
ENES 489P Hands-On Systems Engineering Projects

Introduction to UML and SysML

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/75

Systems Engineering with UML and SysML

Topics:

1. Motivation and Approach

2. What are UML and SysML?

3. System Development Processes

4. System Architecture View (new to UML 2.0)

5. Behavior Modeling with Activity and Sequence Diagrams

6. Finite State Machines and Statecharts

7. Case Study: Operation of a Museum

8. Case Study: Operation of a Traffic Intersection

– p. 2/75

Need for Visual Modeling Languages

Motivation – What’s wrong with the traditional way of doing t hings?

ambiguous.

WORKING WITH UML / SysML

TRADITIONAL MODEL

−− Textual requirements can be

Source: Adapted from http://bulldozer00.wordpress.com/uml-and-sysml/

– p. 3/75

Need for Visual Modeling Languages

Motivation – Looking Ahead

Because future engineering systems will be more complex than today, designers will
need to be more productive ...

... just to keep the duration and economics of design development in check.

of systems that can be designed.

System
Complexity

Time

Validation
Productivity

Design
Productivity

Gaps in Capability
Upper limit for complexity

Future designs will also need to be more agile than in the past.

– p. 4/75

Need for Visual Modeling Languages

Finding a way to Move Forward

The pathway forward can be found by looking to the past, where ...

... major increases in designer productivity have nearly always been accompanied
by new methods forsolving problems at higher levels of abstraction.

Therefore, we seek ...

... new ways of working at higher levels of abstraction,

and

... maximizing opportunities for adaptation by delaying decisions on
implementation for as long as possible.

– p. 5/75

Visual Modeling Languages

Example. Evolution of Abstractions in Software Development

Machine code, assembly language, high-level languages (e.g., Fortran), object-oriented
programming (e.g., Java), scripting languages (e.g., Python).

– p. 6/75

Visual Modeling Languages

Visual Modeling Formalisms

Visual modeling formalisms ...

... map real-world products and processes to a graphical representation or
blueprint. These formalisms use symbols to represent real-world entities.

Appropriate Formalisms for Engineering Development

Task Modeling Formalism
Architecture and Design Visual Modeling Languages

Calculations Algebra

Algorithms Programming Languages

The development of real-world engineering systems is complicated by a need to ...

... satisfy physical constraints on behavior.

– p. 7/75

Visual Modeling with UML and SysML

Goals of UML?

The goals of the Unified Modeling Language (UML) and the System Modeling Language
(SysML) are (Rational, 1997)..

... to provide users with a ready-to-use, expressive visualmodeling language
(notation) so they can describe and exchange meaningful models.

Uses of UML?

Most engineers use UML informally, ...

... that is, diagrams are sketched as abstractions of a system description.

Semi-informal uses of UML aim to create ...

... a one-to-one correspondence between UML and the system being described.

– p. 8/75

Visual Modeling with UML and SysML

History of UML?

– p. 9/75

High-Level View of UML

Taxonomy of Diagram Types in UML 2

Structure

Behavior

UML Diagrams

Structure

Activity Use Case

Interaction Statechart

Communication Timing

Interaction
Overview

Sequence

Class Component Deployment

PackageObject

Composite

– p. 10/75

Visual Modeling with UML

Taxonomy of Diagrams in SysML

==

Structure Diagrams Behavior Diagrams

Block Diagram Activity Diagram

Block Definition Diagram (extends UML Activity Diagram)

(extends UML Class Diagram) Use Case Diagram

Internal Block Diagram State Machine Diagram

(extends UML Composite Sequence Diagram

Structure Diagram)

Parametric Constraint Diagram Cross-Cutting Diagrams

Parametric Definition Diagram Allocation Diagram

Parametric Use Diagram Package Diagram

(extends UML Package Diagram)

Requirement Diagram

==

– p. 11/75

Visual Modeling with SysML

Taxonomy of Diagrams in SysML(Source: Adapted from SysML tutorial)

Parametric

Behavior Structure

SysML Diagrams

Requirement

Sequence

ActivityUse Case

State Machine

Block definition Internal block Package

– p. 12/75

Visual Modeling with SysML

Side-by-side comparison on UML and SysML

Pillars of SysML

– p. 13/75

Visual Modeling with SysML

Pillars of SysML

– p. 14/75

Visual Modeling with SysML

SysML Requirements Diagram

Requirements diagram notation:

• Provides a means to show the relationships among requirements including
constraints.

• Shows how requirements relate to other model elements.

• Relationships among requirements can be used to define a requirements hierarchy,
deriving requirements, satisfying requirements, verifying requirements, and refining
requirements. [SysML 08]"

Therefore, the requirement diagram provides ...

