
On principles for model-
based systems engineering
Ingmar Ogren, Tofs AB, Fridhem 2, SE-76040
Veddoe Sweden
e-mail iog@toolforsystems.com,
URL: http://www.toolforsystems.com
phone +46 176 54580
fax +46 176 54441

Published in “Systems Engineering Journal”
Q1 2000

1. Abstract
This paper addresses the problem of
consolidating technical descriptions of how a
system is built with operational descriptions of
the missions the system shall complete (how the
system is to be used).
It also discusses how a central model
constituted from design objects with
requirements, test cases, problems and
documents as attributes, to these design objects,
can support modern principles for “incremental
acquisition” and “incremental development”.
Modeling principles, based on entity-
relationship diagrams and the UML (Unified
Modeling Language) component diagram,
combined with pseudo code behavioral
descriptions, are described as means to build
the “central model”.
After a “central model” for systems engineering
is established ,it is shown how the model can be
extended into a “Common Project Model”,
being common in two ways:
!" Common for “real implementations” and

simulators required for the system.
!" Common for all concerned stakeholders

such as acquirers and contractors.
Application of the “Common Project Modeling”
principle, with computer-stored models, holds
promises for increased system quality and for
more efficient systems engineering.

2. Background with today's
solutions
Leonardo daVinci once made some fantastic
designs. From these you can understand that
technical drawing, in that time, was little
different from art. Later technical drawing
diverged from art with the introduction of
dimensional measurement, different views, and
so on. This tradition of technical drawing has
developed into qualified CAD drawing systems.
Technical drawing is now an excellent means of
describing the physical properties of any item,

but it gives little understanding of how the item
drawn should be used or which missions it can
contribute to complete.

 When electricity arrived, new drawing
techniques were needed, resulting in the electric
schema showing electric components, voltages
and currents. Since electric equipment was
often complex, the block schema was also
introduced to show a higher “structural” level of
the electric system. These schemas still
concentrate on the system's components, giving
little understanding of the system's missions.
 With the advent of computer software, it
was believed that many problems would be
solved through the simplicity of changing the
software. Rather soon this simplicity of change
proved to be more of a problem than a solution
and the need to describe software exactly was
understood. One solution was “Structured
Analysis” diagrams, derived from the earlier
“block schemas”. These give a good
understanding of the software's structure, but
still little information about the software's
missions. During the last ten years object-
oriented software descriptions techniques have
become wide spread, mainly used as a means to
support economic software reuse.
 Modeling is a well-proven technique for
technical research and development. Ships,
buildings, airplanes etc. have been modeled for
purposes, such as hydro- and aerodynamical
research, usability investigation, visualization
for end-users, etc. Modeling of software-
intensive systems, using the Unified Modeling
Language (UML) [1], introduced by Rational
Inc, is now also possible. Models represent an
excellent way to visualize one or more aspects
of a system, but most models of complex
systems still have problems in clarifying the
system's missions. Below will be explained
how a system can first be modeled in its

Figure 1 Leonardo DaVinci drawing

context, after which the system’s missions can
be identified and included in the model. First
however, a discussion of the development
process structure.

3. The three basic processes in
Systems Engineering
For software and systems engineering the
combination of “waterfall” and “big bang” used
to be popular. “Waterfall” then means that
system development is visualized and planned
as a number of time-separated phases, the main
phases being analysis, design and verification.
“Big bang” means that development is planned
and executed as a single effort going through
the phases from requirements’ investigation to
integration. The combination means that you
plan system development as a single large
concerted effort, composed from a number of
phases, to be gone through, one at a time,
separated by reviews. The principle is attractive
for several reasons:

!" It is simple to explain.
!" It is orderly, logical and can be visualized

in a single viewgraph.
!" It is well suited to traditional acquisition

with fixed price.
!" It often offers an attractive time schedule,

when presented in proposals.

However there is a small problem with the
combination of “Waterfall” and “Big bang” for
development and evolution of non-trivial
systems, since the resulting methodology does
not comply with reality. It simply does not
work for reasons such as:

!" It is not humanly possible to specify a

complex system completely and
correctly prior to development, since
development will always build new
knowledge.

!" Problems will always surface during
development and some of these will
cause late changes of requirements.

!" In reality, the activities in the “phases”
are more concurrent than sequential,
making it impossible to put them into a
sequential schema.

