $15,000 80 25 1 50         

Table 1: Excerpt of Test Case Data Input Table  
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R# Requirement/Features 
Test Coverage 

Importance 
1 Extended battery life (200 min talk, 200 hours standby) 8 
2 Digital camera with zoom and flash 7 
3 Color display (65,000 TFT) 3 
4 MS Pocket software, Media Player 7 
5 Mobile Web 3 
6 Ultra Lightweight (under 3 oz) 4 
7 Speaker phone capability 5 
8 32 MB RAM 6 
9 Flip phone-style 7 

10 FM Radio and MP3 player 4 
11 Polyphonic MIDI/iMelody Sound 3 
12 Alarm clock, calculator, currency converter 3 

Table 2: Excerpt of Requirement Data Input Table  

 

The model efficiently handles small scale problems.  Due to the linear nature and simplicity of 

constraint construction, larger scale problems should not cause any issues.  Commercial 

optimization packages can easily solve this model for requirement and test case sizes in the 

thousands.   

2.6 Integration with Dynamic Requirements Selector 

2.6.1 Overview of DRS 
In our prior research, we developed the Dynamic Requirements Selector tool.  Given that a major 

issue in requirements engineering is the business trade-off analysis among system requirements, 

we developed a tool to facilitate this process.  The particular scenario for use is that of a system 

upgrade in which new features are to be added to an existing system.  With constraints 

concerning time, budget and other technical issues, not every feature can be selected for 

inclusion in the system.  As such, the system stakeholders must perform trade-off analysis among 

the proposed features to maximize the utility of the new system design.   

 

The tool considers conflicting interests of various stakeholders, budget limitations, and 

interaction of requirements.  Of particular interest are the relationships among requirements.  For 

instance, if one requirement is selected, it might reduce the cost of implementing another 

particular requirement.  Or, perhaps the inclusion of one requirement increases the importance of 

another.  The below figure helps illustrate the principles of the model.  
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R. Party Rank 
Sales  7
Mrkt  5
Eng.  9

 
 
 
 
 
 
 
 
 
 

R. Party Link 
Sales R2 (-2) 
Mrkt.  R2 (+1)

 
 

 
Business Level  

R. Party Rank 
Sales  2
Mrkt  3
Eng.  9

 
 
 
 
 
 
 
 
 
 

R. Party Link 
Eng. R3 (-2) 
Mrkt.  R1 (-1)

 
 
 

Business Level  

R. Party Rank 
Sales 10 
Mrkt 10 
Eng. 10 

 
 
 
 
 
 
 
 
 
 

R. Party Link 
 
 
 
 
 

Business Level  

R2 ($9,000, 50 hr) 
$ Link (R3, $500) 
Time Link (R1, -40) 
 

Engineering Level

R3 ($1,500, 10 hr)
Must Have (True)

 
Engineering Level

Financial Availability:  $10,000 
Time Availability:  80 hr.

System Level

R1 ($4,400, 20 hr) 
Inclusion (R3) 
 
Engineering Level 

Figure 2: Details of DRS Concept 
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Given these constraints, a non-linear model was developed to select the optimal requirements for 

implementation.  The model seeks to maximize the total importance rating of the requirements 

selected, while maintaining the constraints of the project.  Clearly, the dependencies of 

requirements impose the non-linearity aspect on the model.   

2.6.2 Integration of Dynamic Requirements Selector and Test Suite Minimizer 
By integrating the two models, a powerful model was created that selects not only the 

requirements, but also the optimal test suite for those requirements.  This model is particularly 

useful for certain systems where test costs are excessively high.  Thus, it would make sense to 

consider the testing cost when selecting the requirements.   

 

The resulting model essentially keeps all the constraints from the individual models.  The 

objective function now considers three terms – the requirements ranking, the error detection 

rating and the coverage factor of the test suite.  The decision variables and constraints are linked 

through the addition of the requirement selection indicator in the calculations for test suite 

selection.  Thus, requirements that are not selected do not need to be tested.  As a side note, a 

selected test case may include extraneous requirements that were not selected.  For the purposes 

of this model, we assumed those aspects of the test case could be ignored and would not impact 

the cost/time or error detection rating of the test case.   

2.6.3 Mathematical Formulation of DRS-TSM 
The model was formulated as a non-linear program, due to the correlation of rank, time and costs 

of requirements and the correlation of test cases and requirements.  The objective of this model is 

to maximize the three terms discussed earlier.  The decisions are the selection of requirements 

and test cases for the system (binary variables).  The constraints for requirements include time 

and cost budgets, requirement correlations, inclusion/exclusion relationships and ‘Must Have’ 

determinations.  The constraints on test cases are similar to the earlier formulation.   

Indices: 
Set of requirements

 Set of test cases
m M
n N
∈ =
∈ =
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Decision Variables: 

,

Indicator for test case selection (0,1)
 Indicator for test case selection (requirement-level) (0,1)

Indicator for requirement selection (0,1)
 Total rank of requirement 
Adjusted cost of 

n

m n

n

n

j

T
TR
R
TK n
AC

=
=

=
=
= requirement ( 1.. )

Adjusted time of requirement ( 1.. )

Adjusted rank of requirement by shareholder ( 1.. )
j

js

j j n

AT j j n

AR j s j n

=

= =

= =

 

 
Parameters: 

,

,

Test Cases: 
 Error detection rating for each test case

 Coverage rating for each requirement in test case
Coverage importance rating for each requirement

Indicator that test case cove

m

m n

n

m n

te
tv
rv
tn

=
=

=
= rs the requirement
 Total cost of test case
 Total time to run a test case

Total time budget for test phase
Total monetary budget for test phase

' Weight of error detection term in objective f

m

m

tc
tt
t
c
w

=
=

=
=
= unction

'' Weight of coverage factor term in objective functionw =
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Requirements:
 Indicator that requirement  is a 'Must Have' (0,1)
 Rank of requirement  by shareholder 
 Weight given by shareholder for requirement 

