ENCE 688R Civil Information Systems

The Java Language
Mark Austin
E-mail: austin@sr.und. edu

Department of Civil and Environmental Engineering, Unsmr of Maryland,
College Park

—

Lecture 3:. Topics

Part 1: Basic Stuff
e Primitive Data Types, Variables, Constants, Scope of a Variable.
e Arithmetic Operations and Expressions
e Control Statements
e Package and Import Statements
Part 2: Methods
e Syntax for defining a method.
e Polymorphism of methods.
Part 3. Working with Arrays
e One- and two-dimensional arrays.

e Ragged arrays.

I Part 1. Basic Stuff

Basic Stuff

Primitive Data Types

Primitive Data Types - Boolean, Char, 4 Integer Formats

Def aul t

Type Cont ai ns Val ue Si ze Range and Preci sion
poolean True or false false Lbic
char Uni code \ u0000 16 bits \ u0000 / \uFFFF

charact er
byt e Si gned i nt eger 0 8 bits - 128/ 127
short Si gned i nt eger 0 16 bits - 32768/ 32767
I nt Si gned i nt eger 0 32 bits -2147483648/ 2147483647
| ong Si gned i nt eger 0 64 bits -9223372036854775808 /

9223372036854775807

Primitive Data Types

Primitive Data Types — Two Formats for Float-Point Numbers

Def aul t
Type Cont ai ns Val ue Si ze Range and Preci sion
f | oat | EEE 754 0.0 32 bits +- 13.40282347E+38 /
fl oati ng point +- 11. 40239846E- 45

Fl oating point nunbers are represented to approximately 6 to 7 deci nal
pl aces of accuracy.

doubl e | EEE 754 0.0 64 bits +- 11.79769313486231570E+308 /
floating point +- 14.94065645841246544E- 324

Doubl e precision nunbers are represented to approximately 15 to 16
deci mal pl aces of accuracy.

IEEE 754 Floating Point Standard

Layout of Memory

32 Bits. >

|
I@ 8 bit T

Exponent

Sign Bit.

23 Bit Mantissa Fraction

IEEE FLOATING POINT ARITHMETIC STANDARD FOR 32 BIT WORDS.

64 Bits >

|<— 11 bit

Exponent

Sign Bit.

52 Bit Mantissa Fraction =

IEEE FLOATING POINT ARITHMETIC STANDARD FOR DOUBLE PRECISION FLOATS.

IEEE 754 Floating Point Standard

Support for Run-Time Errors

This standard includes:
e Positive and negative sign-magnitude numbers,
e Positive and negative zeros,
e Positive and negative infinites, and
e Special Not-a-Number (usually abbreviated NaN).

NaN value is used to represent the result of certain operations such as dividing zero by
Zero.

Java Variables

Definition
A variable is simply ...

... a block of memory whose value can be accessed with a nameidentifier.

A variable contains either the contents of a primitive data type or a reference to an
object. The object may be...

... an instance of a class, an interface, or an array.
Four Attributes of a Variable
e A type (e.g., int, double, float),
e A storage address (or location) in computer memory,
e A name, and
e A value.

All four parts must be known before a variable may be used in a program.

Java Variables

Variable Declarations

Variables must be declared before they can be used, e.g.,

I nt A = 10;
f | oat fA = 0.0;
double 8dA = 0.0; <--- illegal! Cannot begin a variable name with

a dgit.
What happens at compile and run time?
When a compiler encounters a variable declaration, ..

1. It will enter the variable name and type into a symbol table (so it knows how to use
the variable throughout the program).

2. It generate the necessary code for the storage of the variable at run-time.

Three Types of Java Variable

Local Variables
e These are variables whose scope is limited to a block of code.

e Local variables are defined within the current block of code and have meaning for the
time that the code block is active.

An Example
Sour ce code CQut put
for (int i =0; 1 <=2;, 1 =1 + 1) Loop 1: i =0
Systemout.println("Loop 1: i =" +1i); Loop 1: i =1
Loop 1: i = 2
for (int i =0; 1 <=2;, 1 =1 + 1) Loop 2: i =0
Systemout.println("Loop 2: i =" +1i); Loop 2: i =1
Loop 2: i =2

Three Types of Java Variable

Instance Variables
e These variables hold data for an instance of a class.

e Instance variables have meaning from the time they are created until there are no
more references to that instance.

