e A ,-—n-f'-—-“h '_"I“[L]J |E-]|l

ENCE 688R CIVIl Information Systems

Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2019

Mark Austin,
Department of Civil and Enviromental Engineering,
University of Maryland,
College Park,
Maryland 20742, U.S.A.

Copyright(©2012-2019 Mark A. Austin. All rights reserved. These notegymot be reproduced
without expressed written permission of Mark Austin.

Engineering Software Development in Java

9 Working with Packages, JAR and Ant

9.1

9.2

9.3
9.4

9.5
9.6
9.7
9.8
9.9

Working with Packages

Organizing Files into Packages

Setting the CLASSPATH

Program Compilation

Application 1. Two kinds of Apple, Fruit and Computers
Working with JAR Files

Creating JAR files

Inspecting the Contents of a JAR File

Using the code within a JAR file

Extracting the Contents from a JAR file

JAR Files as Applications

Program Compilation with Ant

Application 2: Basic Program Compilation with Ant
Compiling the Program with Ant

Creating JAR Files with Ant

Running Programs with Ant

Application 3: Not so Basic Program Compilation with Ant

Application 4: Dealing with many Jar Files
Application 5: Using Ant to Move Files Around

Application 6: Using Ant to Run Programs having Argunsent

Apache Maven

References

Index

Contents

NN R R R

© 00 00N~

10
10
12
13
14
14
18
19
19
20

21

22

Chapter 9

Working with Packages, JAR and Ant

Java provides a number of mechanisms for organizing claskepackages and then making
the available for use via JAR files.

9.1 Working with Packages

Definition. A package is simply a group of classes. Packages are a cenvenéchanism for ...

... organizing code and, in the case or team development ofd®e, separating the work
of one developer from another.

Organizing Files into Packages

All of the source code files in a package must be located in disediory that matches the full
name of the package. For example, source code files in thdisediory

conput er/

are put in the package computer. Simple put the statement

package conputer;

before the first executable statement in each source codeSitailarly, files in computer/old would
have the package name

package conputer. ol d;

Thus a hierarchy of directories will store a hierarchy ofkzayes.

Note. To keep package names unique, Oracle recommends that pat&ages be organized according
to the organization in which the code is being developed p8sg, for example, that we are developing
a graphics package under the auspecies of

http://ww. cee. und. edu

The corresponding package name would be:

package edu. und. cee. gr aphi cs;

2 Engineering Software Development in Java

Setting the CLASSPATH

In most applications the hierarchy of source code files vatllbranch from the root directory.
Therefore, we need to tell Java where to find the hierarchyaockages.

In UNIX, the PATH environmental variable contains a list afedtories that will be searched
to find an appropriate file. The CLASSPATH environemt vagablto Java what PATH is to UNIX.

In UNIX/Linux/Mac OS X, you can explicitly type:

pronpt >> setenv CLASSPATH / User/austin/java. d/ package-and-j ar. d/

or

pronpt >> setenv CLASSPATH $PWD

For situations where packages are located in multiple settdiry hierarchies, a list of paths can be
specified. Suppose, for example, the directories are:

/ User/austin/projectl
/ User/ austin/ project?2

The appropriate command is:

pronmpt >> setenv CLASSPATH / User/austin/projectl:/User/austin/project2

Directories are separated by a colon(:) in UNIX/Linux andd\M@S X, a semi-colon (;) in Windows.
Program Compilation

With the CLASSPATH in place, simply type:

pronpt >> javac *.java

and the source code files will be compiled.
Remark: Hint for Program Design.

Keep data private. This ensure that two variables with theesaame, but in different packages
will not have any unintended interactions.

Chapter 9 3

Application 1. Two kinds of Apple, Fruit and Computers

Let's consider a program that works with two kinds of apptejtfand computers, and draws
upon classes in two packages. The directory and source dedmfnes are:

Package Directory and Source Code
Base directory
package fruit
[fruit/Apple.java
[fruit/Orange.java
package comput er
/ conput er/ Appl e. j ava

Within the package fruit, the details of Apple.java and @&java are as follows:

source code

Apple.java: An apple is a piece of fruit...