Cost to implement requirement 
T

n

ns

ns

n

n

m n
k n s
w s n
c n
t

=
=
=

=
= ime to implement requirement 

Total budget for project
Total time for project

Indicator of inclusion: if req. is selected, req. must be included (0,1), ( 1.. )

Indicator of exclusion: i
nj

nj

n
tc
tt
in n j j n

ex

=
=
= =

= f req. is selected, req. must be excluded (1,2), ( 1.. )

Cost differential of req. if req.  is selected ( 1.. )

Time differential of req. if req.  is selected ( 1.. )

Rank different

nj

nj

njs

n j

cd j n j n

td j n j n

rd

=

= =

= =

= ial by shareholder  of req.  if req. is selected ( 1.. )

'''  Weight of requirement ranking in objective function

s j n j n

w

=

=

j n

:

 

 
Objective Function: 

, ,
,

Maximize test suite error detection and coverage and requirement ranking
' '' '''m m m n m n n n

m M m M n N n N
w te T w tv TR w R TK

∈ ∈ ∈ ∈

⋅ ⋅ + ⋅ ⋅ + ⋅ ∗∑ ∑ ∑  

 
Subject to: 

:

:

m m
m M

m m
m M

Within monetary budget for test phase
tc T c

Within timebudget for test phase
tt T t

∈

∈

⋅ ≤

⋅ ≤

∑

∑

 

 

, , ,

,

:
for all ,

:
1 for all 

m n m n n m n

m n
m M

Arequirement of a test case is factored only when both the requirement and test case are selected
T tn R TR m M n N

The test suite must cover all requirements at least once
TR n N

∈

⋅ ⋅ ≤ ∈ ∈

≥ ∈∑
 

' '
for all n n

All Must Have requirements included
R m n N≥ ∈
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1

1 1

:

* for all ,
n n

js n nj n nj
n n n

Adjustment to Rank

AR R rd R rd j N s S
−

= = +

= ∗ + ∈ ∈∑ ∑
 

 

( )
:

* for all ,  n js ns ns
s S

Total Rank of Requirement

TK AR k w n N j N
∈

= + ∈∑ ∈

∈

∈

 

 

1

1 1

:

* *  for all 
n n

j n nj n nj
n n n

Adjustment to Time

AT R td R td j N
−

= = +

= +∑ ∑
 

 

1

1 1

:

* *  for all 
n n

j n nj n nj
n n n

Adjustment to Cost

AC R cd R cd j N
−

= = +

= +∑ ∑
 

 
:

2* * for all ,n j nj n

All Inclusion Relationships are Satisfied
R R in R n N j+ ≥ ∈ ∈ N

 

 
:

for all ,n j nj

All Exclusion Relationships are Satisfied
R R ex n N j N+ ≤ ∈ ∈

 

 

( )
( )

:

*j n n
n N j n

The requirements selected are within monetary budget

AC c R tc
∈ =

+ ≤∑  

 

( )
( )

:

*j n n
n N j n

The requirements selected are within timebudget

AT t R tt
∈ =

+ ≤∑  

 

,

:
(0,1) for all ,

(0,1) for all
(0,1) for all

m n

m

n

Definevariable types
TR is binary m M n N
T is binary m M
R is binary n N

∈ ∈

∈
∈

 

 
Smaller scale models can be solved in Excel using the Solver in an efficient time frame.  Due to 

the complexity of the non-linear program, larger scale problems require a more advanced 

optimization solver, such as Dash Optimization’s Xpress SLP. 
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2.7 Conclusion 
Our primary objective was to create a tool to analyze an existing test suite in order to create a 

reduced, optimized test suite.  We modeled the logic for this tool as a linear program and 

successfully and implemented it in MS Excel.  We then integrated it with an existing tool, the 

Dynamic Requirement Selector.  As such, we successfully completed our research objective. 

3 Test Case Ordering Algorithm 
Test case prioritization involves sequencing the test cases within a test suite in a manner that will 

increase some measure of effectiveness.  A commonly used metric is the rate of fault detection.  

This is a measure of how quickly faults are detected after the commencement of a test suite run.  

This is a sensible metric to use as it is desirable to identify faulting components as soon as 

possible in order to repair them quickly.   

 

An extension of this idea is the goal of identifying one particular faulting requirement with as 

much certainty as possible.  This is advantageous in the case that one faulting requirement causes 

several test cases to fail, hence masking other potentially faulting requirements.  Additionally, 

this early identification may facilitate a quick repair to the system.  This is especially of interest 

in the case of nightly software builds; being able to identify a faulting requirement quickly may 

enable a quality-assurance team to contact the responsible engineer before he leaves the office 

for the day (instead of having to page him in the middle of the night). 

 

An additional facet of a test case prioritization technique is the inclusion of cost-efficiency 

methods.  These methods help address the cost-effectiveness trade-off that is inherently present 

when selecting and running a test suite.   

 

Given this motivation, the goal of the model presented below is: 

Given: 

1. A set of test cases 

2. A set of requirements that are tested by these test cases 

3. That one of these requirements has caused a previously run test case to fail 

Do: 
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1. Determine a cost-minimizing sequence of test cases to run to identify a faulting 

requirement 

2. Update the sequence with new information a test case is run 

Terminate when: 

1. A goal state fails; when this happens, the requirements associated with this goal state 

can be examined further to determine exactly which one is faulting (unless the goal 

state is atomic) 

3.1 Literature Review 
Most recent studies on test case prioritization focus on ordering an entire test suite at its onset in 

order to increase the effectiveness of some performance measure.  An example of a metric used 

is the Weighted Average of the Percentage of Faults Detected (APFD) as introduced by Elbaum 

et al.  This metric is an indicator of the rate of fault detections uncovered by the testing process 

[2000].  There have been several extensions to this work, including that done by Elbaum et al 

[2002], and that done by Aggrawal et al [2004].  These work all assumes that once a test suite is 

ordered it will be run until completion. 

3.2 Definitions 
In addition to the terms described above, the following terms are used throughout the discussion 

of test suite reduction: 

 

Requirement of Interest: A requirement that is potentially faulting.  In other words, it is a 

requirement that is of interest to test.  This is compared to a requirement not of interest, which is 

a requirement that is known not to be faulty. 

