
Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2017

Mark Austin,
Department of Civil and Enviromental Engineering,

University of Maryland,
College Park,

Maryland 20742, U.S.A.

Copyright c⃝2012-2017 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

Chapter 8

Working with Objects and Classes

8.1 Classes and Objects

Object-oriented development procedures observe that in real life:

1. Collections of objects share similar traits. They may store the same data and have the same structure
and behavior.

2. Then, collections of objects will form relationships with other collections of objects.

Instead of working in terms of objects alone, it makes sense to create models that capture the common
attributes, properties and behaviors shared by collection of objects.

Common daa, structure, operations, behavior...
Class

Data Operations Behavior

Figure 8.1. Pathway from collections of objects to classes.

As illustrated in Figure 8.1, these models are called classes. From a software perspective, a class is a ...

... specification or blueprint for a software object containing data and an ensemble of
operations for inspecting and manipulating the data.

In Java, these operations are computed by bodies of executable code called methods. Methods contain
step-by-step instructions for computing a specific task and are the object-oriented counterpart of func-
tions in C. Programming with classes and methods is strongly encouraged because it enables complex
problems to be efficiently represented as hierarchies of simplier tasks.

Figure 8.2 shows the pathway from a class specification to the generation of families of specific
objects. Each object will have its own specific data values. We say that each object is an instance of a
class.

204

Chapter 8 205

GenerateClass

Data Operations Behavior

Class Specifiction

Objects

Figure 8.2. Generation of objects from a class specification.

8.2 Syntax for Class Definition

The syntax for making a class definition in Java is

modifier class name-of-class { <=== beginning of the
class body.

... variables and methods

} <=== end of the
class body.

The modifier establishes the class type and its scope (i.e., what other classes can call it). A summary
of class modifiers is located in Table 8.1.

Class Modifiers
===
Modifier Interpretation in Java
===

abstract The class contains methods that are unimplemented. An abstract
class cannot be instantiated.

final The class cannot be subclassed.

(none) A nonpublic class is accessible only in its package.

public The class can be accessed by any class.

static This is a top-level class (not an inner class).
===

Table 8.1. Summary of class modifiers.

206 Engineering Software Development in Java

The code for each class will usually be stored in a separate file called class-name.java.
Defining an object of a certain class is called creating an instance of that class. When you want to work
with a particular object, you create an instance of that class.

Example: Circle Class

We now illustrate these concepts by defining a class to represent circles. A circle can be
described by the x and y position of its center and by its radius. See Figure 8.3.

y

(x, y)

radius

x

Figure 8.3. Schematic for a circle object.

There are numerous things we can do with circles – compute their circumference or perimeter,
compute their area, check whether points are inside them, and so forth. Although each circle is a
particular object with its own (x,y) coordinate and radius, circle is a general concept that can be
captured in a “class definition.”

public class Circle {
public double dX, dY;
public double dR;

public double perimeter() {
return 2 * 3.1415 * dR ;

}

public double area() {
return 3.1415 * dR * dR ;

}
}

The first line of source code uses the keyword class to define the class and the keyword public to
control access to the class by other classes. Note: The name used for the class must be the same as
the one used for the file name (i.e., the source code for class Circle needs to be store in a file called
Circle.java).

Chapter 8 207

The body of Circle contains three public instance variables, dX, dY, and dR, and two public
methods, perimeter() and area(). Our use of the keyword public makes the variables and
methods accessible from outside of the class. Our use of the keyword double serves a dual purpose.
First, it specifies that variables dX, dY, and dR will be of type double. Second, it indicates that
perimeter() and area() will both return a double. The methods perimeter() and area()
do not have any arguments, but can access the values of dX, dY, and dR declared within the class.

8.3 Creating an Object

Now that we have created a class to represent circles, we want to be able to work with it. To be
able to work with an actual object Circle, we need to create an instance of that class.

Creation of an object requires two steps: declaration and creation.

Circle smallCircle;
smallCircle = new Circle();

The first line is a declaration of a variable smallCircle that can reference an object of of type
Circle. In the second step, the new operator creates an instance of class Circle, and a reference
to the object is assigned to smallCircle. This two-step procedure can be shortened into one step of
course:

Circle smallCircle = new Circle();

After a computer has executed these steps, the layout of memory looks similar to Figure 8.4.

Object (Class Circle)smallCircle

0.0

0.0

0.0
dR

dY

dX

Memory for reference - type
variable.

Memory for instance of class Circle.

address

Figure 8.4. Layout of memory for circle object.

smallCircle is an abstract identifier that holds a reference to (or the address in memory
of the object location) an object of type Circle. smallCircle does not hold the object itself.
Otherwise, creating an instance of a class is like creating a copy of the code defined in the class. The

208 Engineering Software Development in Java

copy will have its own values for the instance variables dX, dY, and dR. Access will also be provided to
the methods defined in the class.

No Pointers. We know that some of you will look at smallCircle in Figure 8.4 and think “hey,
that’s a pointer.” It is not. Java has no pointers.

Although the Java run-time system may treat the reference as a pointer or handle, or perhaps
a pointer to a pointer, all these details are implementation dependent and deliberately hidden from the
Java programmer. All that a Java programmer needs to know is that ...