* X X X *

/

package fruit;

public class Apple {

/1 Constructor

public Apple() {}

/1 Return description the fruit...

public String toString() {
String s = "An Apple is a type of Fruit!!!";

return s;
}
public static void main (String [] args) {
Appl e a = new Appl e();
Systemout.printin(a);
}
}
and ...

source code

| *

4 Engineering Software Development in Java

* Orange.java: An orange is a piece of fruit...

*/
package fruit;
public class Orange {
/1 Constructor
public Orange() {}
/1 Return description the fruit...
public String toString() {
String s = "An Oange is a type of Fruit!!!";
return s;
}
public static void main (String [] args) {

Orange a = new Orange();
Systemout.printin(a);

And for the computer package, Apple.java contains:

source code

Appl e.java: Apple is a conputer conpany

*F F Xk

/

package conputer;

public class Apple {

/'l Constructor

public Apple() {}

/1 Return description the fruit...

public String toString() {
String s = "Apple is a conputer company!!!";
return s;

}

public static void main (String [] args) {
Appl e a = new Appl e();

Chapter 9 5

Systemout.printin(a);

The key point here is the Apple.java appears in both packageslly, we have a test program that
imports both packages and then calls methods in the apptepmiasses.

Apple Test Program. Here are the test program details:

source code

Test Appl e. java: The Apple Test program....

* X X X *

/

import fruit.x;
i mport conputer. *;

public class TestApple {
public static void main (String [] args) {

/1 Create an apple using the conplete path nane...

fruit. Apple a = new fruit. Apple();
Systemout.printin(a);

/1 Create an orange using the abbreviated path nane.

Orange or = new Orange();
Systemout.println(or);

/1 Create an apple conputer object

conput er. Appl e ¢ = new conputer. Appl e();
Systemout.printin(¢);

In the absence of a name conflict a programmer would normaghyyrite:

Appl e a = new Appl e();

Appl e() isthe short name for the class.

The full name for the classes afe ui t . Appl e andconput er. Appl e and their use re-
moves any possibility of a name conflict.

6 Engineering Software Development in Java

Basic Program Compilation

To compile the program, first we set the classpath:

pronpt >> setenv CLASSPATH $PWD

Then simply type:

pronpt >> javac Test Apple.java

The files before and after compilation are as follows:

Bef ore Conpil ation After Conpil ation
Test Appl e. j ava Test Appl e. j ava
fruit/Apple.java fruit/Apple.java
fruit/Orange.java fruit/Orange.java
conput er/ Appl e. j ava conput er/ Appl e. j ava

Test Appl e. cl ass

fruit/ Apple.class
fruit/Orange. cl ass
conput er/ Appl e. cl ass

Notice that the import statements

import fruit.x;
i mport conputer. *;
in TestApple.java allow the java compiler to find and compile Apple.java and Orange.java source

code files in directories fruit and computer.

Running the Program

pronpt >> java Test Appl e

Chapter 9 7

9.2 Working with JAR Files

A JAR (Java Archive) file is simply a ZIP file that contains des, possibly other files that a
program may need (e.g., image and sound files), and a mafiiéedescribing the special features of
the archive.

All of these files can be downloaded with a single HTTP reqteghe the server. Use of the
ZIP compression format reduces the download time.

Creating JAR files

The most common command for creating a new JAR file has theaform

prompt >> jar cvf NameOFJARFile Filel File2 File3

Thecvf command line argument says:

¢ We wish to create (c) a JAR file.
¢ We wish the command to be verbose (v).

¢ We are designating the filename of the JAR file.