 

Test Case Joined Cost:  This term refers to the value that is calculated by combining a weighted 

measure of a test case’s financial cost and temporal cost.  This is done to create one cost value 

per test case.  For example: 

• Test Case X Financial Cost = $30 

• Test Case X Temporal Cost = 10 hours 

• alpha value = .50 

• Test Case X Joined Cost = (alpha) * (FinancialCost) + (1 – alpha) * ( TemporalCost) 
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• Test Case X Joined Cost = 25 

There are no units to this cost as its use is only to compare the cost of one test case to the cost of 

another test case. 

 

Closeness of Requirements (closeness):  This term refers to the relationships among the 

requirements contained in test case; it is, in fact, a simplified measure of the correlation among 

requirements in a test case with respect to the frequency with which they appear together in a test 

case.  This is defined as a percentage [1-100].  This measure is typically used as input when 

constructing test cases, as illustrated in the following example: 

• Assume the range of requirements in a test suite is 1 - 100.  Envision this is a looped 

continuum such as: 

 

Req. 1 Req. 100 
 

 

• Assume there are to be 10 requirements included in the test case 

• Assume the measure of closeness is 90% 

• Assume that the test case will  contain Requirement 40 (an arbitrary decision, but 

necessary as a starting point) 

 

Given these parameters, the following calculations will be performed: 

1. Pivot Requirement for test case = Requirement 40 

2. Number of Requirements eligible to be added to this test case: 

o # of Requirements = size_test_case * [ 100% + ( 100% - closeness) ] 

o # of Requirements = 10 * [ 2 - .90 ] 

o # of Requirements = 10 * 1.10 

o # of Requirements = 11 
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3. Range in which requirements may be selected1: 

o Range = Pivot +/- [ 1 + ( # of Requirements / 2 ) ] 

o Range = 40 +/- [ 1 + 11/2 ] 

o Range = 40 +/ 6 

 

As a result of this closeness parameter, among the 9 additional requirements that will be added to 

this test case will fall within +/- 6 of Requirement 40 (i.e. between Requirement 34 and 

Requirement 46).  If, for instance, Requirement 3 were used instead of Requirement 40 as the 

pivot, the range would be [Requirement 1 – Requirement 9 UNION Requirement 97 – 

Requirement 100] (which is why the notion of the looping continuum was introduced above). 

 

Test Case Size Skew:  This term refers to the distribution of the sizes of test cases within a suite 

(i.e. the number of requirements contained in a test case).  It, like the closeness parameter, is 

used primarily when constructing a test suite.  Measures of test case size skew (skew) are used in 

combination with a normal distribution that is used as a random number generator (RNG).  The 

output of this RNG is the size of the next test case that is to be created (an additional input 

necessary for this calculation is the total number of test cases that are to be created).  The skew 

measure is simply a descriptor of the mean and the standard deviation that are used to create the 

normal distribution.  In the scope of this paper, there is only a discrete set of values used to 

describe the test case size skew: 

• VERY_LEFT_SKEW 

o distribution mean = 20% * total_number_test_cases 

o distribution standard deviation = 20% * total_number_test_cases 

• LEFT _SKEW 

o distribution mean = 33% * total_number_test_cases 

o distribution standard deviation = 20% * total_number_test_cases 

• CENTER_SKEW 

o distribution mean = 50% * total_number_test_cases 

o distribution standard deviation = 20% * total_number_test_cases 

• RIGHT_SKEW 
                                                 
1 The calculation is roughly this, with some adjustments for integer division in the implementation 
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o distribution mean = 66% * total_number_test_cases 

o distribution standard deviation = 20% * total_number_test_cases 

• VERY_RIGHT_SKEW 

o distribution mean = 80% * total_number_test_cases 

o distribution standard deviation = 20% * total_number_test_cases 

 

Note that if the RNG generates a number of out range (e.g. -3), the RNG will be re-queried until 

a valid number is produced. 

 

These measures may be used to shift the skew of the size of test cases to a particular range of 

sizes relative to the total number of test cases used.  As an alternative, a uniform distribution may 

also be used as a RNG; this distribution takes the form: 

• CENTER_NO_SKEW 

o distribution min =  0 

o distribution max = total_number_test_cases 

 

Test Case Goal State (Goal State):  A goal state refers to a test case that is used to determine if a 

particular requirement is faulting.  There is one goal state for each requirement; if this goal state 

fails during testing, it is assumed that the associated requirement is at fault.   

 

Ideally, a goal state will be atomic.  That is, it will contain one and only one requirement.  In a 

given test suite, such test cases may not be present; in such a scenario, non-atomic test cases will 

be used as goal states (i.e. test cases that test more than one requirement).  These cases will be 

selected a measure of the certainty with which it can be determined that a test case failure is 

related to a particular requirement.  Obviously, in the atomic case, this correlation is 100%; if the 

test case fails, it is due to the one requirement it contains.  In the non-atomic case, this 

correlation may be measured as a rough probability:  essentially, the higher the probability that a 

test case has failed due to a particular requirement, the better that test case is as a goal state for 

that requirement.  A simple example is given below, and more quantitative calculations are given 

later in the paper: 
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Req. 
3 

Tests only Req. 3

Req. 3 Goal State 

Req. 
{3,4,5,
6,7,8} 

Tests Req. 3, Req. 4, Req. 5,  
Req. 6, Req. 7 and Req. 8 

Req. 4 Goal State 
NOT Req. 8 Goal State 
NOT Req. 3 Goal State 

Req. 
{3,8} Tests Req. 3, Req. 4, and Req. 8 

NOT Req. 4 Goal State 
Req. 8 Goal State 

NOT Req. 3 Goal State 
 

 
Figure 3: Goal State Example 

 

3.3 Assumptions 
There were several assumptions made during the work described in the paper.  The major 

assumptions were: 

• Smaller test cases are more expensive than larger test cases 

In many systems, it is easier and less expensive to test an assembled system than to 

test components individually.  An example of this is a financial firm’s enterprise 

information system.  Assume this system receives data feeds from several different 

disparate sources.  Assume also that the enterprise information system needs one 

module per feed.  In this case, it may be significantly less expensive to test the system 

once all modules are constructed.  This may be the case because no additional work 
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must be done to simulate the feed reception.  On the other hand, it may be 

considerably difficult to test the system if all reception modules are not complete.  