!" It is difficult and often impossible to
know the real requirements, with their
priorities, until end-users have had an
opportunity to acquaint themselves
with the final system or at least with a
realistic representation (model) of the

system.
!" It is difficult (impossible) to know the

“cost/contribution to mission” ratio for each
system feature before getting rather far into
development.

For these reasons several new development
models have been defined for software
engineering, such as “spiral”[2] and “ball-
bearing”[3] models, with a better understanding
of the need for concurrency. Several of these
introduce new problems concerning acquisition
as it becomes painfully obvious that you must
understand that the principle of “fixed price
contract” is of little use in complex system
acquisition, when the requirements are not
really known until you are well into
development. One principle that gives promises
to both manage the concurrency needed in
systems/software engineering and to allow fixed
price contracts is “Progressive acquisition” with
incremental development[4].
 A version of incremental development is
visualized in Figure 2. The technique is
characterized by:

!" “Requirements Management”,

“Development” and “Verification with
Test” are established as three concurrent
processes.

!" Successive releases of the system are
produced, giving the developers and end-
users “something real” to work with as
soon as the first version is released.

!" “Requirements Management”, includes
analysis and this process is more labor
intensive in the beginning of the project

Figure 2 Parallel processes in incremental development

Requirements’
management

Development Verification
with Test

Design objectRequire-
ments

Test
cases

where most of the requirements' work still
needs to be done.

!" “Development” includes architectural and
detailed design. This process is most labor
intensive in the middle of the project.

!" “Verification with Test” starts early in the
project with verification of initial
requirements, but is most labor intensive by
the end of the project, with testing in
connection with system integration and
deployment.

!" The three processes are kept together by a
central design object structure with
requirements and test cases being attributes
to the objects.

The principles of incremental
acquisition/development are now being
introduced in some large system user
organizations within the WEAG (The Western
Europe Armament Group).

4. The central model
A problem with modern development models
with concurrency and incrementality is that they
tend to be confusing to Quality Assurance
people. They don't find their traditional
baselines and “critical reviews” and feel they
are getting lost in a multitude of activities and
versions.
 This is a serious problem, which however
can be made less serious through introduction of
a central model to base the project on. There are
several ways to model and it is essential to
decide on modeling technique for a project.

4.1 How do you know what you
model?
When you review a software or systems
engineering diagram, you often come across
simple entities such as for example “aircraft
position”. You can ask the diagram author what
this means: “Is it really the aircraft position or is
it the computer's understanding of the position?”
The question may cause some confusion and
most often the answer will be something like “It
is this entry in the data dictionary, represented
by that floating point data”. If you then put the
next question: “How do you know it is the real
position?” you may get a clear, crisp and
understandable answer. You may also get a
confusing discussion of data, communication
paths and delays throughout the system, which
leaves you with little understanding of how well
the data represents its counterpart in the real
world.

 In these cases it helps to draw a UOD
(Universe Of Discourse) diagram. This is a
simple way to increase knowledge of how
entities in a system represent and connect to
entities in the “real world”.

 To draw a UOD diagram, start with an entity
in the real world, such as an aircraft:

Next, you can introduce a radar to detect the
aircraft together with a couple of relations
between the radar and the aircraft. The relations
are drawn “both ways” to show that this is not a
Data Flow Diagram, but an Entity-Relationship
diagram, which simply defines entities and
relations. To read and understand the diagram,
you simply read the text in one box together
with the text along an arrow and the text in box
the arrow points at. When you review a UOD
diagram, you read these simple texts and check
that they are both readable and say something
meaningful about the system.

If you then want to build an air traffic control
system you need to represent the aircraft in the
system:

What you have done so far is simply to add to
the original diagram to show that radar is used
to detect aircraft and that aircraft must be

Aircraft

Figure 3 A single entity

is detected by
Aircraft Radar

detects

Figure 4 Two entities with relations

is detected by
Aircraft Radar

detects

Air traffic control system

Aircraft
Representation

repre-
sents

Figure 5 Representation entity added

represented in air traffic control systems. This
may seem completely trivial, but establishment
of basic facts like these may well be of crucial
importance in other and more complex
circumstances.