Example 1.From the base directory

pronmpt >> jar cvf Fruit.jar fruit/Apple.class fruit/ O ange.class

creates a the JAR file Fruit.jar. An equivalent command is

prompt >> jar cvf Fruit.jar fruit/=.class

In either case, the output is:

Script started on Sat May 6 13:50:53 2006

pronpt >>

prompt >> jar cvf Fruit.jar fruit/Apple.class fruit/Orange. cl ass
added nani f est

addi ng: Apple.class(in = 537) (out= 352)(deflated 34%

addi ng: Orange.class(in = 540) (out= 352)(deflated 34%

pronpt >>

pronmpt >> exit

Script done on Sat May 6 13:51:31 2006

Inspecting the Contents of a JAR File

The syntax for inspecting the contents of the JAR file is:

pronpt >> jar tvf NameOf JARFi | e

8 Engineering Software Development in Java

Here the command line options "vf” are as previously exm@dinThe command line option "t” indicates
that we want to see the table of contents for the jar file. e.g.,

pronmpt >> jar tvf Fruit.jar

produces the output:

Script started on Sat May 6 13:57:49 2006
pronpt >>
pronpt >> jar tvf Fruit.jar
0 Sat May 06 13:51:24 EDT 2006 META-I NF/
70 Sat May 06 13:51:24 EDT 2006 META-1 NF/ MANI FEST. MF
537 Fri May 05 18:39: 14 EDT 2006 Apple.cl ass
540 Fri May 05 18:39: 14 EDT 2006 Orange. cl ass

pronpt >>
pronmpt >> exit
Script done on Sat May 6 13:58:07 2006

Using the code within a JAR file

To use the code within a jar file we follow the syntax:
pronpt >> java -cp path-to-the-jar-file class-containing-the-nmain-nethod
Example. For our fruit application, both the Apple and Orange clads@ge main methods. Now

suppose that the Fruit.jar file is moved to a bin directom. (relative to the base directory, the JAR file
is located in bin/Fruit.jar). To run the class file from theséalirectory

pronpt >> java -cp bin/Fruit.jar Apple.class

Extracting the Contents from a JAR file

Syntax:

prompt >> java xvf NaneOf TarFile

Example.

pronpt >>
pronmpt >> jar xvf Fruit.jar
created: META-1NF/
extracted: META-| NF/ MANI FEST. MF
extracted: Apple.class
extracted: Orange.class

pronpt >>

The MANIFEST.MF file is located in the META-INF sub-direcyor

Chapter 9 9

JAR Files as Applications

You can run JAR-packaged applications with the Java ingéepr The basic command is:

pronpt >> java -jar jar-file

The -jar flag tells the interpreter that the application iskaaed in the JAR file format. You can only
specify one JAR file, which must contain all the applicatspecific code. Before this command will
work, however, the runtime environment needs to know whlakscwithin the JAR file is the applica-
tion’s entry point.

To indicate which class is the application’s entry pointyyoust add a Main-Class header to the JAR
file's manifest. The header takes the form:

Main-Class: classname

The header’s value, classname, is the name of the class thatapplication’s entry point.

Example. The contents of mainclass.mf are:

1. Main-Class: fruit. Apple
2.

It's important to have a black line in mainclass.mf Now, type

pronpt >> jar cnf mainclass.nf Fruit.jar fruit/x.class
prompt >> java -jar Fruit.jar

An Apple is a type of Fruit!!!

pronpt >>

10 Engineering Software Development in Java

9.3 Program Compilation with Ant

Ant (Another Neat Tool) is a ...

... platform-independent scripting tool for automating build processes.

It provides similar functionality to the UNIX utility proggmMake, but is implemented in Java, requires
the Java Platform, and is ideal for building Java projec}s [1

Ant supports a large number of built-in compilation tasksluding creation/removal of di-
rectories, copying files from one location to another, sgtbf the classpaths, and compilation of java
source code files.

Fast Answers to Frequently-Asked Questions:
1. Where can | get Ant?

See http://ant.apache.org/resources.html

2. What is the Relationship between Ant and Netbeans and Egse?

All of the main Java IDEs ship with Ant. So, for example, thdijgse IDE can build and execute
Ant scripts. The NetBeans IDE uses Ant for its internal bsjydtem. If you don’t want to deal
with the complexities of Ant, consider downloading and ihéiag either Eclipse or Netbeans. One
benefit in installing Ant this way is that you will get the mastent release of Ant at the time the
IDE was released.