An Example

Definition of a class Usi ng the cl ass

public class Conpl ex { Conmpl ex cA = new Conpl ex();
doubl e dReal, dl magi nary; cA dReal = 1.0;

} Conmpl ex c¢cB = new Conpl ex();

cB.dReal = 1.0:;

Variables cA.dReal and cB.dReal occupy different blocks of memory.

Three Types of Java Variable

Class Variables
e These variables hold data that can be shared among all instances of a class.

e Class variables have meaning from the time that the class is loaded until there are no
more references to the class.

An Example
Definition of a class Accessing the variabl e
public class Matrix { int i = Matrix.i NoCol ums;

public static int iNoColums = 6.

The variable is static — no need to create an object first.

Java Variable Modifiers

Variable Modifiers

Modi fi er Interpretation in Java

public The vari abl e can be accessed by any cl ass.

private The vari abl e can be accessed only by nethods within the sane
cl ass.

protected The vari abl e can al so be accessed by subcl asses of the cl ass.

static The variable is a class vari abl e.

Constants

Setting up constants

In Java constants are defined with ..

... variable modifier final indicating the value of the variable will not change.

An Example
Definition of a class Accessing the variabl e
public class Math { doubl e dPi = Math. PI

public static final double PI = 3.14..;

The variable Pl is both static and final. This makes Pl a class variable whose assigned
value cannot be changed.

Arithmetic Operations

Standard Arithmetic Operations on Integers and Floats
+ - * /

Modulo Operator

The modulo operator

%

applies only to integers, and returns the remainder after integer division. More precisely,
if a and b are integers then

a %b = kxb + r
A Note on Integer Division

Integer division truncates what we think of as the fractional components of all
intermediate and final arithmetic expressions, e.g.,

I Value = 5 + 18/ 4; ===>5 + 4 <=== Step 1 of evaluation
===> 9 <=== Step 2 of evaluation

Probably not what we want!

Hierarchy of Operators

Evaluation of Arithmetic Expressions

Operator Precedence | Order of Evaluation
011 -> 1 left to right
I ++ -- + - 2 right to left
* | % 3 left to right
+ - 4 left to right
<< >> 5 left to right
< < > > 6 left to right
== I= 7 left to right
& 8 left to right
A 9 left to right
| 10 left to right

Evaluation of Arithmetic Expressions

Hierarchy of Operators

Operator Precedence | Order of Evaluation
&& 11 left to right

| 12 left to right

7 13 right to left

= += *= [= &= 14 right to left

N= |= <<= >>=

: 15 left to right

Dealing with Run-Time Errors

Dealing with Run-Time Errors

Sour ce code

doubl e dA = 0.0;

Systemout.printf("D vide by zero: (1/0.0) = 98.3f\n", 1.0/dA);
Systemout.printf("D vide by zero: (-1/0.0) = 98.3f\n", -1.0/dA);
Systemout.printf(" Not a nunber: (0.0/0.0) = 98.3f\n", dA/ dA) ;

Divide by zero: (1/0.0) = Infinity
Divide by zero: (-1/0.0) = -Infinity
Not a nunber: (0.0/0.0) = NaN

Dealing with Run-Time Errors

Print Variables containing Error Conditions

Sour ce code

doubl e dB = 1.0/ dA;
Systemout.printf("dB
doubl e dC = dA/ dA;
Systemout. printf("dC

I
[EEN
o
~
o
>

|

= 98.3f\n", dB);

I
o
=
o
>

I

8.3f\n", dC);

dC = dA/dA = NaN

Dealing with Run-Time Errors

Evaluate a Function over a Range of Values

Systemout. println("Evaluate y(x) for range of x val ues");
Syst em out . pr i ntl n(" :::::::::::::::::::::::::::::::::::") :

for (double dX = 1.0; dX <= 5.0; dX =dX + 0.5) {
double dY = 1.0 + 1.0/ (dX - 2.0) - 1.0/(dX - 3.0) + (dX-4.0)/(dX-4.0);
Systemout. printf(" dX = %l. 1f y(dX) = 98.3f\n", dX, dY);