 However, the diagram says nothing about
how to build the “Aircraft Representation”. For
the example is presupposed that “Aircraft
Representation” is built by a “Tracking” entity,
which gets information from the radar. The
entity “Tracker” is introduced, with its relations
in Figure 6.

You now have a simple UOD diagram with
“double coupling”. The diagram shows an
entity in the environment or “real world”
(Aircraft) and its representation in a system
(Aircraft representation). The double coupling
means that the diagram shows how the
environmental entity is represented in the
system and how the environmental entity
influences its representation.
 The diagram also expresses a number of
simple facts about the system in its environment
if you read the text in each two connected boxes
together with the arrow text. If these sentences
don’t make sense or are not grammatically
correct, the diagram probably needs some
further work.
 What you have done now is basically
modeling on two levels. The diagram is a
model of a system in its environment and the
diagram shows one aspect of how the system’s
environment is modeled within the system.
 Note that “environment” is not necessarily
the “real physical” environment. For example
an embedded software system may well have
other software systems as its environment!

UOD diagrams can be drawn simply with
paper and pencil or on a blackboard and this is
often an excellent idea, particularly early in
system analysis, when you want to build an
understanding of an existing or future system.
Drawing these diagrams together with an

experienced end-user on a blackboard is a very
good way to understand and document basic
facts.
 However remember that what you are
drawing is entities and their relations, not a data
flow diagram and don’t make the diagram too
complex. Multiple small simple diagrams are
better than one big complex diagram, since it
will be difficult to see the errors in a complex
structure.

Tooling is an issue for the UOD-graphs. The
blackboard is a wonderful tool, but it has its
limitations as a means for persistent information
storage. Computer storage is better and many
simple drawing programs, such as PowerPoint
or Visio can be used to draw and store UOD
diagrams. You can also use other programs
with drawing capacity, such CAD or CASE
programs.

However, before you select a program to
document and store your models, check that it
does not have any awkward syntactical
limitations and that it can do useful tricks such
“rubberbanding” and “snapping”.

4.2 Requirements on modeling and
modeling alternatives
From the above discussion it is obvious that
modeling is central to achieve quality in
complex systems. There are many ways to
model a system and you may wonder which one
to choose. The answer is very simple: It
depends. It depends on which aspect of your
system you want to model and who shall read
your model. Another answer is that you cannot
really choose, since you need to master a palette
of modeling techniques to cover the needs
during a systems' engineering effort. You must
consider what is required for modeling a
complex system, to achieve an acceptable
quality. Five key requirements are:

1. Determinism with formality
This means that everything expressed in the
model must have a single, defined and obvious
meaning.

2. Understandability
Since systems engineering should be done in
close cooperation with end users, the models
used must be readily understood, without
extensive education or experience in software or
mathematics

is detected by
Aircraft Radar

detects

Air traffic control system

Aircraft
Representation

repre-
sents

Tracker

sends
plots to

updates

Figure 6 Diagram with “double coupling”

3. Inclusion of system missions
The model must elicit the system's missions and
also be able to express how different parts of the
system contribute to completion of these
missions.

4. Modeling of structure and behavior
The modeling technique shall support splitting a
system into subsystems, with clarification of
interfaces between
these systems, and the
modeling technique
shall also allow
definition of behavior
within the subsystems
defined.

5. Possibility of
verification support
It shall be possible to
verify a completed
model. This
verification can be
against defined
requirements, but it
can also concern
verification of
completeness,
consistency, etc. For
complex systems,
verification will often
require computer
support, depending on
the large amounts of information to be
managed.

4.3 Some modeling alternatives
Below some useful techniques for modeling are
discussed and three of them are also shown in
Figure 7.

The Block diagram
The block diagram may be the oldest way to
model systems. It is very simple to understand
and it can include events as shown in Figure 7.
The example shows that A contains B and that
B transfers something to C. The block diagram
is extensively used for hardware schemata, for
organization diagrams and for software
structuring (as Data Flow and Context
diagrams)

The UML Class Diagram
The UML (Unified Modeling Language) [1]
contains a “Class Diagram”, which concentrates
on a system's components with class
inheritance, dependency, association,

aggregation and cardinality. The rich syntax and
the great power of expression are obvious
advantages for the UML Class diagram.
 The rich syntax may also be a disadvantage
since it is easy to draw complex and confusing
diagrams when you use the full syntax. A good
idea, particularly when you work with end-
users, is to limit each diagram to a subset of the
Class diagram syntax.