... a bridge between the typical requirements management tools and the system
models.

– p. 15/75

Visual Modeling with SysML

SysML Block Definition Diagram

• This diagram is used to show features and relationships at a high-level of abstraction,
even before decisions on technology/implementation have been made.

• Block diagrams present blocks that can represent hardware or software or even a
combined hardware/software unit.

Example. Block Definition for Software-Hardware Dependency

purpose

<< block >>

constraints
operations
parts
references
values
purpose

executesOn

Software Block Hardware Block

<< block >>

constraints
operations
parts
references
values

– p. 16/75

Visual Modeling with SysML

SysML Parameteric Diagram

Parametric diagrams represent ...

... constraints on system property values such as performance, reliability, and mass
properties.

As such, they provide ...

... a means for specification and design models to be integrated with engineering
analysis models.

– p. 17/75

Visual Modeling with SysML

SysML Package Diagram

pkg: SampleModel

System Design

Logical Design

Physical Design

Verification

EngineeringAnalysisViewpoint

<< views >>
EngineeringAnalysis

<< conforms >>

<< imports >>

<< imports >>

<< imports >>

<< imports >>

SysML support for package diagram - views. Views and viewpoints are consistent with
IEEE 1471 defintions. As such, views conform to a particular viewpoint which, in turn,
imports model elements from multiple packages.

– p. 18/75

Visual Modeling with SysML

Compared to UML, SysML offers the following benefits:

• Block Stereotypes

The SysML Block Stereotype is based on the UML concept of composite structures.

Blocks can have internal features (attributes, operations) and can own ports.

The extension of UML ports in SysML as flowports provides a far more complete
system model in which blocks can be connected (physically and/or logically) to other
blocks.

• Allocations

SysML extends the UML trace comment with their new allocation property.

Functional allocation is the assignment of functions (requirements, specifications,
behaviors, etc.) to system components.

Support for functional allocations is needed especially in the development of larger
systems where design and implementation may not occur at the same place or time.

UML versions 1 and 2 make little reference to functional allocation (aside from
swimlanes in an Activity diagram).

– p. 19/75

Visual Modeling with SysML

Compared to UML, SysML offers the following benefits:

• Requirements Modeling

SysML provides modeling constructs to represent requirements and relate them to
other modeling [system] elements.

SysML introduces an actual requirements node which contains information about
requirements such as identifier, text, source, and method of verification.

These requirements nodes can be used in Block Definition Diagrams (SysML
version of a UML class diagram) to show a hierarchy of requirements.

Requirements can also be mapped to other elements by derivation, verification, and
satisfaction paths (e.g., a diagram can show how a specific requirement is assigned
to a component in the system structure.)

– p. 20/75

System Development Processes

Goals, Scenarios, Use Cases and Requirements

Pathway from operations concept to simplified models for behavior and structure, to
requirements....

High−Level Requirements.

Activity Diagrams

Sequences of tasks

between ohjects.
Sequence of messages

Models of System Behavior
and System Structure.

Req 1.

Req 2.

−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence Diagrams

Individual Use Cases
and Scenarios

−− scenario 4

– p. 21/75

System Development Processes

Key Points

1. The functional description dictates what the system must do.

Here, we employ a combination of use cases (and use case diagrams), textual
scenarios, and activity and sequence diagrams to elicit and represent the required
system functionality.

2. Activity diagrams show system functionality/behavior as a directed graph.

Hence, they aid in the generation of functional requirements (i.e., tasks that must be
supported by the system) and non-functional requirements (e.g., safety).

3. Sequence diagrams show the flow of messages between objects. Thus, they lead to
requirements on elements that must exist in the system structure, as well as
interface requirements.

– p. 22/75

System Development Processes

Key Points (cont’d)

4. A complete system description will also include statements on minimum levels of
acceptable performance and maximum cost.

Since a system does not actually exist at this point, ...

... these aspects of the problem description will be writtenas design
requirements/constraints.

5. Further design requirements/constraints will be obtained from the structure and
communication of objects in the models for system functionality (e.g., required
system interfaces).

– p. 23/75

Guidelines for using Visual Representations

Activity Visualization

Use cases
• Use case diagrams.
• Use case diagrams with generalization relationships.

Scenarios
• Text for linear sequences of tasks.
• Activity diagrams for fragments of behavior.
• Sequence diagrams for message passing between ob-

jects.

Requirements
• Table format for textual description of requirements.
• Trees and graphs for requirements emanating from sin-

gle/multiple sources.
• Requirements diagram (SysML).

– p. 24/75

Guidelines for using Visual Representations

Activity Visualization

Behavior
• Activity diagrams only containing task nodes.