Eval uate y(x) for range of x val ues

dX = 1.0 y(dX) = 1.500
dX = 1.5 y(dX) = 0. 667
dX = 2.0 y(dX) = Infinity
dX = 2.5 y(dX) = 6. 000
dX = 3.0 y(dX) = -Infinity
dX = 3.5 y(dX) = 0. 667
dX = 4.0 y(dX) = NaN
dX = 4.5 y(dX) = 1. 733
dX = 5.0 y(dX) = 1.833

Dealing with Run-Time Errors

Test for Error Conditions

Sour ce code

i f(dB == Doubl e. PCSI TI VE_I NFI NI TY)
Systemout.printin("+**x dBis equal to +Infinity");

i f(dB == Doubl e. NEGATI VE_I NFI NI TY)
Systemout.printin("+**x dBis equal to -Infinity");

i f(dB == Doubl e. NaN)
Systemout.println("+x+ dB is Not a Nunmber");

*+*x dB is equal to +Infinity
*x+ dB is not equal to -Infinity
*xx dB 1s a Nunber

Control Statements

Control Statements

Control structures allow a computer program to ...

... take a course of action that depends on the data, logic, drtalculations currently
being considered.

Machinery:
e Relational and logical operands;
e Selection constructs (e.qg., if statements, switch statements).
e Looping contructs (e.g., for loops, while loops).
Common Error. Writing ...
if (fA=0.0)
instead of

if (fA==0.0)

Package Statements

Purpose of Packages
e Every class is part of a package and every package is identified by its name.

e Packages provide ...

... a high-level layer of access protection and name-spaceamagement for
collections of Java classes, interfaces, exceptions, andoes.

e Packages reduce the likelihood of name clashes because class and interface names
are evaluated with respect to the package to which they belong.

e A package may include other packages (i.e., subpackages).

Simple Example
The statement
package fruit;

defines a package called fruit . There needs to be ...

... a one-to-one correspondence between the package namel arhierarchy of
folders containing the Java source code.

Core Packages in Java

java
lang awt applet io net util
Math Color
Pl
. Font
sin (x)
cos (x)
Component
Stl’ing Button
length (s) List
equals (s)

Graphics
setColor ()
drawsString ()
drawLine ()

Import Statements

Import Statements

An import statement ...
... makes Java classes available to a program under an abbreted name.

Import statements come in two forms:

| nport package. cl ass;
| nport package. *;

The first form allows a class to be referred to by its class name alone. The asterisk (*)
in the second form references all the classes in the named package.

Importing classes from java.lang.System

The java.lang.System package is so fundamental to Java programming that it is
automatically imported into every Java program.

I Part 2. Methods

Methods

Definition of Methods

Formal Definition of Method

A method is a set of code which is ...

... referred to by name and can be called (invoked) at any poinn a program
simply by utilizing the method’s name.

public static void main (String| | args) method1

{
statement; /
method1();

statement;

method2(); \“\

statement;
) method2

It is convenient to think of a method as a subprogram that acts on data and often returns
a value. Each method has its own name.

Elements of a Java Method

Name
e All Java methods will have a name.
Argument List

e Most methods in Java will pass information from the calling method via an argument
list.

e Occasionally we will encounter methods that have empty (void) argument lists.
Return Value

e Most of the Java methods we will encounter will return information to the calling
method via the return value.

e Occasionally we see functions that do not return a data type (void return type).

Syntax for. Defining a Method

Syntax for Defining a Method
The syntax for making a method definition in Java is

nodi fier return-type nane-of-nethod (paraneter-list) {
. executable statenents

} <=== end of the nethod body.
Key points:

e The modifier establishes ...

... the method type and its scope (i.e., what other methods c&all it).
e The return-type specifies the type of information the method will return.

e Methods that do not return anything should use the return type voi d.

Class and Method Modifiers

Modi fi er Interpretation in Java

abstract The nmethod is provided without a body; the body will be provided
by a subcl ass.

final The nmet hod nmay not be overri dden.

native The nethod is inplenmented in C or in sonme other
pl at f orm dependent way. No body is provided.

private The nmethod is only accessible within the class that defines it.
You should use this keyword for nethods that are only of
concern to the internal details of the class.

public The nethod is accessi ble anywhere the class is accessible.

static Only one instance of a static nenber will be created, no matter
how many i nstances of the class are created. These nenber func-
tions may be accessed through the sane class nane.