The UML Component diagram
Another UML diagram is the Component
diagram. It was published in Grady Booch’s
book on Software Engineering from 1983 [5]
and it has been developed in the HOOD
software development method [6].
 The UML component diagram is useful,
since it can be used to model compositive object
structures. When you work with such
structures, you concentrate on each object’s
interfaces and on dependencies between objects,
rather than on “inheritance” between objects.
 The diagram in Figure 8 shows that:

!" The current object has an offered interface

(constituted from a set of actions, which
can be invoked from outside the object)

!" The current object has a required interface,
constituted from parts of the offered
interfaces of the support objects

!" Two support objects are contained in the
same system as the current object, while
one support object is outside of that system.

A
B C

event

Class

Attribute

Actions

superclass

subclass

inheritance

Offered
interface
as a set of
actions

Current object
Required
interface
composed
from support
objects.

Event driven
block shema

Component based
class diagram with inheritance

Mission centered with
compositive object orientation
gives dependencies and
interfaces = manageable
systemstructure.

Figure 7 Three principles for modeling

The Component diagram allows you to model
not only hardware and software components as
objects, but also operator roles and missions.
This makes it possible to model complex
systems as a set of diagrams on different levels,
with clear dependencies among the objects and

with a clear understanding of how the different
objects contribute to completion of the system’s
missions.

State Charts
State charts show behavior for a system
component as a set of states with transition
conditions and transitions between those states.
Consequently, they can be used for modeling of
behavior.

Pseudo Code
Pseudo Code is a code-like behavior
description, constituted from code-like formal
control structures, variables (parameters,
messages and local
variables) of defined types
and comments.

Although the modeling
techniques discussed here
are only a small subset of
the available techniques, it
is still useful to compare
these techniques with the requirements listed in
section 4.1. What you need to model a complete
complex system is at least one structural
modeling technique and one behavioral
modeling technique. The requirements and the
modeling techniques are listed in Table 1. One
choice (highlighted in Table 1), used for the
continued discussion, is to start out from the
UML Component Diagram and combine it with
Pseudo Code.

 This yields a central model, which defines
system structure as a set of objects, depending
on each other and connected through defined
interfaces. Within each object its behavior is
modeled as pseudo code in a set of actions.
 In order to be able to manage the complete

development effort attributes are added to the
objects and used to manage requirements, test
cases, problems and documentation.

4.4 The air traffic control example
In the Air traffic control example used in
section 4.1 the initial UOD diagrams result in an
understanding that one of the missions in this
system is to manage aircraft information.
Consequently an object
“Manage_Aircraft_Info” is identified with sub-
missions to present the aircraft information, to
measure course and speed and to calculate
collision risks.

Figure 8 shows the example in a modified UML
component diagram, drawn with the Tofs toolkit
[3].
The behavior description of the single action
“Invoke_aircraft_management” in Pseudo Code
will then contain one single concur statement to
invoke actions in the three sub-mission objects
in parallel

 Determinism Understan-
dability

Mission
inclusion

Structure/
behavior

Verification
support

Block diagram No Very good No Structure Poor
UML Class
diagram

Yes Difficult No Structure Poor

UML
component
diagram

Yes Good Can be Structure Can be good

State charts

Poor unless
formalized

Good Can be Behavior Good if
formalized

Pseudo code

Yes Requires
explanation

Can be Behavior Good if
formalized

Table 1 Modeling techniques versus requirements

Figure 8 Object graph example from the Air traffic control example

object Manage_Aircraft_Info is

action Invoke_aircraft_management is
visibility: Offered
purpose: {Invoke concurrent actions in mission
objects to complete the mission of managing
the aircraft information.}

begin

concur
Calculate_collision_risk.
Calculate_risks

Measure_course_and_speed.
Course_speed_measure

Present_aircraft.
Present_aircraft_information

end concur
end

end Manage_Aircraft_Info

5. Use the model in the Three
Basic Processes
The three basic processes in systems
engineering are separate, but still connected
through the central model. Below the content of
the three processes and how they can be
supported by the system model is discussed.

