
ENES 489P Hands-On Systems Engineering Projects

Modeling System Structure and System Behavior

Mark Austin

E-mail: austin@isr.umd.edu

Institute for Systems Research, University of Maryland, College Park

– p. 1/40

System Structure and System Behavior

Topics:

1. Abstractions for Modeling System Structure

Components, Attributes and Relationships.

Interconnect Design Methodology.

Interface contracts.

2. Abstractions for Modeling System Behavior

Simplfied procedure for modeling system behavior.

3. Viewpoints of Behavior

Control flow, data flow, state machines.

3. Behavior of an Artillery Cannon

– p. 2/40

Abstractions for Modeling System Structure

Components, Attributes and Relationships

The structure of a system contains:

1. Components

Components are the operating parts of a system consisting of input, process, and
output.

Each system component may assume a variety of values to describe a system state.

2. Attributes

Attributes are the properties of the components in the system.

3. Relationships

Relationships are the links between the components and attributes.

An important characteristic of a system is that ...

... its purpose is met by the properties of the system as “a whole,” and not just by
the union of the components.

– p. 3/40

Abstractions for Modeling System Structure

Interconnect Design Methodology

The interconnect design methodology assumes that ...

... complicated products and processes can be represented as hierarchies and
networks of product and process blocks.

Hierarchy and Network Abstractions

Network Abstraction

���
���
���
���

������������������������������

B C

D EA

Module D is connected to module EModule A contains modules B and C

Connector

Port

Hierarchy Abstraction

Note. Assigning properties and functions to blocks is relatively straightforward.

– p. 4/40

Abstractions for Modeling System Structure

Combining Hierarchy and Connectivity of Components

Simple system hierarchy decomposed into two levels, with a network of components (B
and C) at level 2.

Component

A

B C

Level 2

Level 1

Relations

Port

– p. 5/40

Abstractions for Modeling System Structure

System Assembly Elements

1. Parts

Parts represent a set of instances that are aggregated within a containing classifier
instance.

2. Connectors

Connectors specify a link that enables communication between parts in a structure
or with the surrounding environment.

3. Ports

Ports specify an interaction point between a classifier and its environment and/or
between a classifier and other internal ports.

4. Interface Specification

An interface specification defines precisely what a client of that interface/component
can expect in terms of supplied operations and services.

– p. 6/40

Abstractions for Modeling System Structure

System Assembly Constraints

The system structure must satisfy the following constraints:

1. Within a hierarchy, each level is logically connected to the levels above and below it.

2. A port cannot be contained by more than one entity.

3. Links cannot cross levels in the hierarchy,

4. Port-to-port communications must have compatible data types (e.g., signal, energy,
force).

– p. 7/40

Abstractions for Modeling System Structure

Interface Contracts

Contract

Interface

Pre−conditions

Post−conditions

Object

Interface Contract Guidelines

Guidelines for the design of system interfaces are as follows:

1. Details of the system implementation should be hidden behind its interface.

2. Provide only as much functionality as needed (i.e., keep it simple).

3. Interface functions should not overlap (i.e., orthogonality condition).

4. Modules should only communicate with a customer via its interface.

– p. 8/40

Abstractions for Modeling System Structure

Examples of Simple Interface Contracts

Output = (x / y)
Input x

Input y

Floating point
division

Contract: y != 0.

Example 1: Division of floating point numbers

Example 2: Square root calculation

Contract: x >= 0.

Square root
algorithmInput x Output = sqroot (x)

Note. Actor models can setup and track the flow of data through the system graph.

– p. 9/40

Abstractions for Modeling System Behavior

Definition. For our purposes, system behavior defines:

... what a system will do in response to its external environment without referring to
details on implementation (e.g., use of technologies).

Understanding the behavior of a system as a whole requires (Kronloff, 1993):

1. A knowledge of the individual parts and their behavior,

2. The interfaces between the parts,

3. The traffic that passes along the interfaces, and

4. The system environment.

Benefits.Behavior models provide an executable description for what a system will do.

Link to Tradeoff Analysis. Then, we can systematically adjust the input parameter values
to indentify tradeoffs in the critical measures of system effectiveness.

– p. 10/40

Abstractions for Modeling System Behavior

Elements of Behavior

The elements of behavior are as follows:

1. Functions.

These are discrete tasks (or activities) that accept inputs and transform them into
outputs.

Functions may be decomposed into sub-functions.

Individual functions are incapable of describing behavior.

2. Inputs and Outputs.

Identify the required system inputs and outputs provided by the system.

3. Control Operators.

Define the ordering of functions.

Note. Real-world behavior often emanates from the controled ordering of functions,
which in turn, affect how inputs are transformed into outputs.