Structure
• Class diagrams (UML).
• Composite structure diagram (new to UML 2).
• Block diagram (SysML).

System Design
• Activity diagrams containing combinations of tasks and

state nodes.
• State machine viewpoint: statechart diagrams.
• Interaction viewpoint: sequence and collaboration dia-

grams.

– p. 25/75

System Development Processes

Evaluation of System Behavior

We need to make sure that the desired model of system behavior matches the
implemented model of system behavior.

Comparison of desired and modeled behavior

Behavior (desired)

Domain Model Dictionary

Class
Diagram

Behavior (as modeled)

E
xe

cu
ta

bl
e

M
od

el

State
Diagram

Sequence Diagram Sequence Diagram

At the end of each interaction, the "desired" and "as modeled" behaviors are compared.

• When the comparison is good, we can proceed to the next (lower) level of object
decomposition and/or to modeling of a new behavior (i.e., use case).

• When the comparison is bad (or insufficient), the object classes and their state
diagrams need to re-engineered.

– p. 26/75

System Architecture View

Block Diagrams/Shortcomings of Class Diagrams

In UML (version 1), class diagrams have been the principal mechanism for expressing
system structures.

As we move toward the representation and analysis of real-time/embedded systems a
fundamental question is:

...are class diagrams still sufficient?

NO! Because classes abstract out certain specifics, class diagrams are not suitable for
performance analysis.

UML 2 overcomes this shortcoming. System structures are captured by ...

... class, composite structure, component, deployment, object, and package
diagrams.

– p. 27/75

System Architecture View

Objects and Class Notation

Examples of object instance names....

: Class NameObject Name Object Name : Class Name

Summary of the syntax ...

Syntax Description

o An object named o.

o:C An object named o from class C.

:C An anonymous object from class C.

/R An anonymous object playing the role R.

/R:C An anonymous object of class C playing the role R.

o/R An object o playing the role R.

o/R:C An object o from class C, playing the role R.

– p. 28/75

System Architecture View

Classes with Ports and InterfacesPort semantics.

Classes can now be modeled with ports and interfaces, supported by stereotypes
(<<provides>> and <<uses>>) to support type-checking, and pre- and
post-conditions.

..........................

<<provides>>

<<uses>>

Outgoing Protocol

Incoming Protocol

<<interface>>

<<interface>>

..........................

Two kinds of interfaces for classes:

• Provided interfaces describe the services that a class implements.

• Required interfaces describe the services that other classes must provide before the
class can operate properly in a given environment.

– p. 29/75

System Architecture View

Composite Structure Diagrams

Composite structure diagrams present ...

... the internal structure of a classifier (such as a class or component) in terms of
collaborative parts (sets of instances), how they interacttogether and how they
communicate with their container through ports, interfaces and connectors.

Assembly of Communicating Objects

Part

Glossary

Provided Interface

:Object2:Object1

Connectors

PortRequired Interface

– p. 30/75

System Architecture View

Example. Compositional Hierarchy for an Automobile

1

PowerTrain Steering FuelSystemElectricSystem Vehicle
Structure

Automobile

1 1 1 1

The Automobile class is a composition of ...

... PowerTrain, Steering, ElectricSystem, VehicleSystemand FuelSystem classes.

For the sake of brevity, lower-level details of the class hierarchy have been omitted.

– p. 31/75

System Architecture View

White- and Black-box Modeling for an Automobile

Automobile

:PowerTrain

:Steering :FuelSystem

:ElectricSystem

class: Automobile

(a) White−box view of the Automobile class.

(b) Black−box view of the Automobile class.

– p. 32/75

Behavior Modeling with Activity Diagrams

Definition

Activity diagrams document sequences of tasks making up a single activity.

They are especially useful for:

... for activities governed by conditional logic, and flows driven by internal
processing (as opposed to external events).

Hence, activity diagrams are appropriate for situations where ...

... all (or most) of the events represent the completion of internally-generated
actions and/or where asynchronous events occur.

Format for Activities and States

Activity Name State Name

A state in an activity diagram is a point where some event needs to take place before an
activity can continue.

– p. 33/75

Behavior Modeling with Activity Diagrams

Example 1. Main elements of an activity diagram

Activity node

Start

Activity 1

State 1

Activity 2

Transition between activities.

Start state.

Stop state.

Activity node

State node

– p. 34/75

Behavior Modeling with Activity Diagrams

Use of Branching and Looping Constructs

Activity diagrams may express a decision point where the evaluated value of a guard
condition determines the pathway of execution.