5.1 The Requirements management
process
What to do
The requirements management process aims at
creation and maintenance of an understanding
of the requirements for the current project
through the complete project. The requirements
must be as complete as possible and they should
comply with any constraints concerning, for
example, scheduling and cost.
 The need to maintain and optimize
requirements makes it impossible to have the
requirements process “done with” in the
beginning of the project.

How to do it
The first thing to do to get the requirements
correct is to find, understand and document the
mission(s) of the system to be updated or
created. After the missions are defined two
things can be done in parallel: Define and assign
requirements to the missions and create a draft
system structure.
 After this is done you have a basis to start
the design and verification processes while the
requirements process continues with addition of
new requirements resulting from build-up of
knowledge, adjustment of requirements as a
result of problem management and distribution
of requirements to design objects.

How the model supports requirements
management
As soon as you have the missions and a draft
top-level design, you can identify a first set of
objects in the model. The requirements,
problems, etc. can then be assigned as attributes
to these objects. The result is that the model
supports an orderly management of
requirements and other pieces of information,
which pertain to requirements management.

5.2 The Development process
What to do
The development process contains architectural
and detailed design, expressed as a structure of
connected objects. Each object will then
contain detailed information to be used as a
basis for implementation of that object.

How to do it
After you have the missions and the top-level
requirements, you can apply top-down and
bottom-up principles for design:

!" Top-down through definition of new

support objects to the mission objects, with
continuation of the process downwards
with distribution of requirements to the
objects.

!" Bottom-up through identification of
reusable support objects with insertion of
these in the designed structure and
distribution of requirements to the objects
found.

How the model supports design
During design the model is updated to include
the new objects, defined or found, with their
dependencies and interfaces. Consequently the
model grows during design, and provided that
your model is formal and computer-stored, it
will support consistency checks of the design.

5.3 The Verification process with test
What to do
Verification includes verification of correctness
for requirements, design and also for the
completed and integrated system in its
application environment. The fact that
verification must be applied already on the first
set of requirements makes it necessary to start
the verification process in parallel with the other
processes.

How to do it
Verification is done through reviews and tests
on various levels and concerning various parts

of the system under development or update. On
the top (mission) level the system must be
validated against scenarios, covering the
missions defined.

How the model supports verification
When you have a computer-stored object model
of a design, this model can support review work
through presenting the design line-by-line for
inspection and through automatic analysis of the
designed structure.
Such a model further supports testing through
allowing you to define test cases and test results
as attributes to the objects in the design.

6. Managing the issue of
criticality
Systems may be critical in different ways, for
example safety-critical, mission-critical or
environment-critical. For critical systems, you
need an extremely low probability of failure.
To achieve this it is helpful to have:

!" A formal system description to allow for

automatic checks on consistency and
completeness.

!" A system description which is
understandable to the system's end-users,
since these are the real
experts on the system's
applications.

!" Fault-tolerance, since
you must always allow
for component failures
and human mistakes in
the completed system.

A model-based approach, as
described above, helps to
manage critical systems, since
the model will support the
necessary analysis activities
in several ways:

!" The formalized structural

and behavioral system
description gives the
necessary basis for
criticality analysis.

!" Providing behavior is
expressed in simple state
charts or “English-like” pseudo code, the
behavior should at least be explainable to
end-users.

!" The model gives an excellent basis for
fault-tolerance analysis, since the model

includes the dependency structure
necessary for application of traditional
analysis techniques, such as Fault Tree
Analysis (FTA) and Failure Mode and
Effects Analysis (FMEA).

7. Tools for modeling
Complex system are distinguished by the fact
that it is not humanly possible to overview the
system and at the same time keep an
understanding of all the details of the system.
When working with such systems, it is obvious
that, provided that you have the ambition to find
and retrieve the information, the amount of
information exceeds what is possible to keep in
mind or to manage as “paperwork”. This is
where a computer-stored model can assist.
Stored in a suitable tool, such a model will
assist in inputting and retrieving the large
amount of information needed for work with
complex systems.
 One such tool, which supports the
combination of component diagrams and formal
pseudo code behavioral descriptions, is Tofs
(Tool For Systems) [3]. For the discussion
below Tofs is used for the example. A Tofs
screen, with part of the Air Traffic Control
example, is shown in Figure 9.

