Black Box Design

Ahmad Asi, Benjimin Chang, Mehdi Dadfarnia, Serge Kamta, Ifzalul Khan

University of Maryland, College Park

10 December 2010

Overview

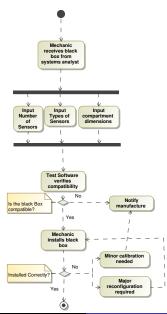
- Functions:
 - Video/Audio Recording
 - Vehicle Event Recording
 - On-Board Diagnostics
 - Internal Components Should Withstand 3400g and 1000° C
 - Mirroring for Fault Tolerance
 - Solid-State Disk for Reliability
 - Environmental Status
 - Tamper-Resistance: Encrypted Data, TPM
- Sensors:
 - Pressure Sensor
 - Cameras
- Communication:
 - Wireless monitoring through Satellite

Problem Statement

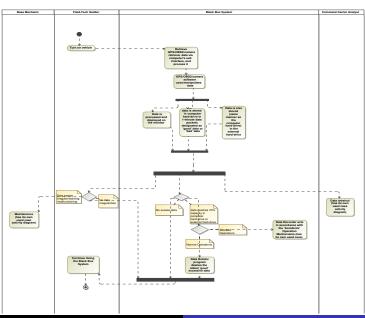
- Provide feedback about the status and health of the vehicle
- Record accident data
- Provide security of data
- Can be used by:
 - Field Technician Soldiers
 - Command Center Mechanic
 - Data Analyst
- Can Be Used At:
 - Field
 - Command Center

Potential Benefits

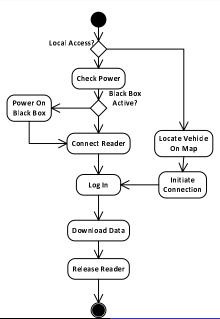
- Vehicle Tracking through GPS
- Remotely monitoring vehicle status
- Accident Prediction, avoiding catastrophic failure
- Detect and report the reliability of the vehicle
- Efficiency data to improve vehicle and overall system performance
- Modular versatility that allows integration into several types of vehicles

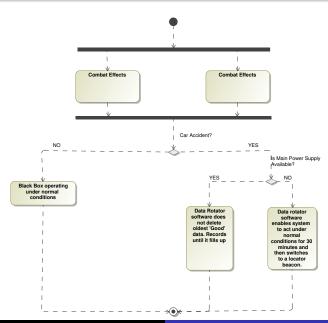

Project Stakeholders

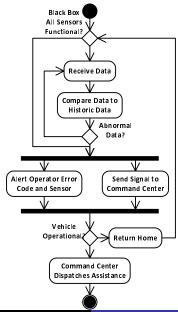
- ENES489P Black-Box Team and Advisors
- Military Logistics Agency
- Soldier
- Budget
- Military Doctrine
- Manufacturers

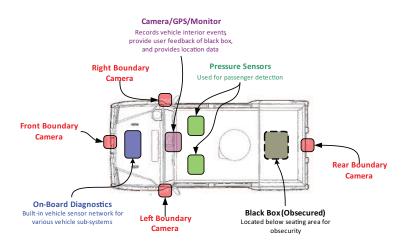

Use Cases

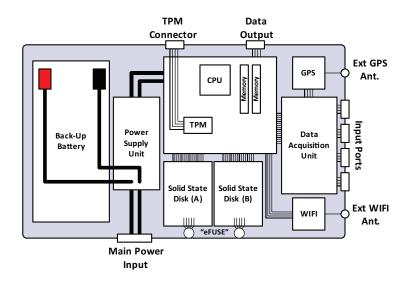
- Use Case 1: Installation and Testing
- Use Case 2: Operation
- Use Case 3: Retrieving Data
- Use Case 4: Threats to System/Reliability
- Use Case 5: Maintenance


Use Case 1: Installation and Testing


Use Case 2: Normal Operation

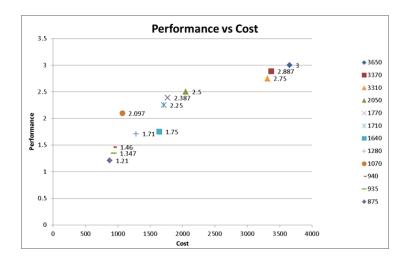

Use Case 3: Retrieving Data


Use Case 4: Accident Operations/Reliability

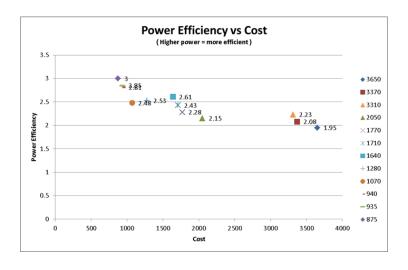

Use Case 5: Maintenance

System Design

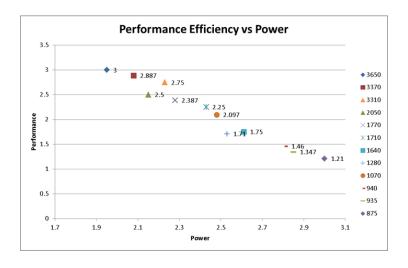
Black Box Layout


Requirements

High Level Requirements			
Requirement 1	Be as indestructible as possible		
Requirement 2	Be mountable to army vehicles		
Requirement 3	Store data from camera, vehicle		
	sensors, and location (GPS)		
Requirement 4	Have accessible data for army		
	command and base centers		
Requirement 5	Be tamper-resistant		
Requirement 6	Accommodate accident-scenarios		
Requirement 7	Have accessible data displayed for		
	Field-Technician Soldiers		


Traceability

Used Case	High-Level Requirement	Component Requirement	Description	Components
Normal Operations	Requirement 3	RAM 1, 2; PRC 1, 2, 3; CHD 1,2; EHD 1, 2	Black box must store data and it must do so as efficiently (eg speed, power) as possible.	Memory, Processor, SSD and Redundant SSD


Trade-Off Analysis: Performance vs. Cost

Trade-Off Analysis: Power Efficiency vs. Cost

Trade-Off Analysis: Performance vs. Power Efficiency

Summary

Trade-Off Curve	Points of Interest	
Performance vs Cost	22, 1, 10, 27, 17	
Power Efficiency vs Cost	27, 22, 24, 17, 13, 1	
Performance vs Power	1, 7, 27, 17, 22	
All	22, 1, 27, 17	