Activity 3

[Condition that causes this branch]

[Condition that causes
this branch]

Branch Condition
Activity 1

Activity 2

Activity 1
Branch Condition

[Condition that causes
this iteration block]

Activity 2

Diamond shapes represent transitions to different branches in an activity diagram.

– p. 35/75

Behavior Modeling with Activity Diagrams

Constructs for Synchronization

Synchronization bars give activity diagrams the ability to model flows of event that are
concurrent.

Fork in the flow of events.

Concurrent activities
in the flow of events.

Activity 2 Activity 3

Activity 1

Activity 4 Join in the flow of events.

– p. 36/75

Behavior Modeling with Activity Diagrams

Swimlanes

Swim lanes are ...

... a notation for indicating where an activity takes place (e.g., in a business).

System A

Activity 6

Activity 5

Activity 1
Activity 2

Activity 4

Activity 3

System B System C

Swim lanes are defined by columns in an activity diagram (e.g., participating actors), and
activities in the diagram are organized into swim lanes.

– p. 37/75

Behavior Modeling with Activity Diagrams

Displaying Objects on Activity Diagrams

Sometimes it is useful to indicate on an activity diagram how a flow of work affects an
object.

Activity 1

Start Use condition precondition
(i.e., start state)

Use case activity

o2 : Flag Status

[False]

o1 : Flag Status
[True]

Activity 2

Rectangular boxes contain the object name and the state of appropriate variables that
are the result of the work flow.

– p. 38/75

Behavior Modeling with Sequence Diagrams

Purpose

A sequence diagram presents an interaction (i.e., a flow of of messages) between
objects to achieve a desired operation or result.

...sequence diagrams are an appropriate form of visualization after the ”system
objects” have been identified.

Sequence diagrams enable designers to perform three key tasks:

• Allocate behavior among boundary objects, entity objects and controllers that will
become full objects in the system model.

• Show the detailed interactions that occur over time among the objects associated with
each use case.

• Finalize the distribution of operations among classes.

– p. 39/75

Behavior Modeling with Sequence Diagrams

Schematic of Semantics in a Typical Sequence Diagram

– p. 40/75

Behavior Modeling with Sequence Diagrams

Use and Notation for Iteration

When a sequence of messages takes place within an iteration construct (e.g., a while
looping construct in C), the messages can be grouped together within a rectangle

message

:Object name :Object name:Object name

message

[reccurrence condition]

with the test condition for continued loops positioned at the bottom of the rectangle (see
Bennett et al, pg’s 186).

– p. 41/75

Behavior Modeling with Sequence Diagrams

Use of Texual Annotations

When comments are added to a sequence diagram, the usual positioning is along the
left-hand side at the same vertical positioning as the message or activation applies to.

[while not end−of−file (EOF)]

:PrintSpooler :Printer:PrintFile

spoolfile = open (name)

block = readBlock()
print (block)

close ()

result = delete (name)

Open file and assign
reference to spoolfile.

Spooler reads blocks
from file sends them to
the printer. This continues

is reached.
until and end−of−file

Close file and release
resources associated with the
file.

Here, a file is opened, and the spooler reads blocks from the file and sends them to the
printer until an end-of-file is reached. Finally, resources associated with the file are
released.

– p. 42/75

Behavior Modeling with Sequence Diagrams

Guidelines for Creating Sequence Diagrams

1. Define Context of Sequence Diagram

Sequence diagrams can model interactions at the system and subsystem levels.

2. Identify the Objects

You can develop a first-cut estimate of the objects that can accomplish the desired
behavior with the use cases.

3. Draw the Instance Diagrams

Instance sequence diagrams are created by laying out the objects left to right. Add a
focus of control to visualize nesting or a point in time where an activation takes place.

4. Consider Alternative Scenarios

5. Finalize the Distribution of Operations among Classes

Experience indicates that when the robustness analysis is complete, the static model
should contain at least 75-80% of the attributes appearing in the logical design.

– p. 43/75

Finite State Machine Models

Definition

A state transition diagram is ...

... a graphic representation of the real-time (or on-line) behavior of a system.

State machine behavior can be viewed as a sequence of states versus time.

State 1

State 2

State 3

State 4

State 5

STATES

• Statessummarize past inputs relevant to the current behavior of the system.

• Transitions take a system from one state to another. They fire one at a time.

• Eventsare an input/message or interval of time.

– p. 44/75

State Machine Behavior

Recognition and Handling of Events

A state machine will ...

... only recognize those events defined in the model.

All other events will be discarded.

Types of Events and associated Actions

Type of Event Action

Signal event The system receives a signal from an external agent.

Call event A system operation is invoked.

Timing event A timeout occurs.

Change event A system property is changed by an external agent.