Figure 9 Tofs screen with component diagram for the object
“Manage Aircraft info”

8. The Common Project Model
(CPM)

8.1 The quality problem
Quality for complex systems concerns
compliance between system performance and
expectations. These expectations take different
form for different stakeholders. For example:

!" A simulator user expects the simulator to

include a correct representation of the
simulated system and its environment

!" A system end-user expects the system to
comply with his or her original
specifications and with its documentation

!" A system maintainer expects a system to be
delivered with a complete and
understandable documentation, which
complies with the system.

All these expectations concern the fact that a
complex system encompasses not only the
system itself, but also a set of models such as
simulators for different purposes, models
included in the maintenance documentation and
mental models maintained in the minds of
developers, end-users and maintainers.
 It is obvious that whenever one of these
models deviates from the real system, a risk is
introduced that one of the stakeholders has
expectations, which deviate from the system's
reality. This results in a quality problem.

8.2 Commonality
Acquirer/contractor
Each stakeholder and participant in a project has
the right to expect an understandable description
of the part of the system he or she is concerned
with. This description shall include not only
design information, but also valid requirements,
test cases, etc. For a partial system description,
to be of acceptable quality, for a project
participant, it must be possible to show that it is
part of a consistent description of the complete
system. As a complex system, by its very
nature, is not completely understandable for one
person at one time it is not an easy task to
achieve the desired description quality.

Descriptions of complex systems present a
number of problems:

!" Modern complex systems are composed

from multiple sub-systems, which must
cooperate in order to complete missions.

!" Subsystems are delivered from different
vendors and are typically utilized by end
users in separate organizations.

!" Systems operate in a complex environment,
in which external systems may influence
mission results.

!" Systems will normally exist in multiple
releases and may be supported by several
simulators, each providing a model of the
system.

!" Legacy and COTS (GOTS) parts must be
integrated into the system with full
understanding of how they are interfaced
and of how they contribute to completion of
the system's mission

!" The different vendors and end users,
concerned with a complex system will each
have their own standard and tradition for
system descriptions.

The problem aspects can be summarized as
follows: It is crucial to project success and
quality that a common understanding covering
all system releases and simulators be established
between all of the involved parties.

8.3 Why a Common Project Model
As discussed above, a quality problem will
surface whenever multiple expectations and
models are present in connection with a
complex system. It is obvious that it would be
possible to diminish these problems if everyone
concerned with a complex system could work
from a common model to get a common
understanding of the system and consequently
also common expectations.

8.4 What is a Common Project
Model?
A Common Project Model (CPM) is a
description of a system's structure and behavior,
expressed in a way that manages the problems
listed in section 8.2. For any non-trivial and
complex system it will be necessary to have the
model computer-stored to manage and analyze
the large amount of information required. Since
a complex system will include a lot of
documentation on parts of the system, it will be
necessary for the model to include references to
various pieces of documentation.

8.5 How to build a Common Project
Model
To build a CPM, you should start when the
project is in its concept stage. The model can
then grow together with the project through

analysis, design,
implementation and
commission. It is also
possible to build a CPM for
an existing project and
consequently create the
necessary common
understanding from existing
documentation and from the
stakeholders' knowledge and
expectations.
 To build the model, you
can use any qualified
systems engineering tool,
which includes acceptable
modeling principles as
discussed above. As an
example is shown, in Figure
9 a Tofs screen picture of the
initial structure for the
“Manage Aircraft info” of
the Air Traffic Control
example.
 Note that a tool to
manage Common Project Models must include
sub-tools to manage requirements, test cases
and documentation as shown in the menu bar in
Figure 9.

8.6 How to use a Common Project
Model
When a CPM is built
through a project it can be
seen as “project
backbone” as visualized
in Figure 10.

The CPM can be used to
support a variety of
important activities to
raise the overall system
quality, for example:
!" During development,

the model helps to
establish a common
understanding of the
system’s environment
and the
environmental
requirements on the
system.

!" During marketing of
new system releases the CPM helps to make
it possible to model new environments and
to study how the system can be tailored to
meet the requirements from these.

!" In subcontracting, the CPM helps to ensure
a common understanding among the
contractors involved.

!" In system maintenance the CPM helps to
provide the necessary understanding of how
the different parts of the system contribute
to completion of the system's missions.