Simulated data feeds would have to be constructed, which would increase the cost of 

testing. 

• Duplicate goal states can be used 

In some instances, a goal state may be associated with more than one requirement.  

This is allowable in this model. 

• A test case failure reveals only that one of its included requirements fails and no 

more 

This assumption is based on the fact that many test cases provide only binary results:  

fail or pass.  If a test case provided more results (e.g. the requirement that caused it to 

fail), then the objective of this model would be met immediately upon any test case 

failure. 

• A test case only needs to be run once to determine if any of its included 

requirements are faulting 

To illustrate why this is an important assumption, consider the following: 

o Test Case X has an EDR of 50% 

o Test Case X includes Requirement Z 

o Test Case X is run, and it succeeds 

At this point the model presented in this paper will assume that Requirement Z is not 

faulting.  Unfortunately, there is room for Type II error in this assumption.  That is, 

because the EDR of Test Case X is only 50%, there is a chance that Requirement Z is 

faulty but Test Case X failed to notice the fault.  To limit this error, the test case may 

be run consecutively several times until the probability that Requirement Z is faulting 

AND Test Case X misses the failure becomes less than some nominal amount.  An 

example of how to do this is: 

o Assume the same parameters as above 

o Assume a certainty measure of 99%; that is, do not assume a test case 

provides accurate results until there is less than a 1% chance of a Type II 

error.  This is achieved by running the test case several times consecutively.  

This calculation is: 
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P(Type II Error) =  

P( test_case_misses_failure AND req_faulting )(Times TC is run) 

o Repeat the test case until it fails, or it has been run the appropriate number of 

times without failing 

• Absolute calculations can be substituted for relative calculations 

Along with minimizing the Type II error, there are a series of additional Bayesian 

calculations that may be included to update the probabilities of failure of each test 

case as the suite is run.  For the large part, however, simplifications have eliminated 

such calculations in the prioritization model herein.  This is done because it is only 

the relative cost of test cases (compared with each other) that is important in the 

model.  That is, it is not important to know that a test case costs exactly x dollars and 

y hours to run, but it is only important to know that a test case costs z times more than 

another test case. 

• All requirements have equal probabilities of faulting 

Although the model can account for heterogeneously distributed probabilities, it is 

assumed that all requirements have the same probability of failing.  This is done to 

simplify the experimental results as well as ease the computational stress of testing 

running the algorithms. 

3.4 Theory 
The test case prioritization techniques presented below are used to identify, with certainty, only 

one faulting requirement.  These are not meant to be techniques that are used to order test cases 

at the onset of a test suite run.  On the contrary, they are meant to be used as truncation 

techniques once a test case fails during the normal run of a test suite.  This is done in order to 

save the cost of running the entire test suite once it’s known that at least one requirement is 

faulting.  The alternative to truncation is to continue running the entire suite even after it’s known 

that at least one requirement is faulting.  This may result in wasted resources as the one faulting 

requirement may cause other test cases to fail, which will have to be re-run once the requirement 

is repaired.  Recognizing this immediately after the first failure of the test suite occurs will 

prevent such unnecessary resource use.  Notice that a truncation technique will never be more 

expensive than the non-truncation technique.  This is because a truncation technique will never 

run a test case that already has been run by the test suite, or that is not included in the test suite.  
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The worst case scenario for a truncation technique is that it runs all the remaining test cases in a 

suite, which is exactly what will happen every time in the non-truncation method. 

 

The problem as stated above is similar to a typical search algorithm:  given a set of items 

(potentially faulting requirements), and a set of test cases (the remaining test cases within a 

suite), search the test case set to identify one particular item (the goal state of the faulting 

requirement).  An additional goal is to minimize the cost of this search.  This cost is calculated as 

the sum total of the costs of each test case that is run.   

 

Given these objectives, one may immediately consider the simple and intuitive solution of 

implementing a simple linear search algorithm.  This algorithm simply would run each goal state 

sequentially until one goal state fails.  This method would be simple to implement, but it would 

suffer from an O(n) running time.  For these reasons, this paper will refer to such an algorithm as 

the “Naïve” algorithm. 

 

An alternative to the Naïve solution would be to perform a binary search on the requirements.  

Considering the goal states for the requirements as leaves, and the other test cases as nodes may 

help the reader visualize this method.  Such an algorithm would be non-trivial to construct, but it 

would yield an efficient O(log(n)) running time.  This is the algorithm on which the prioritizing 

models presented in this paper are based. 

3.5 Test Case Comparisons 
To prioritize the test suite sequence, it was necessary to develop quantitative methods to compare 

test cases.  This was especially important in two instances:  selecting goal states, and ordering the 

sequence of test cases to run. 

3.5.1 Selecting Goal States 
Each requirement included in the test suite was linked to exactly one goal state.  This goal state, 

by definition, is the state whose failure is most probabilistically associated with a given 

requirement.  In other words, for a given requirement, the requirement’s goal state is the test case 

that “tests a bigger percentage of that requirement than of any other requirement.”  This is part of 
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the criteria used to calculate the value that is used to rank potential goal states.  The test case 

with the minimum ranking value is selected as the goal stated.  The first step of its calculation is:  

• Percentage tested = coverage( Req. in Question ) / ∑ coverage(All Non-Faulting Reqs. 