3. I have a Windows computer. Can | run Ant?

Yes. For details, see: http://ant.apache.org/manutlirgml The following sets up the environ-
ment:

set ANT_HOVE=c:\ ant
set JAVA HOVE=c:\j dk-1.5.0.05
set PATH=%PATHY% %ANT _HOVE% bi n

9.4 Application 2: Basic Program Compilation with Ant

To see how Ant works in practice, lets repeat Application wq'kinds of Fruit, Apples and
Computers), but use Ant to automate the program compilatibime packages fruit (containing Ap-
ple.java and Orange.java) and computer (containing Ajgpi) will be as previously described. The
test program is TestApple.java.

Abbreviated details of the manual approach to program claitiqo are,

pronpt >> setenv CLASSPATH $PWD
pronpt >> javac TestApple.java

Chapter 9 11

Now let's repeat the compilation, but this time use a buidéihd ant. The details diuild.xml are as
follows:

source code

<proj ect >

<target name="cl ean">
<del ete dir="build"/>
</target>

<t arget nane="conpile">

<nkdir dir="build/classes"/>

<javac srcdir="fruit" destdir="buil d/cl asses"/>
</target>

<target name="jar">
<nkdir dir="build/jar"/>
<jar destfile="build/jar/Fruit.jar" basedir="build/classes">
<mani f est >
<attribute nane="Min-C ass" value="fruit. Apple"/>
</ mani f est >
</jar>
</target>

<target name="run">
<java jar="build/jar/Fruit.jar" fork="true"/>
</target>

</ proj ect >

The key points to note are as follows:

1. Ant uses XML to describe the build process and its dependsneind by default, the XML file is
named build.xml.

2. This script file has four targets:

cl ean -- renove the contents of the build directory
conpile -- conpile the source code files

jar -- generate jar files fromthe class files

run -- execute the program (needs a manifest file).

3. Within each target are the actions that Ant must take to lihéd target; these are performed using
built-in tasks. For example, to compile the java progranhwathfirst create aébui | d/ cl asses
directory (Ant will only do so if it does not already existingthen invoke the java compiler
j avac to compile the java source code filesfinui t, and place the compiled bytecodes in
bui | d/ cl asses.

Therefore, in our first example, the build and compilaticsktaarenkdi r andj avac.

12

Engineering Software Development in Java

Compiling the Program with Ant

To compile the program, just type:

Script started on Sun May 7 10:59:08 2006

pronpt >>
pronpt >> ant conpile
Buil dfile: build.xm

conpi | e:
[mkdir] Created dir:

[User s/ austin/java. d/ package-ant . d/ buil d/ cl asses
[javac] Conpiling 2 source files to
[User s/ austin/java. d/ package-ant . d/ buil d/ cl asses

BUI LD SUCCESSFUL
Total tinme: 2 seconds

pronpt >>
The file structure after compilation

prompt >> |s -IsR
total 40

16 -rwr--r-- 1 austin austi
8 -rwr--r-- 1 austin austi
0 drwxr-Xxr-x 3 austin austi
8 -rwr--r-- 1 austin austi
0 drwxr-Xxr-x 4 austin austi
0 drwxr-Xxr-x 4 austin austi
8 -rwr--r-- 1 austin austi
./ build:

total O

0 drwxr-Xxr-x 3 austin austin
./build/classes:

total O

0 drwxr-xr-x 4 austin austin

./build/classes/fruit:

total 16

8 -rwr--r-- 1 austin austin
8 -rwr--r-- 1 austin austin
./ conputer:

total 16

8 -rwr--r-- 1 austin austin
fruit:

total 16

8 -rwr--r-- 1 austin austin
8 -rwr--r-- 1 austin austin
pronpt >>

pronpt >> exit
Scri pt done on Sun May 7 10:59

S

7036 May
693 May
102 May
593 May
136 May
136 May

25 May

5D 3 3 5 5 5 S

102 May

136 May

437 May
439 May

542 May

538 May

544 NMay

:41 2006

~

~

NN NN N NN

10:

10:

10:
10:

10:

10:
10:

10:
10:
10:
10:
10:
10:
10:

59

59

59
59

28

28
28

57 README. t xt

28 Test Appl e. j ava
59 build

39 build. xm

28 conmputer

54 fruit

28 mai ncl ass. nf

cl asses
fruit

Appl e. cl ass
Or ange. cl ass

Appl e. j ava

Appl e. j ava
Orange. j ava

Chapter 9 13

The source codee fildsr ui t / Appl e. j ava andf rui t/ Orange. j ava are compiled into byte-
codesfrui t/ Appl e. cl ass andf rui t/ Orange. cl ass, respectively. Also, notice that the java
compiler is instructed to only look ifir ui t/ for source code files, soonput er/ Appl e. j ava
remains uncompiled. There are two ways of solving this @bl

1. Broaden the compile directive to look in batfir ui t and/ conpi | e, or

2. Create separate compile directives for the fruit and coermgutograms.

Creating JAR Files with Ant
Just type:

pronpt >> ant jar

The compilation output and abbreviated file structure iHews:

Script started on Sun May 7 11:06:05 2006
pronpt >> ant jar
Bui l dfile: build. xm

jar:
[mkdir] Created dir:
/ User s/ austin/java. d/ package-ant.d/ build/jar
[jar] Building jar:
/ User s/ austin/java. d/ package-ant.d/build/jar/Fruit.jar

BUI LD SUCCESSFUL
Total tinme: 1 second

pronpt >>

prompt >> |s -IsR
total 40
0 drwxr - xr-x 4 austin austin 136 May 7 11:06 build

./ build:

total O

0 drwxr-Xxr-x 3 austin austin 102 May 7 10:59 cl asses
0 drwxr-Xxr-x 3 austin austin 102 May 7 11:06 jar

./build/jar:
total 8
8 -rwr--r-- 1 austin austin 1242 May 7 11:06 Fruit.jar

pronpt >>
pronmpt >> exit
Scri pt done on Sun May 7 11:06:34 2006

14 Engineering Software Development in Java

Running Programs with Ant

pronpt >> ant run

This generates the output:
Script started on Sun May 7 11:09:39 2006

pronpt >> ant run
Bui ldfile: build. xm

run:
[java] An Apple is a type of Fruit!!

BUI LD SUCCESSFUL
Total tine: 1 second
pronpt >>

pronpt >> exit
Script done on Sun May 7 11:09:47 2006
The equivalent keyboard command is:

pronpt >> java -jar build/jar/Fruit.jar

Combining Steps: Compile, jar and run
All three steps can be achieved in one step:

pronpt >> ant conpile jar run
9.5 Application 3: Not so Basic Program Compilation with Ant

Application 2 requires that the software developer be iataty involved with each step of the
program development (e.g., clean, then compile, then ftargur third application, we ask Ant to step
things up a bit.

1. The source code files (e.g., in /src folder) are separateal tihhe compile files (e.g., in /build folder).

1. The Apple source code files (e.g., /src/fruit/Apple.javed separated from the test folder (e.g.,
ltest/TestApple.java).

2. Dependencies among various aspects of the compilatiomnaaiiced (e.g., you cannot run a
program unless it has already been compiled).

Before compilation the files are as follows:

total 16

8 - WXr-Xxr-x
0 drwxr-xr-x
O -rwr--r--
0 drwxr-Xxr-x

austin staff 1783 Oct 10 17:28 buil d. xn
austin staff 170 Cct 10 10:51 src
austin staff 0 Cct 10 17:31 tenp
austin staff 102 Cct 10 17:24 test

wWEF O

Chapter 9 15

.Isrc:

total O
0 drwxr
0 drwxr
0 drwxr

.Isrcl/c
total 1
8 -rwxr

.Isrc/f
total 3
8 -rwxr
8 -rwxr

./src/music:

total 3
8 -rwxr
8 -rwxr

./test:
total 8
8 -rwxr

-Xr-x 4 austin staff 136 Oct 10 10: 12 conputer
-Xr-x 6 austin staff 204 Oct 10 16:32 fruit