Passing Arguments to Methods

Pass-By-Value Mechanism (for basic data types)

Java passes ...

... all primitive data type variables and reference data tyge variables to a method
by value.

A copy of the variable’s value is used by the method being called.
Example

See the TryChange example on the class web site.

Polymorphism of Methods

Definition of Polymorphism

Polymorphism is ...

... the capability of an action to do different things based o the details of the object
that is being acted upon.

This is the third basic principle of object oriented programming.
Polymorphism of Methods
See the DemoPolymorphism program on the class web site. o

public static void doSonething() {
public static void doSonething(float fX) {

public static void doSonet hing(double dX) {

Three versions of a method with the same name!

Class Methods

Definition of Class Methods

A class method is a method that ...
... does not require an object to be invoked.

Class methods are ...

... called in the same manner as instance methods except tithe name of the class
IS substituted for the instance name.

A Few Examples
Two of the most commonly used class methods are Syst emand Mat h, e.g.,

Systemout.printin("Here is a line of text ...");

doubl e dAngle = Math.sin(Math.Pl);

I Part 3. Working with Arrays

Working with Arrays

Working with Arrays

Definition of an Array

In Java, an array is simply ...
... a sequence of numbered items of the same type.
Permissible types include:
e Primitive data types, and
e Instances of a class.
In either case, ...

... individual items in the array are referenced by their postion number in the
array.

One-Dimensional Arrays

Example 1. Declaration for Array of Floating Point Numbers

float[] faBuffer = new float [5];

Layout of Memory

faBuffer

5 faBuffer . length
0.0 faBuffer [0]
0.0 faBuffer [1]
0.0 faBuffer [2]
0.0 faBuffer [3]
0.0 faBuffer [4]

The first and last elements in the array are f aBuf f er[0] and f aBuffer[4].

By default, all of the array elements will be initialized to zero!

One-Dimensional Arrays

Example 2. Declaration for Array of Character Strings

String [] saArithmetic = { "A", "Red", "Indian", "Thought", " He",
"Mght", "Eat", "Toffee", “In", "Church" };

Abbreviated Layout of Memory

saArithmetic
——» 10
/ A | \0
saArithmetic [O]
saArithmetic [1] —» R e d| \O

saArithmetic [2]

saArithmetic [9] — C h u r C h \0

Two-Dimensional Arrays

Multi-Dimensional Arrays

Multidimensional arrays are ...

... considered as arrays of arrays and are created by puttings many pairs of[] as
of dimensions in your array.

Example 3. 4x4 matrix of doubles

doubl e daaMat[][] = new doubl e[4][4]; // This is a 4x4 matrix
Querying Dimensionality
You can query the different dimensions with the following syntax

array. | ength; /'l Length of the first dinension.

array[0] .l ength; /'l Length of the second di nension.

array[0][0] .l ength; /'l Length of the third di nension.
. etc ...

Two-Dimensional Arrays

Example 4. Two-Dimensional Array of Ints

Array Declaration

int [][] iaad = new int [3][2],

Layout of Memory

laad iaah . length
I:I—-' 3 iaaA [0]. lenpth iaad [0] [0] iaad [0] [1]

E— 2 0 0

iaaA [0]

iaaA [1].length iaaA [11[0] iaaA [1][1]

iaad [1
e Ml - L 2 0 0

1aah [2] iaaA [2].length iaaA [2][0] iaaA [2][1]
iaaA [3] —- 2 0 0
i2aA [4] iaaA [3].length iaaA [3][0] imaA [3][1]

- 2 0 0

inaA [4]. length iaaA [@][0] iaaA [4][1]
————————— - 2 0 0

Ragged Arrays

Skyline Matrix Storage — Savings in Required Memory

ﬂ+£=8|
[i

X
: . X X X
Symmetric ‘% x X x

\“xxxx X X

X X X X

“x_xxx

‘K\xx

R

%

L —= 23x23

Figure 4.4: The strueture of the system matrix A" of our physies-based fish model, the
skyline of A? and its half-bandwidth ns . Each “x™ represents a non-zero entrics.