Tested) 

• Rank value = 1 / Percentage tested 

 

Note that the metric, “coverage,” was used.  This is done to scale the percentage in accordance 

with how well a test case covers its requirements.  Additionally, the EDR of a test case is used in 

order to determine how well it tests its requirements.  This is incorporated as: 

• Rank value = 1 / ( Percentage tested * EDR ) 

 

Goal states are also selected based on cost-efficiency.  To incorporate this into the measurement, 

the following calculation is done: 

• Rank value =   ( Cost Test Case ) / ( Percentage tested * EDR ) 

 

This is the final value that is used to determine the attractiveness of a test case as a goal state for 

a given requirement. 

3.5.2 Test Case Comparisons  
Determining the least expensive test case, given a set of candidates, is a similar process to 

selecting goal states:  a rank value is calculated for each test case, and the test case with the 

minimum value is selected to be run.  The calculation for this is: 

• Total Req. Coverage  = ∑ coverage( All Non-Faulting Reqs. Tested ) 

• Rank value = ( Cost Test Case ) / ( Total Req. Coverage * EDR ) 

 

Qualitatively, a test case that tests more requirements is more attractive than a test case that tests 

fewer requirements.  This is because a test case that covers more requirements effectively 

contains more information; when it passes, all its requirements can be considered as non-

faulting; when it fails, only its requirements become of interest.   

 

Of critical importance is that this value gets updated as the test suite runs.  To understand this, 

consider the following case: 
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• Test Case X contains requirements { 2, 3, 4 } (all with coverage of 100%), has an EDR 

of 100%, and a cost of 50 

• Test Case Y contains requirements { 1, 3, 4 } (all with coverage of 100%), has an EDR 

of 100%, and a cost of 55 

• Test Case Z contains requirements { 6, 7 }  (all with coverage of 100%), has an EDR of 

100%, and a cost of 60 

 

The rank values of these test cases will be: 

• Test Case X: = 50 / (3 * 1.00) = 50/3 = 16.67 

• Test Case Y: = 55 / (3 * 1.00) = 55/3 =  18.33 

• Test Case Z: = 60 / ( 2 * 1.00) = 60/2 =  30.00 

 

As such, Test Case X is selected first to be run.  Assume that it passes.  This means that 

Requirement 3 and Requirement 4 are non-faulting.  Therefore, the only information that is 

offered by Test Case Y is whether Requirement 1 is faulting.  This needs to be reflected in the 

rank values, and is appropriately done so by: 

• Test Case Y: = 55 / (1 * 1.00) = 55/1 =  55.00 

• Test Case Z: = 60 / ( 2 * 1.00) = 60/2 =  30.00 

 

At this point Test Case Z will be selected to be run next as it provides more information than 

Test Case Y. 

3.6 Algorithm Evolution 

3.6.1 Naïve Algorithm 
The Naïve algorithm of identifying a faulting requirement is as follows: 

• Identify the goal state for each requirement of interest 

• Select randomly a goal state and run it 

o If the goal state fails, the search is complete 

o If the goal state passes, randomly select another goal state and repeat 
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This algorithm is the simplest to implement.  It has a running time of O(# requirements) and  

provides no optimization. 

3.6.2 Naïve Algorithm, Ordered by Efficiency 
This algorithm is identical to the Naïve algorithm above, except that it more deterministically 

chooses the sequence in which it will run goal states.  To do this, the goal states are sorted in 

order of an efficiency measure, as defined below: 

• Assume goal state X is associated with Requirement 1 

• Requirement 1 has probability to fail = pf(1) 

• Efficiency2 =  ( Test Case Joined Cost ) / pf(1) 

 
This algorithm is used as the baseline Naïve algorithm in the experimental runs that are 

presented below. 

 

An example of this algorithm is provided below.  The ovals represent test cases.  The 

requirements included in each test case are included within each oval and are abbreviated, for 

example as “R1” for Requirement 1.  Requirement 3 is the faulting requirement in this example. 

                                                 
2 Notice that a lower Efficiency value is more desirable.  This is an arbitrary measure that was 

adopted for primarily implementation purposes, the details of which are given in  3.5.1 - 

 Selecting Goal States
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R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4

Step 1
Order the requirements

 

Figure 4: Identify the requirements of interest 

 

R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4
Step 1

Step 2

Total Cost:12

<Passes!>

 

Figure 5: Test Requirement 1 
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R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4
Step 1

Step 2 Step 3

Total Cost: 

12 + 12 = 24

<Passes!> <Passes!>

 

Figure 6: Test Requirement 2 

R2R1 R4R3

Cost = 12 Cost = 12 Cost = 12 Cost = 12

R1 R2 R3 R4
Step 1

Step 2 Step 3 Step 4

Total Cost: 

12 + 12 + 12 = 36

<Fails!><Passes!> <Passes!>

 

Figure 7: Test Requirement 3 
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3.6.3 Tree Algorithm, Ordered by Efficiency 
The Tree Algorithm adopts a binary search-like procedure to identify the faulting requirement.  

Essentially, this is done by the following: 

• Identify the goal state for each requirement of interest 

• A tree-like data structure is built.   

o The root of the tree is a dummy node.  Its children are the set of test cases that 

are not a subset of any other test case 

o Every test case is added to the such that each parent node is a superset of all 

its children   

o By the constraint above, the goal states are added as the leaf nodes 

• A depth-first search on the tree is performed 

o Each node that is visited represents a test case.  As soon as the node is visited, 

it is marked as “visited.”  The test case that is associated with the node is then 

run. 

 If the test case fails, the search continues to all of its unvisited 

children.  If the node is a goal state, the search is terminated. 

 If the test case passes, all children of the node are deemed “visited”.  

The search then returns to the parent of the node and continues. 