– p. 11/40

Creating a Behavior Model

Getting Started

1. Develop Model of System Context

What is the context within which the system will operate?

2. Operations Concept.

What is the required system functionality?

What will the system do in response to external stimuli?

3. Requirements.

What are the system inputs and outputs?

What requirements are needed to ensure that the system will operate as planned?

Note. Usecase diagrams are a good way of capturing fragments of required system
functionality.

– p. 12/40

Creating a Behavior Model

Create Behavior Model

1. Identify Top-Level Functionality

What are the top-level functions?

Define inputs and outputs for each top-level functions.

In what order will execution of the top-level functions occur?

Trace inputs to outputs through network of connected functions.

2. Identify sub-tasks within each top-level function

Goal is to simplify models of funtionality by decomposing high-level functions into
networks of lower-level functionality.

3. Identify opportunities for concurrent behaviors

4. Insert low-level functionalities

Note. Several views of behavior may be required to obtain a complete picture of overall
behavior.

– p. 13/40

Abstractions for Modeling System Behavior

Functional Decomposition

System behavior defined through decomposition and ordering (control) of functions.

Function Decomposition

F3F2 F3

F2

F1F1

Control

Inputs and outputs

Connectivity of components

System
Boundary

Connectivity and Ordering of Functions

Task Task

Function Function Function

Function

System Mission

Function

Task

Note. The functional decomposition hierarchy says nothing about inputs and outputs.

– p. 14/40

Abstractions for Modeling System Behavior

Decomposition.Decomposition is the process of ...

... breaking the design at a given level of the hierarchy intocomponents that can be
designed and verified almost independently.

Decomposition of System Functionality

In
cr

ea
si

ng
 fo

cu
s

on
 g

oa
ls

In
cr

ea
si

ng
 fo

cu
s

on
 im

pl
em

en
ta

tio
n

Function

Func1

Func3

Func2
Inputs

Outputs

OutputsInputs

Note. Details of implementation are addressed in the lower levels of functional
decomposition.

– p. 15/40

Abstractions for Modeling System Behavior

Evaluation Criteria for Functional Decompositions

Guidelines for the design of modules are as follows:

1. One module should have no more than seven subordinate modules.

1. There should be separation between the controller modules and the worker modules.

2. Every module must perform a task appropriate to its place in the hierarchy.

3. Every module should only receive as much information as it needs to perform its
function.

The motivation for following these guidelines is modules that will be functional, easy to
understand, testable, and reusable.

– p. 16/40

Abstractions for Modeling System Behavior

When should a product decomposition cease?

As a rule of thumb, the bottom of a product hierarchy is reached when ...

... all of the objects are physical modules, components, or resources.

When should a process decomposition cease?

Guidelines for the decomposition of system processes are less clear.

It seems sensible that decomposition of processes should occur until ...

... a level of detail is reached where processes can be controlled in a repeatable
manner.

It seems equally important not to over decompose processes – this where management
of processes becomes micro-management of processes.

– p. 17/40

Abstractions for Modeling System Behavior

Ordering of Functions: Sequence, Selection, Iteration..

Sequence.Which functions must precede or succeed others?

Point
Starting Step NStep 2Step 1 Finishing

Point

Selection.Captures choices between functions

Outcome is false...
Compute Block B

Compute Block A

Logical Decision

Outcome is true

Iteration. Which functions can be repeated in a block?

Logical
Decision

Sequence of steps

– p. 18/40

Abstractions for Modeling System Behavior

Ordering of Functions: Concurrency

Most real-world scenarios involve concurrent activities in one form or another.

The key challenge lies in the ...

... sequencing and coordination of activities to maximize asystem’s measures of
effectiveness (e.g., production).

Example 1. Running multiple threads of execution on one processor.

Process B

Time t

Process A starts.
Process B starts.

Process A

– p. 19/40

Control Flow Behavior

Control Flow Behavior Model

The control flow behavior model ...

... is most suitable for applications in which the exact sequence of steps is most
important.

Control flow requires ...

... one step to finish before another starts (e.g., postal delivery person).

It de-emphasizes ...

... the calculation of inputs by using whatever informationhappens to be available
when a step starts.

– p. 20/40

Control Flow Behavior

Example. Control flow diagram for an iterative simulation process.

– p. 21/40

Data Flow Behavior

Data Flow Behavior Model

The data flow behavior model applies when data arrives in regular streams.

As such, the model ...

... focuses on functional dependencies between input and output – data flow takes
each step when other steps provide its inputs.

It also ...

... emphasizes the calculation of inputs by requiring the outputs of one step to be
explicitly linked to inputs of another step or steps.

The model de-emphasizes the sequencing of steps, because the time at which all the
inputs to a step arrive is determined by however long the various input steps take to
complete.