– p. 45/75

State Machine Behavior

State Machine Mechanisms

1. The machine begins at an initial state;

2. The machine waits for an event for an indefinite interval;

3. The event presents itself to the machine;

3. If the event is not accepted in the current state, it is ignored;

4. If the event is accepted in the current state, the designated transition is said to fire.

The associated action (if any) is produced and the state designated as the resultant
state becomes the current state.

The current and resultant states may be identical.

5. The cycle is repeated from step 2, unless the resultant state is the final state.

– p. 46/75

State Machine Behavior

Example 1. State machine behavior of a spacecraft computer system

Planned

Normal
Operations

Contingency
OperationsInitialize

Off

Failure

Resolved

Power "On" Emergency

shutdown

"On" status Another failure

shutdown

Points to note:

• The boxes in the state diagram show the valid states of the system, and the
conditions needed to achieve each state.

• Support is provided for graceful shutdown in emergency situations.

• The remaining states relate to what the system needs to do under normal and
contingency operating conditions.

– p. 47/75

Finite State Machine Models

Example 2. Statechart with multiple exit points.

This example documents ...

... the states of a research proposal as it
progresses through the phases of develop-
ment, company-level approval, and sub-
mission.

Points to note are as follows:

• Preparation of the proposal draft may be
abandoned because there aren’t any good
ideas....

• A final draft of the proposal may not happen,
perhaps because there is insufficient time to
work on it.

• Proposals can be rejected because of budget
and regulatory concerns.

Proposal work complete.

Signed

Proposal

Draft

Submitted

Ideas no good......

Unfinished

Rejected

Approved

Finished

Ideas are good

Start working on proposal...

– p. 48/75

Finite State Machine Models

General Syntax for Guard Conditions

action-label / action

Some actions will automatically occur soon after the state has been entered. Some
actions will automatically occur immediately before the state is exited.

Event Triggered Actions

For those cases where an action is triggered by an event, the syntax is:

event-name (parameters) [guard-condition] / action

Here, ...

• Parameters is a comma-separated list of parameters supplied by the event,

• Guard-condition is a condition that must be true for the event to trigger the action.

– p. 49/75

Finite State Machine Models

Example 3. Behavior Modeling of a Savings Account with Guard Conditions.

payment (value) [value = −balance]

Zero balance

Debit

Close account

Open

charge (value) [value = balance]

payment (value)

charge (value)

Credit

charge (value) [value > balance]

payment (value) [value > −balance]

Points to Note

• The account is opened and closed with a Zero Balance state.

• After the account is opened, a payment will move the account into a "Credit" state.
Conversely, a charge will move the account into a "Debit" state.

• Subsequent transactions ares governed by the guard conditions.

If the quantity of money in the account is positive, then the account will have a
"Credit"...and so forth.

– p. 50/75

Finite State Machine Models

Assessment/Limitations

The benefits of basic state machine models are as follows:

• Easy to use graphical languages (e.g., UML).

• Powerful mathematical algorithms for synthesis of hardware and software and
verification.

However, basic state machine models are limited in several respects:

• Basic state machine models do not scale well – even for small-to- moderate sized
engineering problems, the number of states can be unmanageable.

• Basic state machine models only support a single thread of concurrency.

• A single state machine cannot directly represent the aggregate behavior of two or
more independent processes running concurrently.

– p. 51/75

Statecharts

Framework for Modeling Concurrent Behaviors

Most real-world systems have behavior that can be ...

... decomposed into hierarchies and networks of simpler concurrent behaviors.

Example. State machine models for the transmission, heating and lighting systems in an
automobile.

Lights

Engaged

Second

Neutral

Heat

Off

On

On

Off

First
[speed >

threshhold]
Switch On

Switch On

Switch Off

Switch Off
Clutch Engaged

Clutch
Dis−engaged

Transmission

– p. 52/75

Statecharts

Modeling Concurrent Behaviors as Networks of Finite State Machines

Concurrency in engineering systems can be modeled ...

... using networks of communicating finite state machines (e.g., software systems;
digital circuits; control of traffic through intersections).

Individual processes are represented as FSM.

communication.

FSM FSM

communication.

Embedded software systems are modeled as networks of communicating FSM.

– p. 53/75

Statecharts

Statecharts were developed for ...

... the graphical modeling of control requirements in complex reactive systems,

and ...

... to overcome the limitations of basic state machine models.

Formal Definition

Formally, statecharts are a higraph-based extension of standard state-transition
diagrams, where:

Statecharts = state transition diagrams + depth + orthogonality + broadcast
communication.

Statecharts incorporate all of the semantics of diagrams for basic finite state machine
models.