 

An example of this algorithm is provided below.  The ovals represent test cases.  The 

requirements included in each test case are included within each oval and are abbreviated, for 

example as “R1” for Requirement 1.  Requirement 3 is the faulting requirement in this example. 
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R1 R2 R3 R4

R2R1

R3 R4R1 R2 

R4R3

Step 1
Construct the Tree

Cost = 10
Cost = 10

Cost = 12 Cost = 12
Cost = 12 Cost = 12

Total Cost: 0

 
Figure 8: Four Potentially Faulting Reqs. Identified 

R1 R2 R3 R4

R2R1

R3 R4R1 R2 

R4R3

Step 1

Step 2
<Pass>

Cost = 10
Cost = 10

Cost = 12 Cost = 12
Cost = 12 Cost = 12

Total Cost: 

0 + 10 = 10

 
Figure 9: Testing Req. 1 and Req. 2 
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R1 R2 R3 R4

R2R1

R3 R4R1 R2 

R4R3

Step 1

Step 3

Step 2
<Pass>

<Fails!>

Cost = 10
Cost = 10

Cost = 12 Cost = 12
Cost = 12 Cost = 12

Total Cost: 

10 + 12 = 22

 
Figure 10: No new information given by testing Req. 3 and Req. 4 together.  Proceed directly to goal states. 

 

3.6.4 Graph Algorithm, Greedy Heuristic 
The Tree Algorithm presented above presents an attractive alternative to the Naïve Algorithm.  It 

is not, however, a completely accurate representation of the problem.  To understand why this is, 

recall that the algorithm looked only at the test cases that were children of a node as candidates 

for the next test case to run; this was an adaptation that was made to reduce the algorithm into a 

variant of depth-first search.  Unfortunately, this logic limits the set of test cases that are 

available to run at a given time.  This, however, is not representative of the true problem scenario 

in which any test case in the test suite may be run following termination of any other test case. 

 

To account for this discrepancy, an algorithm more representative of the true problem must be 

used.  The algorithm developed to fill this, the Graph Algorithm, is similar to the Tree 

Algorithm, but with greater flexibility.  This algorithm translates the tests cases not into a tree, 

but into a fully connected graph.  The links of this graph represent transitions from one test case 

to another.  Because it is fully connected, there are no restrictions on the sequence of test cases 

that may be run. 
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Predictably, the Graph Algorithm, Greedy Heuristic (GGH) uses a greedy heuristic to determine 

the sequence of test cases to run.  This is conceptually a simple technique, as the following steps 

illustrate: 

• Identify the goal state for each requirement of interest 

• Rank all the test cases using the algorithm given in  3.5.2 - Test Case Comparisons 

• Select the least-cost test case and run it 

o If the test case fails  

 If the test case is a goal state, the search terminates 

 Else, this information is fed back into the algorithm, the test cases are 

re-ranked, and the algorithm repeats by selecting the next least-cost 

test case 

o If the test case passes 

 This information is fed back into the algorithm, the test cases are re-

ranked, and the algorithm repeats by selecting the next least-cost test 

case 

 

This is a greedy algorithm because it looks only at the cost of the next test case to run; it does not 

perform any further look-ahead.  In fact, this can be considered an adoption of Dijkstra's 

minimum cost algorithm used on a fully connected graph. 

 

Due to the nature of the problem, the complete GGH algorithm is more complex than the 

algorithm outlined above.  This complexity arises in the way in which the GGH may prune 

candidate test cases from the set of available test cases.  That is, the GGH algorithm may find it 

unnecessary to run a test case, even if it is the least-cost test case in the available set.  This 

typically is done when it is determined that a test case offers no new information, or redundant 

information.  The reasons why this may be done include the following: 

• The test case examines only one requirement, and is not a goal case 

• The test case does not examine a subset of the previously run test case 

 

This pruning is done after the selection of the least-cost goal state. 
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An example of the GGH Algorithm compared to the Tree algorithm is given below.  First the 

Tree Algorithm is shown, and then the GGH is shown. Note that not all connections are given so 

as to illustrate the difference between the Tree Algorithm and the GGH Algorithm. 

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 1
Identifying the Requirements of Interest

 

Figure 1 (Tree) Identifying the Requirements of Interest 
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Step 2
Cost = 8

 

Figure 22:  (Tree) Running a least-cost test case 

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 3
Cost = 8 + 10 = 18

Child node is preferred
over the least cost node

 

Figure 33: (Tree) Selecting a child test case 
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TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 4
Cost = 8 + 10 + 12 = 20

Goal state passes

 

Figure 14: (Tree) Running a goal state 

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 5
Cost = 8 +10 + 12 + 12 = 32

 

Figure 15: (Tree) Identifying the faulting requirement 
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TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 1
Identifying the Requirements of Interest

 

Figure 46:  (GGH) Identifying the Requirements of Interest 

Step 2
Cost = 8

 

Figure 5 (GGH) Running a least cost test case 
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TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 3
Cost = 8 + 8 = 16

 

Figure 18: (GGH) Running the least cost test case 

TC 1
{A,B,C,D}
Cost = 6

TC 2
{A,B,C}
Cost = 8

TC 3
{B,C,D}
Cost = 8

TC 4
{A,B}

Cost = 10

TC 5
{B,C}

Cost = 10

TC 6
{C,D}

Cost = 10

TC 7
{A}

Cost = 12

TC 8
{B}

Cost = 12

TC 9
{C}

Cost = 12

TC 10
{D}

Cost = 12

Step 3
Cost = 8 + 8 + 12 = 28

All these are pruned

TC 3 Passed,
therefore

Req. A passes

 

Figure 19: (GGH) Goal state is found 
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For this same test suite and the same faulting requirement, the Tree Algorithm will have a cost 

that is less than the GGH Algorithm.  This illustrates the advantage of selecting the next test case 

to be run from the entire set of available cases.  It also illustrates the advantage of pruning this 

set. 

3.6.5 Graph Algorithm, Exhaustive Search 
An alternative to the Greedy Heuristic is a completely exhaustive search.  This technique would 

examine every possible path that may be taken, and would return the probabilistically least cost 

path as the sequence to run.  At every test case run, this path would be updated. 

 

Because of the nature of the search included, this Exhaustive Search algorithm would be able to 

provide lesser-cost sequences than the prioritization better algorithm than the Greedy Heuristic.  

Despite this, the algorithm is not a better practical choice.  This is because the algorithm would 

have running time O(nn) (n = # of test cases).  Therefore, the Greedy Heuristic was determined to 

be the best algorithm to use to test the graph prioritization method. 