-Xr-x 6 austin staff 204 Oct 10 11:00 nusic

onput er:

6

-xr-x 1 austin staff 542 COct 10 10: 12 Apple.java
ruit:

2

-xr-x 1 austin staff 538 Oct 10 10: 12 Apple.java
-xr-x 1 austin staff 544 Oct 10 10: 12 Orange.java
2

-xr-x 1 austin staff 638 Oct 10 10: 53 Apple.java
-xr-x 1 austin staff 775 Oct 10 11:00 Beatles.java
-xr-x 1 austin staff 814 Oct 10 17:24 TestApple.java

Ant works with the build file:

<proj ec

<ta

</t

<ta

</t

<ta

source code

t basedir = "." default="conpile">
rget name="cl ean">

<del ete dir="build"/>

<delete dir="lib"/>

arget >

rget nane="conpile">

<nkdir dir="build/classes/fruit"/>

<javac srcdir="src/fruit" destdir="buil d/cl asses"/>
<nkdir dir="buil d/cl asses/conputer"/>

<javac srcdir="src/conputer” destdir="buil d/cl asses"/>
<nkdir dir="buil d/cl asses/nusic"/>

<javac srcdir="src/nusic" destdir="build/classes"/>

ar get >

rget nane="jar" depends="conpile">
<nkdir dir="lib"/>
<jar destfile="lib/Fruit.jar
<mani f est >
<attribute nane="Min-Cl ass" value="fruit. Apple"/>
</ mani f est >
</jar>
<jar destfile="1ib/Conputer.jar" basedir="buil d/classes">
<mani f est >
<attribute nane="Min-C ass" val ue="conputer. Appl e"/ >

basedi r="bui |l d/ cl asses" >

16 Engineering Software Development in Java

</ mani f est >

</jar>

<jar destfile="lib/Misic.jar" basedir="build/cl asses">
<mani f est >

<attribute nane="Min-Cl ass" val ue="nusic. Appl e"/ >

</ mani f est >

</jar>

</target>

<target name="run" depends="jar">

<java jar="lib/Fruit.jar" fork="true"/>

<java jar="lib/ Conputer.jar" fork="true"/>

<java jar="lib/Misic.jar" fork="true"/>
</target>

<target nane="test" depends="jar">
<nkdir dir="build/classes/test"/>
<javac srcdir="test" destdir="build/classes"/>
<jar destfile="1ib/TestApple.jar" basedir="buil d/cl asses">
<mani f est >
<attribute nane="Mi n-C ass" val ue="Test Appl e"/>
</ mani f est >
</jar>
<java jar="lib/ Test Apple.jar" fork="true"/>
</target>

</ proj ect >

There are five targets:
1. <t arget nane="cl ean" >removes the class files and the library of jar files (storetbit.Jar).

2.<target name="conpi |l e">compiles source code in the directories:

src/fruit,
src/ conputer, and
src/ nmusi c.

The bytecodes are put in

buil d/ cl asses/fruit
bui | d/ cl asses/ conput er
bui | d/ cl asses/ nusi c

3. <target nanme="jar" depends="conpil e"> creates jar files for each of the three cases
and puts them in the lib/ directory; i.e.,

lib/Fruit.jar,
I'i b/ Conputer.jar,
lib/Misic.jar,

Chapter 9

17

4.<target name="run" depends="j ar" >executes the main methods in each of the jar files:

lib/Fruit.jar,
I'i b/ Conputer.jar,
lib/Misic.jar,

B.<target nane="test" depends="jar">compile the source code

test/ Test Appl e. j ava

into the jar file

test/ Test Appl e.j ar

Execute the main method in test/TestApple.jar.