9. Experiences
The modeling principles, described in this
paper, have been applied in multiple projects in

Environ-
ment-
model

Concept/new version

Technical
possibilities

Technology

Strategy
Tactics

Evaluation &
adjustment
(System Dynamics)

System draft

Require-
ments

Design

Complete
system
model

Basis for higher level
Logistics
Test
Evaluation

Performance
adjustment

Strategic
& tactic
patterns

Reliability analysis

Business
integration

Training, multiple levels
International adjustment

Follow-up of
usefulness
& readiness

Integration

Environment

Documents

Implementation

Simulations

Figure 10 The Common Project Model as a “Project backbone”

Develop-
ment

Marke-
ting

Produc-
tion

Common Project
model

Environment User’s
environment
(accredi-
tation)

Subcontractors
(acceptance
interface)

Product-
versions

Simulations

Forms a
basis for

Figure 11 Use of the Common project Model

Sweden, primarily in defense and industrial
applications. Some experiences are:

Application of parallel processes in incremental
development.

Particularly early introduction of reviews,
for verification of requirements has proven
to be an efficient way towards early
detection of requirements-related problems.

Inclusion of Mission objects in system
structures.

Early identification of system missions and
inclusion of these missions in the system
structure has proven valuable to build a
common understanding of the objectives for
a system development among the
stakeholders concerned.

Use of Universe Of Discourse diagrams
The Universe Of Discourse diagrams have
proven to be valuable to clarify a system’s
interfaces with understanding of how the
system represents its environment.

Use of UML Component diagrams (Object
graphs) to structure models

These diagrams are not as easily understood
as traditional “block schemas”, why many
developers are hesitant to use them. On the
other hand the component diagrams have
proven their usefulness to build system
models to connect a system’s misisons with
all its components in a single consistent
structure.

Use of Pseudo code to formalize behavioral
descriptions

End users are hesitant to read pseudo code
although it has been proven possible and
useful to explain pseudo code to end users.
Consequently pseudo code represents a
useful compromise between informal natural
language an d formal mathematical
notations.

Use of Common Project Models
The idea of a Common Project Model
(CPM) originated during development of
Saab’s PMSIM (Presentation and Control
simulator) [7] and was to some extent
applied in that project. No major CPM has
yet been built but the principles have
attracted interest form multiple major
aerospace industries and the Defense
Material Board in Sweden why a project for
investigation of CPMs is under way.

10. Conclusions
1. The problem of modeling a system to show,

not only its technical structure, but also
how the system’s components contribute to
completion of the system’s missions can be
solved through extended application of
UML component diagrams.

2. The present trend towards incremental
acquisition and development, requires
parallel processes for requirements
management, development and verification.
It is possible to achieve the necessary
common basis for the three processes with
an object based system model.

3. Modeling of system behavior with pseudo
code gives a practically useful compromise
between informal natural language and
mathematical formalism.

4. Introduction of “Common Project Models”
is a promising technique to increase system
level quality and efficiency in evolution of
complex systems.

11. The author
Ingmar Ogren was graduated with an M SC in
Electronics from the Royal University of
Technology in Stockholm in 1966.
He then worked with the Swedish Defense
Material Administration and various consulting
companies until 1989 with systems engineering
tasks in areas such as Communications, Aircraft
and Command & Control.
 He now chairs the board and is owning
partner in two companies: Tofs which produces
and markets the Tofs (Tool For Systems)
software and Romet, which consults in the area
of systems engineering methods with the
method O4S (Objects For Systems) as its main
product.
Further information about Ingmar Ogren can be
found on the web page
http://www.toolforsystems.com

12. References
[1] UML, The Unified Modeling
Language, information available from
http://www.rational.com
[2] Information about the spiral model,
originated by Dr. Professor Barry Boehm
can be found at and downloaded from
http://sunset.usc.edu/WinWin/winwin.html
[3] Information about the ball-bearing
model for system evolution, as well as the
Tofs toolkit software, can be downloaded
from http://www.toolforsystems.com

[4] Guidance of the Use of Progressive
Acquisition, © 1997 WEAG TA-13 &
Contributing Companies
[5] Grady Booch: Software Engineering
with Ada, Benjamin Cummings 1983
[6] HOOD, An Industrial Approach for
Software Design, Jean-Pierre Rosen, Hood
Technical Group 1997
[7] Saab PMSIM, Information available
from http://www.saab.se