3.7 Implementation 
A framework was created to test the Greedy Graph Algorithm against the Naïve Algorithm.  This 

was done so that large test suites with large sets of requirements could be analyzed.  Moreover, 

given key parameters, the framework was used to create test suites with different key 

characteristics.  This was done to determine the key variables that affected the success of the 

algorithms tested. 

 

The framework was written as a JavaTM
 application that read and produced XML and text-

delimited files.  XML files were used as a simple way to define a test suite; these were useful for 

small examples.  The text-delimited files were used to analyze the data in MS Excel. 

3.7.1 Technical Overview 
The testing framework was a relatively simple application.  To some extent it was interfaced as a 

decoupled OO application, but to the same extent it was a design-once, run-once framework.  

The basic structure is shown below: 

 39



TestSuiteCreator

TestSuiteCoster

TestSuiteXmlWriter

TestSuiteXmlReader

TestSuiteRunner

TestSuiteDataWriter

 

Figure 20: Application Class Diagram 

3.7.2 TestSuiteCreator 
The TestSuiteCreator is a class that was used to create test suites.  The key parameters given to 

the TestSuiteCreator were as follows: 

• Number of test cases:  This indicates how many test cases to include in the suite 

• Number of requirements:  This indicates how many requirements are to be tested by the 

suite 

• Closeness of requirements:  This indicates the frequency with which the same set of 

requirements are included in test cases together 

• Test Case Size Skew:  This describes the shape curve that represents the distribution of 

the sizes of the test cases created  

• Test Case EDR Mean:  This is the mean value of the normally distributed Error Detection 

Rate value that is associated with each created test case 

• Test Case EDR Sigma:  This is the standard deviation of the normally distributed Error 

Detection Rate value that is associated with each created test case 

• TC - Requirement Coverage Mean:  This is the mean value of the normally distributed 

Coverage value that is associated with each requirement tested by a particular test case 
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• TC – Requirement Coverage Sigma:  This is the standard deviation of the normally 

distributed Coverage value that is associated with each requirement tested by a particular 

test case 

3.7.3 TestSuiteCoster 
The TestSuiteCoster is a class that determines the cost of each test case for a given test suite.  

This is a key component of the framework, as minimizing cost is a primary objective of the 

research problem.  The TestSuiteCoster is driven by the assumption that smaller test cases will 

cost more than larger test cases, but is also parameterized to be flexible in this notion.  Such 

parameterization is done using the following variables (note that costing for the Financial and 

Temporal costs are done identically, and so only the financial costs are described below): 

• Financial Base Cost:  This is the base financial cost, down from which all pricing 

adjustment will be made.  In other words, it is the maximum financial cost that a test case 

can be given 

• Financial Overhead Amount:  This is the percentage of the financial cost of a test case 

than can not be affected by scaling down for a lower EDR.  This is described below in 

more detail. 

• Financial Random Amount:  This is the maximum percentage of the financial cost that 

can be either added or subtracted to the amount as a result of a random fluctuation 

 

The TestSuiteCoster follows the proceeding method when costing a test case: 

1. Sets the financial cost (fc) to be the Financial Base Cost 

2. Scales the fc linearly according to: 

a. how many requirements the test case covers 

b. how well the test case covers each of these requirements 

3. Determines the Financial Overhead Amount 

a. Determines the scaleable amount = fc – (Financial Overhead Amount) 

b. Scales the scaleable amount according to the EDR of the test case 

c. Adds this reduced amount back to the Financial Overhead Amount 

d. Sets this sum to be the new value of fc 

4. Introduces a random fluctuation using the Financial Random Amount parameter 

a. Scales fc by a random percent of the Financial Random Amount parameter 
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This costing method is truly an approximation, but the consistency it introduces allows for 

reasonable creation of test suites and experimentation with test suites. 

3.7.4 TestSuiteRunner 
The TestSuiteRunner provides the main functionality of the framework.  It is this class that 

implements the algorithms that are tested.  

3.7.5 Comparators 
The majority of the sorting was performed using custom implementations of the Comparator 

class.  This was done to take advantage of the JDK1.5 built-in merge sort implementation.  

Additionally, the use of Comparators facilitated algorithm enhancement and adjustments 

through the use of sub-classing existing Comparators. 

3.7.6 Screen Shots 
For the authors’ amusement, a screen shot of the application is provided below: 
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3.8 Experiments and Results 
To test the effectiveness of the Graph Greedy Heuristic Algorithm (GGH), four experiments 

were run.  These experiments sought to measure the effect of changing one of four major test 

suite parameters.  In each experiment, three different scenarios were tested: 

1. Set the parameter in question at a low value 

2. Set the parameter at a medium value 

3. Set the parameter at a high value.   

For each of these scenarios, 30 simulation runs were completed.  In each run, the GGH 

Algorithm and Naïve Algorithm were applied to the same test suite, containing the same faulting 
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requirement, in order to find the cost of identifying the appropriate goal state.  These costs were 

then compiled and t-tested. 

3.8.1 Four Factor Experiment Overview 
Four factors were isolated and tested in order to determine their influence on the effectiveness of 

the GGH Algorithm as compared to the Naïve Algorithm.  For each of the experiments run, the 

baseline test was the same.  Its parameters were: 

• Number Requirements of Interest: 270 

• Number of Test Cases: 600 

• Closeness: 90% 

• Test Case Size Skew: LEFT_SKEW 

 

Each parameter was then varied twice in order to test its effect on the efficiency of both 

algorithms.  The results are given below. 

3.8.1.1 Number of Requirements 
The Naïve Algorithm has running time O(n), where n is the number of requirements of interest.  