– p. 22/40

Data Flow Behavior

Example. Data flow diagram for operation of a microwave oven.

– p. 23/40

State Machine Behavior

State machine behavior can be viewed as a sequence of states versus time.

State 1

State 2

State 3

State 4

State 5

STATES

Key abstractions...

• Statessummarize the information associated with past inputs relevant to the current
behavior of the system.

• Transitions take a system from one state to another. They fire one at a time.

• Eventsare an input (e.g., a kind-of stimulus or message) or interval of time.

– p. 24/40

State Machine Behavior

Recognition and Handling of Events

A state machine will only recognize those events defined in the model. All other events
will be discarded.

Types of Events and associated Actions

Type of Event Action

Signal event The system receives a signal from an ex-
ternal agent.

Call event A system operation is invoked.

Timing event A timeout occurs.

Change event A system property is changed by an ex-
ternal agent.

– p. 25/40

State Machine Behavior

State Machine Mechanisms

1. The machine begins at an initial state;

2. The machine waits for an event for an indefinite interval;

3. The event presents itself to the machine;

3. If the event is not accepted in the current state, it is ignored;

4. If the event is accepted in the current state, the designated transition is said to fire.

The associated action (if any) is produced and the state designated as the resultant
state becomes the current state.

The current and resultant states may be identical.

5. The cycle is repeated from step 2, unless the resultant state is the final state.

– p. 26/40

State Machine Behavior

Example. State machine behavior of a spacecraft computer system

Planned

Normal
Operations

Contingency
OperationsInitialize

Off

Failure

Resolved

Power "On" Emergency

shutdown

"On" status Another failure

shutdown

Points to note:

• The boxes in the state diagram show the valid states of the system, and the
conditions needed to achieve each state.

• Support is provided for graceful shutdown in emergency situations.

• The remaining states relate to what the system needs to do under normal and
contingency operating conditions.

– p. 27/40

Behavior of an Artillery Cannon

Problem Statement:Suppose that you have been asked to develop a system design an
Artillery Cannon System (Source, Michael Krok at GE).

The systems design will include a behavior model, a structural model, and a combined
model where behavior is mapped onto the structural configuration.

– p. 28/40

Behavior of an Artillery Cannon

Operations Context. The context will consist of a collection of systems, each

having their own purpose, and interacting with other systems.

Environment
Command

Battalion

Cannon

Artillery

Enemy Fire

Personnel

Maintenance

Observer

Forward

Projectiles

Operations Concept.The operations concepts is:

Upon receipt of Mission from Battalion Command, the system is to fire

10 rounds within two minutes, at the designated target, and without
jeopordizing the safety of the crew.

– p. 29/40

Behavior of an Artillery Cannon

Preliminary Requirements.

System Input and Output Requirements

• Inputs to System

Target location,

Time to commence firing,

Projectile type.

• Outputs from System

Muzzle velocity for each projectile,

Proper initial flight path,

10 projectiles.

– p. 30/40

Behavior of an Artillery Cannon

Functional Requirements

• The system shall store and manage both projectiles and propellant.

• The system shall obtain the proper projectiles and charge to be fired during each
firing sequence.

• The system shall automatically open and close the breech.

• The system shall automatically load both projectiles and propellant into the cannon.

• The system shall control the firing sequence so that the proper launch conditions (i.e.,
muzzle velocity; azimuth; pointing angles) are achieved.

Temporal Performance Requirement

• The system shall be capable of firing 5 rounds per minute for 2 min + 3 seconds at the
maximum charge possible for a given projectile.

– p. 31/40

Behavior of an Artillery Cannon

Develop Top-level Firing Behavior of Cannon

Get
Supplies

Load Aim Fire

First find the intrinsic behavior (i.e., what must be done by the system, either
automatically or manually). That is:

One shot = get supplies, load, aim, fire!

– p. 32/40

Behavior of an Artillery Cannon

Develop Sub-Tasks within each Top-level Function

Aim

Launch
Projectile

Close
Breach

Load

Propellant

Load

Projectile

Open
Breach

Get

Supplies

Contol the
Firing Disturbance

Next Shot

& & @@

Identify the sub-tasks within each top-level function, e.g.,

• Task “Load” is divided into four distinct functions whose ordering is dictated by logic
and physical considerations (e.g., a path must be cleared before occupying space).
The implied sequence of tasks is open breach, load projectile, load propellant, close
breach.

– p. 33/40

Behavior of an Artillery Cannon

Consider Emergent Behavior

This includes:

• Factors that alter the behavior, but do not involve system structure.

• Deriving appropriate behavior from intrinsic behavior.

One of the creative portions of systems engineering

Formal methods and approach cannot replace bad decision making, nor replace
experience and creativity.