References:Grossman 1997; Harel, 1987; Harel, 1988.

– p. 54/75

Statecharts

Feature 1. Depth

Depth refers to the simplification of models achieved by the hierarchical nesting of states.

Each state encloses a FSM.

• Basic states have no sub-state (bottom of the hierarchy).

• Root states have no parent (top of the hierarchy).

Statecharts can represent ...

... hierarchies of a single thread (process) or concurrent state state machines.

An aggregation of states is called a superstate. The model within an aggregation is a
process.

– p. 55/75

Statecharts

Example. Nested statecharts showing the gear-level view for the transmission system.

Clutch Engaged

Transmission

Neutral

Engaged

First

Second

Clutch
Dis−engaged

Statechart Representation

First

Second

Neutral [speed >
threshhold]

Clutch
Dis−engaged

Engaged
Clutch

Basic FSM Model

– p. 56/75

Statecharts

Points to Note

• The basic FSM model has three states and seven transitions (counting the one from
start to neutral).

• The statechart instroduces the Engaged state to describe the collection of states
first and second. Being in Engaged means that an internal FSM is active.

• States enclosed within an undivided box are mutually exclusive, meaning that when
the "engaged" state is active, execution must be in either first or second but not
both at the same time.

• The system operation will begin in a Neutral state. First is the default state when
the system is engaged.

• The events Clutch Engaged and Clutch Dis-engaged trigger transitions from
the Neutral to Engaged and Engaged to Neutral states, respectively.

– p. 57/75

Statecharts

Points to Note

• The transition from Engaged to Neutral is shown only once on the diagram, but
may be taken from any of the internal states (i.e., first or second). This form of
notation simplifies statechart diagrams.

Clutch Engaged
Neutral

Engaged

Clutch
Dis−engaged

Transmission

Statechart Representation

– p. 58/75

Statecharts

Feature 2. Orthogonality

Orthogonality refers to the modeling of two or more independent control strategies
and/or independent but related processes.

Statecharts represent concurrent (simultaneously active) states by divided superstates.

Three orthogonal regions

LightsHeat

Automobile

Transmission

This scenario shows an automobile superstate partitioned into three orthogonal
sub-states: transmission, heat, lights.

– p. 59/75

Statecharts

Feature 3. Broadcast Communication

Broadcast means that all machines/processes are visible to other. An output action of
any process may be sent to and consumed by any another process.

Heat

Engaged

Second

Neutral

Off

On

On

Off

First
[speed >

threshhold]
Switch On

Switch On

Switch Off

Switch Off
Clutch Engaged

Clutch
Dis−engaged

Transmission

Automobile

Lights

This scenario shows broadcast communication among the transmission, heat, and
lighting systems.

– p. 60/75

Case Study: Operation of a Museum

Problem Statement

In this example we ...

... systematically assemble a simplified systems model of visitor activity and
museum occupancy at the Smithsonian Air and Space Museum.

Doorman

Entry

Exit

museum.
Line of people outside

Floorplan of museum

Doorman

Constraints on Behavior

• The museum opens at 10am and closes at 5pm, 7 days a week. When the museum
is closed, both the entry and exit doors are locked.

– p. 61/75

Case Study: Operation of a Museum

Constraints on Behavior

The flow of visitors through the museum complies with the following constraints:

• The doormen are responsible for opening the museum in the morning, controlling the
occupancy of the museum during the day, clearing visitors from the museum at
4.55pm, and locking up at precisely 5pm.

• Fire regulations dictate that the capacity of the museum be strictly limited to 1000
people.

More constraints on behavior:

• The museum is "empty" when it opens in the morning. When the museum occupancy
is less than 1000, visitors are admitted upon arrival.

• When the museum occupancy equals 1000, it is "full". The doormen will halt
admission of new visitors until some of the current visitors have departed.

• During this (hopefully short) period a queue may form outside the museum.

– p. 62/75

Case Study: Operation of a Museum

Systems Framework for the Museum Operation

Visit

Waits

Sees

Clear people

Control

Regulations

Empty

Full

Close / Open

Guidance from Regulations

DOORMEN

MUSEUM

VISITORS
Regulates

Point to note:

• Doormen are responsible for controlling the flow of people in and out of the museum.

• Visitors are either "waiting" outside the museum, or inside "seeing" the exhibits.

– p. 63/75

Case Study: Operation of a Museum

Use Cases

Two textual use cases (that are possibly related) for the normal flow of events for a
museum visitor.