As such, for a small number of requirements, it may be more efficient to use this algorithm than 

the GGH.  Investigating the accuracy of this theory was the driver behind first experiment.  
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Algorithm Costs vs. Varying Number of Requirements
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Number of 
Reqs. Naïve Cost GGH Cost T-Value 95% T-Crit. 
135 13976.1901 13630.7524 0.1318 2.0017 
270 17346.3226 11598.9739 1.7247 2.0017 
405 17626.1015 6911.2533 4.4221 2.0017 

 

As the graph illustrates above, as the number of requirements increases, it becomes more 

attractive to use the GGH Algorithm.  This is confirmed by the T-Value of the last run as it is 

above the critical value for a two-tailed 95% interval.  Therefore, for test suites with large 

numbers of requirements, it is significantly less expensive to use the GGH Algorithm than the 

Naïve Algorithm.3 

 

3.8.1.2 Number of Test Cases 
Both the Naïve and GGH Algorithms benefit by having a large number of test cases from which 

to choose goal states.  This is a simple concept – the more cases from which to chose, the more 

effective and efficient the selected goal cases should be.  In addition to this, the GGH Algorithm 

                                                 
3 The exact determination of what a “large” number has not been made yet 
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may benefit by larger sets of test cases because of the additional options it has from which to 

choose.  That the cost differential between the Naïve and GGH algorithms would lessen as the 

number of test cases increases was the hypothesis tested by this experiment. 

 

Algorithm Costs vs. Varying Number of Test Cases 
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Number of 
TC's Naïve Cost GGH T-Value T-Crit 
300 17424.1237 3745.2008 4.7883 2.0017 
600 17346.3226 11598.9739 1.7247 2.0017 
900 33455.5291 17040.9244 2.7882 2.0017 

 
 

As seen above, it is not entirely conclusive that the cost differential between the Naïve and GGH 

Algorithms lessens as the number of test cases increases.  A possible reason for this is that the 

percentage increase in test cases from 300 to 900 was too small to reflect a general trend.  Note 

also that the costs for both algorithms increases as the number of test cases increases.  This might 

be a result of a greater number of near-atomic test cases becoming available to use as goal states.  

The costs of such near-atomic test cases are generally higher than the cost of a large test case, 

and therefore this may contribute to the increasing trend.  If this is the reason for this general 

increase, its effect would be expected to diminish as the number of test cases grew large enough 
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to provide one atomic test case as a goal state for each requirement.  Beyond this number of test 

cases there would be no reason for the general cost to increase because of this hypothesized 

effect. 

3.8.1.3 Closeness of Requirements in Test Cases 
An increase in the closeness of requirements in test cases was expected to benefit the GGH 

Algorithm more than the Naïve algorithm. This is because a high correlation of requirements in 

test cases was predicted to provide a greater amount of information than a low correlation of 

requirements.  For example, in a highly correlated suite, if a test case containing Requirements 

{1,2,3,…..10} passed, then it would be expected that many smaller test cases would contain an 

exact subset of these requirements and therefore could all be eliminated.  In a lesser correlated 

suite, not as many exact subsets would be expected to be found.  This was the reason why an 

increase in closeness was expected to result in a lesser cost for the GGH algorithm. 

 

Algorithm Costs vs. Measure of Closeness 
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5 25677.4144 8883.5462 3.9174 2.0017 
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55 12296.5426 11194.0877 0.4311 2.0017 
90 17346.3226 11598.9739 1.7247 2.0017 

 

As seen above, it seems as if the opposite of the predicted theory is true.  That is, the less 

correlated the requirements are in a test case, the more effective the GGH algorithm is.  Upon 

reflection of the results, this seems to be a sensible theory.  This is related to the pruning that is 

done in the GGH algorithm:  Having a large set of test cases that contains randomly placed 

requirements offers a large opportunity to discover new information; the pruning encourages new 

discovery and discourages selecting test cases that offer redundant information.  As such, each 

new test case that is selected and avoids being pruned will offer a relatively significant amount of 

new information.  For this reason, a test suite with a lower measure of closeness may be a better 

candidate on which to run the GGH than a test suite with a higher measure of closeness. 

3.8.1.4 Test Case Cardinality Skew 
The measure of test case size skew was predicted to affect the costs of the algorithms run in the 

following ways: 

• A left skew will provide larger amounts of small test cases.  These will provide a larger, 

but more expensive, set of goal cases from which to chose.  As a result, as the skew was 

moved to the left, the overall cost of both algorithms was expected to increase 

• A right skew will provide larger amounts of large test cases.  These will offer a large 

amount of information to the GGH Algorithm.  As a result, as the skew was moved to the 

right, the cost of the GGH Algorithm was expected to decrease. 
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Algorithm Costs vs. Measure of Test Case Skew
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Skew Naïve Cost GGH T-Value T-Crit 
1 16333.9106 12358.3748 0.9975 2.0017 
2 17346.3226 11598.9739 1.7247 2.0017 
4 16610.6174 11410.8743 1.3496 2.0017 

 

As predicted above, the cost of the GGH Algorithm decreased as the skew moved to the right.  

The first point of the hypotheses, however, was not observed by the experiment.  A cause for this 

may be the number of requirements used in the experiment.  A larger number of requirements 

may have driven both algorithms to select a much larger set of small test cases as goal states.  As 

a result this predicted effect may have been amplified to a point where it would have been 

observable.  This not being the case, however, it cannot be concluded that moving the skew to 

the left has a general effect on the cost of both algorithms. 

 

Note additionally that there is no significant difference between the costs of the algorithms over 

the range of test case skew that was tested in this experiment.  This suggests that neither 

algorithm offers a clear advantage for use in an environment that has a particular value of test 

case skew. 
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3.8.2 Experiment Conclusions 
In the four experiments that were run, there was not one instance in which the Naïve algorithm 

proved to be significantly more efficient than the GGH Algorithm.  This is to say that in every 

scenario tested, the GGH Algorithm offered at least the same performance as the Naïve 

Algorithm.  Additionally, in several cases, the GGH Algorithm proved that it offered 

significantly greater performance.  As such, the GGH Algorithm has been shown to be a 

consistently better technique for the test case prioritization problem than the Naïve method.  

4 Conclusion 
This paper covered test suite minimization and ordering.  We developed a non-linear program to 

select both requirements and the optimal test suite to test those requirements.  We then created an 

algorithm to identify a faulting requirement in a more efficient manner than a simple linear 

implementation. 
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