Dependencies between the targets:

<target nane="test" depends="jar">

<t ar get
<t ar get

name="run" depends="jar">
name="j ar" depends="conpil e">

Therefore, you should be able to clean the system (i.e.,laahand then run the "test” target. This

gives:
Bui | dfi | e:

conpi |l e:
[mkdir]
[javac]
[mkdir]
[javac]
[mkdir]
[javac]

jar:
[mkdir]
[jar]
[jar]
[jar]

test:

[mkdir]
[javac]
[jar]
[java]
[java]
[java]
[java]

bui I d. xm

Created dir: /Users/austin/java.d/ package-ant2.d/buil d/classes/fruit
Conpiling 2 source files to /Users/austin/java. d/ package-ant2.d/buil d/cl asses
Created dir: /Users/austin/java.d/ package-ant2.d/buil d/cl asses/conputer
Conpiling 1 source file to /Users/austin/java.d/ package-ant2. d/buil d/cl asses
Created dir: /Users/austin/java.d/ package-ant2.d/buil d/cl asses/ nusic
Conpiling 2 source files to /Users/austin/java. d/ package-ant2.d/ buil d/cl asses

Created dir: /Users/austin/java.d/ package-ant2.d/lib
Bui l ding jar: /Users/austin/java.d/package-ant2.d/lib/Fruit.jar
Bui l ding jar: /Users/austin/java.d/ package-ant2.d/|ib/Conputer.jar

Bui l ding jar: /Users/austin/java.d/ package-ant2.d/lib/Misic.jar

Created dir: /Users/austin/java.d/ package-ant?2.d/build/classes/test
Conpiling 1 source file to /Users/austin/java.d/ package-ant2. d/buil d/cl asses
Bui |l ding jar: /Users/austin/java.d/ package-ant?2.d/lib/ TestApple.jar

An Apple is a type of Fruit!!!

An Orange is a type of Fruit!!!

Apple is a computer conpany!!!

Appl e is a recording conpany!!!

18 Engineering Software Development in Java

[java] The Beatles: John, Paul, George, Ringo
[java]
[java]
BUI LD SUCCESSFUL
Total time: 1 second
9.6 Application 4: Dealing with many Jar Files
Now let’s deal the problem of compiling a program that has yr@@erhaps dozens) or jar files
than explicity list every single filename, we can ...

... use regular expressions to vastly simplify the colleain of jar file names.

Consider:
total 3320
O drwxr-xr-x@ 4 austin staff 136 Aug 13 2012 antlr
272 -rwxr-xr-x@ 1 austin staff 136065 Aug 13 2012 atermjava-1.6.jar
0 drwxr-xr-x 19 austin staff 646 Aug 13 2012 jena
0 drwxr-Xxr-x 5 austin staff 170 Aug 13 2012 jgrapht
1224 -rwxr-xr-x@ 1 austin staff 622820 Aug 13 2012 pellet-core.jar
520 -rwxr-xr-x@ 1 austin staff 266122 Aug 13 2012 pellet-datatypes.jar
104 -rwxr-xr-x@ 1 austin staff 52156 Aug 13 2012 pellet-el.jar
0 drwxr-Xxr-x 4 austin staff 136 Aug 13 2012 pellet-jena
792 -rwxr-xr-x@ 1 austin staff 404602 Aug 13 2012 pellet-query.jar
408 -rwxr-xr-x@ 1 austin staff 207217 Aug 13 2012 pellet-rules.jar
lantlr:
total 312

8 -rwxr-xr-x@1 austin staff 1429 Aug 13 2012 LI CENSE. t xt
304 -rwxr-xr-x@1 austin staff 151989 Aug 13 2012 antlr-runtine-3.2.jar

.ljena:
total 22904

1024 -rwxr-xr-x@1 austi
2352 -rwxr-xr-x@1 austi

st aff 524224 Aug 13 2012 wstx-asl-3.2.9.jar
staff 1203860 Aug 13 2012 xerceslnpl-2.7.1.jar