Use Case No 1.Normal Operation

1. Pre-condition: Museum is Open
Actors: Visitor, Doorman
Flow of Events:

1. Visitor arrives at the museum and doorman lets him/her in.

2. Visitor sees exhibits in the museum.

3. Visitor leaves the museum.

2. Post-condition:Visitor has finished seeing the museum and leaves.

– p. 64/75

Case Study: Operation of a Museum

Use Cases(Cont’d)

Use Case No 2.Museum is Full.

1. Pre-condition: Visitor is open and has 1,000 people.
Actors: Visitor, Doorman
Flow of Events:

1. Visitor arrives.

2. Doorman prohibits visitor from entering museum.

3. Visitor waits in line/queue outside museum.

4. At least one visitor leaves the museum (i.e., the population drops below 1,000).

5. The doorman lets the visitor at the front of the queue in.

2. Post-condition:Visitor leaves museum and population drops below 1,000.

– p. 65/75

Case Study: Operation of a Museum

Use Cases(Cont’d)

One textual use case for abnormal flow of events.

Use Case No 3.It is 4.55pm.

1. Pre-condition: The time is 4.55pm.
Actors: Visitor, Doorman
Flow of Events:

1. Visitor arrives.

2. Doorman doesn’t allow him/her in.

3. Visitor leaves.

2. Post-condition:Visitor does not see/visit museum.

– p. 66/75

Case Study: Operation of a Museum

Activity Diagram for Visitor and Doorman Activity

< 1,000 people?

Visitor can
see museum ...

Doorman allows
a visitor to enter

Visitor waits
in queue...

Vistor sees museum

Visitor leaves museum

Doorman doesn’t
allow a visitor

Is it 4.55 pm?

museum....
Visitor arrives at

No

Yes No

Yes

Is occupancy of museum

– p. 67/75

Case Study: Operation of a Museum

Finite State Diagram for Museum Occupancy

4.55 pm

Museum is
Closed

Museum is
Open

10 am

n < 1,000

Museum is
Full....

Museum is
about to close ...

n = 1,000n < 1,000

4.55 pm

5 pm

Note. The flow of visitors through the museum is controlled by two guard conditions, one
on occupancy and a second for time of the day.

– p. 68/75

Case Study: Operation of a Museum

Statechart Diagram for Museum Occupancy

Detailed Model

Museum Operations Museum Operations

Closed

Open

Closed

5 pm

10 am

Open

Normal

Full

n = 1000n < 1,000

About to close
4.55 pm

4.55 pm

10 am

5 pm

High−Level Model

Note. Some of the guard conditions are expressions in terms of time. Hence, strictly
speaking, this figure is an extended statechart (and not a regular statechart).

– p. 69/75

Case Study: Operation of a Traffic Intersection

Problem Statement

Our goal is to formulate a statchart diagram for behavior at a two-phase traffic
intersection.

S & E

Traffic light
control
box

EAST − WEST

S & W

N & W

NORTH − SOUTH

Signal 4
N & E

Signal 1 Signal 2

Signal 3

Each traffic signal will have lights pointing in two directions – for example, traffic signal 1
has lights pointing towards the South (S) and East (E).

– p. 70/75

Case Study: Operation of a Traffic Intersection

Details of Two-Phase Traffic Flow

Phase A

N

S

W E

Phase B

Two-phase traffic flow implies:

• The lights facing North/South will be the same color at the same time. The same can
be said for the lights facing E/W. That is,

Signal 1 S = Signal 4 N Signal 1 E = Signal 2 W

Signal 2 S = Signal 3 N Signal 4 E = Signal 3 E

• When one set of lights is either green or yellow, the other set of lights must be red.

• The N/S and E/W sets of lights must follow a regular, systematic pattern of switching
colors.

– p. 71/75

Case Study: Operation of a Traffic Intersection

State Table

For "Phase A" (N/S) traffic flow, the light settings are:

Signal/Direction North South East West

==

Signal 1 : --- Green, Yellow Red ---

Signal 2 : --- Green, Yellow --- Red

Signal 3 : Green, Yellow --- --- Red

Signal 4 : Green, Yellow --- Red ---

==

And for "Phase B" (E/W) traffic flow, the light settings are:

Signal/Direction North South East West

==

Signal 1 : --- Red Green, Yellow ---

Signal 2 : --- Red --- Green, Yellow

Signal 3 : Red --- --- Green, Yellow

Signal 4 : Red --- Green, Yellow ---

==

– p. 72/75

Case Study: Operation of a Traffic Intersection

Sequences of States for Traffic Light Behavior

State 4

Signal 1 E = green
Signal 1 S = red

Signal 4 E = green
Signal 4 N = red

Signal 2 W = green
Signal 2 S = red

Signal 3 W = green
Signal 3 N = red

Signal 1 E = yellow Signal 2 W = yellow

Signal 3 W = yellowSignal 4 E = yellow

Signal 1 E = red Signal 2 W = red

Signal 3 W = redSignal 4 E = red

Signal 1 E = red Signal 2 W = red

Signal 3 W = redSignal 4 E = red

Signal 1 S = red Signal 2 S = red

Signal 3 N = redSignal 4 N = red

Signal 1 S = greenSignal 1 S = yellow Signal 2 S = greenSignal 2 S = yellow

Signal 4 N = greenSignal 4 N = yellow Signal 3 N = yellow Signal 3 N = green

State 1 State 2

State 3

Note. States 1 and 2 correspond to Phase A. Phase B corresponds to States 3 and 4.