Best practices – usage of executable models to help evaluate decisions.

– p. 34/40

Behavior of an Artillery Cannon

Indentify Opportunities for Concurrent Behavior

Aim

Launch
Projectile

Close
Breach

Load

Propellant

Contol the
Firing Disturbance

& & @@ Projectile

Load

Breach

Open

Supplies

Get

&&

Next Shot

Decompose tasks (e.g., get supplies, control firing disturbance, load propellant) in order
to expose opportunities for further concurrency while accommodating safety
considerations.

– p. 35/40

Behavior of an Artillery Cannon

Check Timeline

We can insert information on the expected mean time (and variance) for each task, and
estimate the total expected time to launch a projectile, e.g.,

• Get Supplies = 6 seconds ± 0.3 seconds 1-σ.

• Open Breech = 1.5 seconds ± 0.1 seconds 1-σ.

• Close Breech = 1.5 seconds ± 0.1 seconds 1-σ.

• Load Projectile = 2.0 seconds ± 0.25 seconds 1-σ.

• Load Propellant = 2.0 seconds ± 0.25 seconds 1-σ.

• Control Firing Distance = 1.0 seconds ± 0.05 seconds 1-σ.

• Launch Projectile = 0.2 seconds ± 0.05 seconds 1-σ.

• Aim = 8.0 seconds ± 0.25 seconds 1-σ.

The expected total duration of this timeline is 14.2 seconds.

– p. 36/40

Behavior of an Artillery Cannon

Develop Low-Level Behaviors

Develop Low-level Behavior for Controlling the Firing Disturbance

Control Recoil Control Counter-recoil Aim

Develop Low-level Behavior for Loading Propellant

Propellant

InsertLoad

Projectile

Check Projectile

Loaded

Check Propellant

Ready Breach

Close

We need to assure that the path is clear and the propellant is ready to be loaded before
attempting to load. These checks require 0.1 seconds each. Inserting the propellant
takes 1.8 seconds.

– p. 37/40

Behavior of an Artillery Cannon

Complete Description of System Behavior

A complete description of system behavior would also include:

• Insert lower-level component functions into FFBD.

• Need to define system inputs/output, together with information on expected mean
value, range, duration, ..etc.

Pathways of system input/output may be drawn on top of a detailed FFBD.

• Need to validate behavior by either manual means or automated/executed with a tool.

• A structural model is needed to visualize subsystem interfaces.

• Create N-squared diagram (or interaction diagram or design structure matrix) to show
system function dependencies.

The next step is to allocate these functions to hardware and software configurations.

– p. 38/40

Behavior of an Artillery Cannon

System Architecture Model (Hierarchical Structure)

Structure diagram shows decomposition of turret system into main subsystems and
mechanical/electrical assemblies.

Igniter Controller Tube
Mechanism

Breech
Autoloader

Gun

Mount

Cannon

Drives

Traverse

Drive

Elevation

Drive

Propellant

Loader

Projectile

Loader

Software

Contoller
Electronics

Turret

System
SYSTEM LEVEL

LEVEL

ASSEMBLY

An object diagram would show interconnectivity of system elements.

– p. 39/40

Behavior of an Artillery Cannon

Complete Description of System Behavior.FFBD mapped onto system architecture

Autoloader

-- Load Propellant

-- Load Projectile

-- Get Supplies

Stored Projectiles

Stored Propellant

Cannon Drives

-- Position Elevation

-- Position Azimuth

-- Stabilize Pointing

Controller

-- Compute Pointing Angle and Muzzle Velocity

-- Control Firing Sequence

-- Ensure Firing Safety

Gun Mount

-- Control Recoil

-- Control Counter-

recoil

-- Support Tube

Breech Mech.

Tube

-- Guide Proj.

-- Contain comb.

-- Close breech

-- Open breech

Igniter

-- Initiate

combustion

TURRET SYSTEM

Projectile / Propellant

Projectile status

Pulse
Breech Motion

Breech Status

Breech
Commands

Ignition
Status

Autoloader
Status

Breech

Status

Autoloader

Commands

Commands
Pointing

TD Status

Firing Miaaion

EL

AZ

MV

– p. 40/40

	ptsize {14} System Structure and System Behavior
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Structure
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Creating a Behavior Model
	ptsize {14} Creating a Behavior Model
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Control Flow Behavior
	ptsize {14} Control Flow Behavior
	ptsize {14} Data Flow Behavior
	ptsize {14} Data Flow Behavior
	ptsize {14} State Machine Behavior
	ptsize {14} State Machine Behavior
	ptsize {14} State Machine Behavior
	ptsize {14} State Machine Behavior
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon
	ptsize {14} Behavior of an Artillery Cannon