Ragged Arrays

Allocation Strategy 1 — Compiler Determines Layout of Memoy

Systemout.println("Test ragged arrays wth variable row | ength");
Systemout.println("Mthod 1: Conpiler determ nes details");

int [][] iaaB = {{1,2},{3,4,5},{6,7,8,9},{10}};

Systemout.println("");

Systemout.println("No of rows = + iaaB.length);
Systemout.println("Length of row 1 = + iaaB[0].length);
Systemout. println("Length of row 2 = + iaaB[1].length);
Systemout. println("Length of row 3 = + iaaB[2].length);
Systemout. println("Length of row 4 = + iaaB[3].length);
Systemout.println("Array: iaaB");
Systemout.println("----------- ")
for(int i =0; i <iaaB.length; i=i+1) {

for(int j =0; jJ <iaaB[i].length; j= +1)

Systemout.printf(" 9%3d ", iaaB[i][]]);

Systemout.printf("\n");

Ragged Arrays

Allocation Strategy 1 — Output

Test ragged arrays with variable row | ength

Met hod 1: Conpiler determ nes details

No of rows

Length of row 1
Length of row 2

Length of row 3

I
R A WODN DB

Length of row 4
Array: iaaB

10

Ragged Arrays

Allocation Strategy 2 — Manual Assembly of Ragged Arrays

Systemout. println("Mthod 2: Manual assenbly of the array structure");

int[][] iaaC = new int[4][]; /1 Create nunber of rows...
laaC[0] = newint[2]; /'l Create nmenory for row 1.
laaC[1] = new int[3]; /'l Create nenory for row 2.
laaC[2] = new int[4]; /[l Create nmenory for row 3.
laaC[3] = newint[1]; /'l Create nenory for row 4.
laaC[0][0] = 1; iaa(JO][1] = 2;

laaC[1][0] = 3; i1aa1][1] = 4; 1aa(1][2] = 5;

laaC[2][0] = 6; iaaJ2][1] =7; iaa(2][2] = 8; iaa(J2][3] = 9;

i aaC] 3] [0] 10;

Ragged Arrays

Allocation Strategy 2 — Print Output

Systemout.printin("Array: iaaC');

Systemout.println("-----------);
for(int i =0; I <iaaClength; i=i+1l) {
for(int | =0; j <iaai].length; j= +1)
Systemout.printf(" 9%8d ", iaadi][j]);

Systemout.printf("\n");
}

Allocation Strategy 2 — Output

Met hod 2: Manual assenbly of the array structure

Array: iaaC

10

	ptsize {14} Lecture 3: Topics
	ptsize {14} Part 1. Basic Stuff
	ptsize {14} Primitive Data Types
	ptsize {14} Primitive Data Types
	ptsize {14} IEEE 754 Floating Point Standard
	ptsize {14} IEEE 754 Floating Point Standard
	ptsize {14} Java Variables
	ptsize {14} Java Variables
	ptsize {14} Three Types of Java Variable
	ptsize {14} Three Types of Java Variable
	ptsize {14} Three Types of Java Variable
	ptsize {14} Java Variable Modifiers
	ptsize {14} Constants
	ptsize {14} Arithmetic Operations
	ptsize {14} Evaluation of Arithmetic Expressions
	ptsize {14} Evaluation of Arithmetic Expressions
	ptsize {14} Dealing with Run-Time Errors
	ptsize {14} Dealing with Run-Time Errors
	ptsize {14} Dealing with Run-Time Errors
	ptsize {14} Dealing with Run-Time Errors
	ptsize {14} Control Statements
	ptsize {14} Package Statements
	ptsize {14} Core Packages in Java
	ptsize {14} Import Statements
	ptsize {14} Part 2. Methods
	ptsize {14} Definition of Methods
	ptsize {14} Elements of a Java Method
	ptsize {14} Syntax for Defining a Method
	ptsize {14} Class and Method Modifiers
	ptsize {14} Passing Arguments to Methods
	ptsize {14} Polymorphism of Methods
	ptsize {14} Class Methods
	ptsize {14} Part 3. Working with Arrays
	ptsize {14} Working with Arrays
	ptsize {14} One-Dimensional Arrays
	ptsize {14} One-Dimensional Arrays
	ptsize {14} Two-Dimensional Arrays
	ptsize {14} Two-Dimensional Arrays
	ptsize {14} Ragged Arrays
	ptsize {14} Ragged Arrays
	ptsize {14} Ragged Arrays
	ptsize {14} Ragged Arrays
	ptsize {14} Ragged Arrays