– p. 73/75

Case Study: Operation of a Traffic Intersection

Statechart Diagram

Now lets expand the behavior model by accounting for an error state – all lights flashing
red!!! – and organizing the description of behavior into a hierarchy.

Switch to Normal

All Red

Phase A

Phase B

Operational

Fault

Note. Classes for Phase A and Phase B could be expanded to include the detailed light
settings described in the state tables.

– p. 74/75

References

• Grossman, Ornit. Harel, David, On the Algorithmics of Higraphs, Technical Report
CS97-15, The Weizmann Institute of Science, Rehovot, Israel, 1997.

• Harel D., Statecharts: A Visual Formalism for Complex Systems, Science of.
Computer. Programming, Vol. 8, pp. 231-274, 1987.

• Harel D., On Visual Formalisms, Communications of the ACM, Vol. 31, pp. 514-530,
1988.

• IEEE 1471, Recommended Practice for Architectural Description of Software
Intensive Systems, IEEE Std 1471-2000. For details, see http://standards.ieee.org/
reading/ ieee/std_public/ description/se/1471-2000_desc.html (Accessed April 17,
2010), 2000,

• Rational Software Corporation, Microsoft Software Corporation, UML Summary,
Version 1.1., September, 1997. For details, see
http://umlcenter.visual-paradigm.com/umlresources/summ_11.pdf,

• OMG Systems Modeling Language. See: http://www.omgsysml.org/

– p. 75/75

	ptsize {14} Systems Engineering with UML and SysML
	ptsize {14} Need for Visual Modeling Languages
	ptsize {14} Need for Visual Modeling Languages
	ptsize {14} Need for Visual Modeling Languages
	ptsize {14} Visual Modeling Languages
	ptsize {14} Visual Modeling Languages
	ptsize {14} Visual Modeling with UML and SysML
	ptsize {14} Visual Modeling with UML and SysML
	ptsize {14} High-Level View of UML
	ptsize {14} Visual Modeling with UML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} Visual Modeling with SysML
	ptsize {14} System Development Processes
	ptsize {14} System Development Processes
	ptsize {14} System Development Processes
	ptsize {14} Guidelines for using Visual Representations
	ptsize {14} Guidelines for using Visual Representations
	ptsize {14} System Development Processes
	ptsize {14} System Architecture View
	ptsize {14} System Architecture View
	ptsize {14} System Architecture View
	ptsize {14} System Architecture View
	ptsize {14} System Architecture View
	ptsize {14} System Architecture View
	ptsize {14} Behavior Modeling with Activity Diagrams
	ptsize {14} Behavior Modeling with Activity Diagrams
	ptsize {14} Behavior Modeling with Activity Diagrams
	ptsize {14} Behavior Modeling with Activity Diagrams
	ptsize {14} Behavior Modeling with Activity Diagrams
	ptsize {14} Behavior Modeling with Activity Diagrams
	ptsize {14} Behavior Modeling with Sequence Diagrams
	ptsize {14} Behavior Modeling with Sequence Diagrams
	ptsize {14} Behavior Modeling with Sequence Diagrams
	ptsize {14} Behavior Modeling with Sequence Diagrams
	ptsize {14} Behavior Modeling with Sequence Diagrams
	ptsize {14} Finite State Machine Models
	ptsize {14} State Machine Behavior
	ptsize {14} State Machine Behavior
	ptsize {14} State Machine Behavior
	ptsize {14} Finite State Machine Models
	ptsize {14} Finite State Machine Models
	ptsize {14} Finite State Machine Models
	ptsize {14} Finite State Machine Models
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Statecharts
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Museum
	ptsize {14} Case Study: Operation of a Traffic Intersection
	ptsize {14} Case Study: Operation of a Traffic Intersection
	ptsize {14} Case Study: Operation of a Traffic Intersection
	ptsize {14} Case Study: Operation of a Traffic Intersection
	ptsize {14} Case Study: Operation of a Traffic Intersection
	ptsize {14} References