... the run-time system will take care of the details of referencing objects.

There are two important reasons for these restrictions:

1. Elimination of pointers simplifies the language and eliminates many notorious sources of bugs.

2. Pointers and pointer arithmetic could be used to sidestep Java’s run-time checks and security mech-
anisms. Removing pointers allows Java to provide the security guarantees that it does.

8.4 Object Data and Methods

Accessing Object Data

Now that we have created an object, we can use its data fields. The dot operator (.) is used to access the
different public variables of an object. For example

Circle smallCircle = new Circle();

/* Initialize the circle to have center (2,2) and radius 1.0 */

smallCircle.dX = 2.0;
smallCircle.dY = 2.0;
smallCircle.dR = 1.0;

sets the variables dX, dY, and dR to 2.0, 2.0, and 1.0, respectively.

Accessing Object Methods

This is where things get interesting. To access the methods of an object, we use the same syntax as
accessing the data of the object: the dot operator (.).

Circle smallCircle = new Circle();
double dArea;

smallCircle.dR = 2.5;
dArea = smallCircle.area();

Take a look at the last line. We did not write

Chapter 8 209

dArea = area(smallCircle);

But instead, we wrote

dArea = smallCircle.area();

This is why Java is called an object-oriented language. The object is the focus, not the function call.
This is probably the single most important feature of the object-oriented paradigm.

By calling smallCircle.area() the syntax itself implies that the object we are working on
is smallCircle. If you remember, this object is a copy of the code of the class Circle, which is
going to calculate the area of the circle based on its own value of the radius dR.

Passing Objects to Methods

When an object is passed to a method, ...

... it is a copy of a reference to that object that is actually passed and not a copy of the
object itself.

This means that a method can change the value of data in an external object.

8.5 Working with Constructor Methods

If we have another look at the object creation code

Circle smallCircle = new Circle();

Looks like we are calling a function named Circle(). Well, guess what, you are exactly right. Every
Java class comes with at least one method called the constructor method which has the same name as
the class itself. The purpose of that constructor method is to perform any necessary initialization for the
new object. This method is called every time you create an instance of the class.

If you do not specify any constructor method when you write the code of a class, Java provides
a default one for you that takes no arguments and performs no special initialization. We could define
our own constructor method by writing

public class Circle {
public double dX, dY, dR; // Center and radius

// Our constructor method

public Circle(double dX, double dY, double dR) {
this.dX = dX;
this.dY = dY;
this.dR = dR;

}

210 Engineering Software Development in Java

public double perimeter() {
return 2 * 3.1415 * dR ;

}

public double area() {
return 3.1415 * dR * dR ;

}
}

With this new constructor method, the initialization becomes part of the object creation step

Circle smallCircle = new Circle(2.0, 2.0, 1.0);

Note how we used the keyword this to refer to the current object. this.dX refers to the dX coordi-
nate for the current instance of the object, whereas dX just refers to the variable passed as an argument.
There are two important notes about naming and declaring constructor methods:

1. The constructor method name is always the same as the class name.

2. The return type is implicitly an instance of the class. No return type is specified in a constructor
declaration nor is the void keyword used. The this object is implicitly returned. A constructor
method should not use a return statement to return a value.

Object Destruction

Here’s why Java is better than C! In standard C programming, memory management must be done
(and done carefully) by the programmer. Calls to functions like malloc() reserve some memory for
future uses. A programmer needs to remember to free this memory when it is no longer needed by the
program.

In Java, you never do any explicit memory reservation with malloc() because creating a new
object with the new keyword takes care of the details of memory allocation for you. Also, once a block
of memory is no longer needed by a program, the Java run-time system will automatically take care of
its release to the operating system.

TheGarbage Collector. Java uses a technique called garbage collection to automatically detect objects
that are no longer being used and to free them. An object is no longer in use when there are no more
references to it. Remember that even though Java programmers do not use pointers, the Java system
does. In a nutshell, the garbage collector uses the scope of variables and classes to determine if an
object is still in use and can be released to the system. The garbage collector runs as a low-priority
process and does most of its work when nothing else is going on (i.e., idle time while waiting for user
input).

Chapter 8 211

8.6 Working with Class Hierarchies

Inheritance Model in Java

As mentioned in our introduction to object-oriented development in Chapter 5, one one of the
major benefits of this problem-solving approach is the ability to extend or subclass the behavior of an
existing class, and to continue to use the code written for the original class. In other words, ...

... class hierarchies provide a means for avoiding duplication and redundancy of code.

In
cr

ea
sin

g
sp

ec
ia

liz
at

io
n

Derived Class

Base Class

public constants ...
public methods ...

public constants ...
public methods ...

Interface to the base class

Interface to the derived class

extends

In
cr

ea
sin

g
ab

str
ac

tio
n

Figure 8.5. Elements of the inheritance model in Java.

As illustrated in Figure 8.5,

1. A class in the upper hierarchy is called a superclass (or base, parent class).

2. A class in the lower hierarchy is called a subclass (or derived, child, extended class).

The classes in the lower hierarchy ...