3288 -rwxr-xr-x@1 austin staff 1680523 Aug 13 2012 arqg-2.8.4.jar
8 -rwxr-xr-x@1 austin staff 1682 Aug 13 2012 copyright.txt
6320 -rwxr-xr-x@1 austin staff 3233439 Aug 13 2012 icu4j-3.4.4.jar
416 -rwxr-xr-x@1 austin staff 210961 Aug 13 2012 iri-0.8-sources.jar
304 -rwxr-xr-x@1 austin staff 151589 Aug 13 2012 iri-0.8.jar
2944 -rwxr-xr-x@1 austin staff 1506473 Aug 13 2012 jena-2.6.3-tests.jar
3712 -rwxr-xr-x@1 austin staff 1900385 Aug 13 2012 jena-2.6.3.jar
392 -rwxr-xr-x@1 austin staff 198945 Aug 13 2012 junit-4.5.jar
704 -rwxr-xr-x@1 austin staff 358180 Aug 13 2012 log4j-1.2.13.jar
1304 -rwxr-xr-x 1 austin staff 665064 Aug 13 2012 lucene-core-2.3.1.jar
48 -rwxr-xr-x@1 austin staff 23445 Aug 13 2012 slf4j-api-1.5.8.jar
24 -rwxr-xr-x@1 austin staff 9679 Aug 13 2012 slf4j-1og4j12-1.5.8.jar
56 -rwxr-xr-x@1 austin staff 26514 Aug 13 2012 stax-api-1.0.1.jar
8 -rwxr-xr-x@1 austin staff 6 Aug 13 2012 version.txt
n
n

Now we can simply write:

. Rather

Chapter 9 19

<I-- Define properties and filesets for classpath -->

<property nane="lib.dir" val ue="lib" />
<property name="build.dir" value="build" />

<path id="files-cl asspath">

<fileset dir="${lib.dir}" includes="*x/x_jar"/>
<fileset dir="${lib.dir}/jena" includes="*x/x_jar"/>
<fileset dir="${lib.dir}/antlr" includes="«**/x_jar"/>
<pat hel enent pat h="${build.dir}"/>

</ pat h>

to include all of the jar files in the lib folder, plus the clasgositioned in the build directory.

9.7 Application 5: Using Ant to Move Files Around

In the script:
<l-- -->
<l-- Conpile Java source code. -->
<l-- -

<target nane="conpile" description="Conpile java source code">
<nkdir dir="build" />
<nkdir dir="buil d/ dem" />
<javac srcdir="./src" destdir="./build"
cl asspat h = "{java.cl ass. path}"
cl asspathref = "files-classpath”
fork="true"/>

<nkdir dir ="build/ deno/data" />
<copy todir="buil d/ deno/ data">
<fileset dir="src/deno/data" />
</ copy>
</target>

a set of data files is copied from directory (folder)c/ deno/ dat ato directorybui | d/ deno/ dat a.

9.8 Application 6: Using Ant to Run Programs having Arguments

Sometimes java application programs will import files, eitiitom pre-defined directories (e.g.,
images files), or as data files specified as a program arguriibatlatter can be incorporated into ant
files, e.g.,

<l-- Program 02: Run deno. Dat eTi neBr owser -->
<target nane="run02" depends = "conpile" description="Run denvo. Dat eTi neBr owser" >
<j ava cl assnane = "deno. Dat eTi meBr owser"
cl asspat h = "{java.cl ass. pat h}"

cl asspat hr ef "files-classpath" fork="true">

20 Engineering Software Development in Java

<arg val ue="./buil d/ deno/ dat a/ Dat eTi neFi | e. dat"/ >
</java>
</target>

executes the progradeno. Dat eTi neBr owser with the program argument:

./ bui |l d/ deno/ dat a/ Dat eTi neFi | e. dat .

9.9 Apache Maven

Apache Maven is a software project management and comsienetool. Based on the con-
cept of a project object model (POM), Maven can manage agif®jauild, reporting and documentation
from a central piece of information.

For details, see:

https:// maven. apache. org

Bibliography

[1] Holzner S.Ant - The Definitive Guide (2nd Editionp’Reilly Media, 2005.

21

Ant, 10
creating JAR files, 13
program compilation, 10-13
running programs, 14-20
Apache Maven, 20

CLASSPATH, 2
Eclipse, 10
JAR files, 7-9
Java
ant, 10
package, 1
Java Archive (JAR) files, 7
MANIFEST file, 8

Netbeans, 10

22

Index