...inherit all the variables (static attributes) and methods (dynamic behaviors) from
the higher hierarchies.

However, the subclasses can ...

... override the behavior of the superclass, thereby providing a mechanism for behav-
ior to be customized within a class hierarchy.

By pulling out all the common variables and methods into the super-classes, and leave the specialized
variables and methods in the subclasses, redundancy can be greatly reduced as these common variables
and methods do not need to be repeated in all the subclasses.

212 Engineering Software Development in Java

Extending Circle to create ColoredCircle

In Java, you extend a class by using the keyword extends in the class declaration. To see
how this works in practice, let us build on the previous Circle class by adding a color attribute to
Circle.

public class ColoredCircle extends Circle {
private Color color; // The color of the circle

// Constructor method for this class.

public ColoredCircle() {
super(); // Call the superclass constructor method
this.color = Color.black;

}

// Set the color for the current circle.

public void setColor(Color c) {
color=c;

}

}

Now let us see how it works. First we declare the class ColoredCircle as extending the class
Circle by using the keyword extends. We then declare a public variable for the class, named
color and of type Color to handle the color of the circle. The class hierarchy is shown in Figure 8.6.

Figure 8.6. Circle class and ColoredCircle subclass

Two public methods are defined for this class:

1. setColor. This method takes a color as its argument and assigns this value to the color of the
circle.

2. ColoredCircle. This method has the same name as the class itself; it is a constructor method.
We first use the keyword super. This keyword refers to the superclass of the current class
(just like this refers to the current class). Function calls of the type super.method() call
the implementation of the method in the superclass. By just calling super(), we invoke the

Chapter 8 213

constructor method of the superclass [the method Circle() in that case]. The next line uses the
keyword this to refer to the public variable color of the current class.

Remark. One of the main differences between C++ and Java is that Java does not allow multiple
inheritance (i.e., a class cannot extend more than one class). Multiple inheritance allows a designer
to mix attributes from disparate classes in the class hierarchy. This restriction in Java is justified by
the need to keep the language and program design simple. However, Java employs the interface
construct to simulate multiple inheritance.

214 Engineering Software Development in Java

8.7 Working with Enumerated Types

An enumerated type is a type whose instances describe a finite set of values. Typically, an
enumerated type is used when the most important information is the existence of the value. A static
enumerated type is an enumerated type whose set of possible values is fixed, and does not vary at run
time. For example, the concept of days of the week includes the set:

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Not only are these seven values the only possible values for the concept, but there will never be another
possible value, and none of these values will ever become obsolete.

Example. Days of the Week

This program demonstrates how an enumerated data type for days of the week can be used in
conjuction with selection implemented via a switch statement. The program is divided into two Java
files:

DayOfWeek.java. Setup an enumerated type for days-of-the-week.

/*
* ===
* DayOfWeek.java: Setup an enumerated type for days-of-the-week ...
* ===
*/

public enum DayOfWeek {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

}

WorkSchedule.java. This program demonstrates use of enumerated data types, used in combination
with switch statements.

/*
* ==
* WorkSchedule.java: This program demonstrates use of enumerated data types,
* used in combination with switch statements.
*
* Written by: Mark Austin June 2009
* ==
*/

public class WorkSchedule {
DayOfWeek day;

public WorkSchedule(DayOfWeek day) {
this.day = day;

}

// Create a string representation of the day ...

Chapter 8 215

public String getDay() {
String s = null;

switch(day) {
case SUNDAY:

s = "Sunday";
break;

case MONDAY:
s = "Monday";
break;

case TUESDAY:
s = "Tuesday";
break;

case WEDNESDAY:
s = "Wednesday";
break;

case THURSDAY:
s = "Thursday";
break;

case FRIDAY:
s = "Friday";
break;

case SATURDAY:
s = "Saturday";
break;

default:
break;

}

return s;
}

// Describe work schedule ...

public String describe() {
String description;

switch(day) {
case SUNDAY:

description = "I stay home...";
break;

case MONDAY:
case TUESDAY:
case WEDNESDAY:
case THURSDAY:

description = "It’s a week day, so I go to work.";
break;

case FRIDAY:
description = "Last day of the working week, so I leave early!";
break;

case SATURDAY:
description = "It’s been a long work week. I stay home.";
break;

default:

216 Engineering Software Development in Java

description = "Something wrong Day not defined?";
}

return description;
}

// Exercise methods in WorkSchedule ...

public static void main(String[] args) {

// Create objects for work schedules on three different days ...

WorkSchedule day1 = new WorkSchedule(DayOfWeek.THURSDAY);
WorkSchedule day2 = new WorkSchedule(DayOfWeek.FRIDAY);
WorkSchedule day3 = new WorkSchedule(DayOfWeek.SATURDAY);
WorkSchedule day4 = new WorkSchedule(DayOfWeek.SUNDAY);

// Describe the work schedules on each of these days ...

System.out.printf("Today is %8s\n", day1.getDay());
System.out.printf("My work schedule: %s\n", day1.describe());

System.out.println("");
System.out.printf("Today is %8s\n", day2.getDay());
System.out.printf("My work schedule: %s\n", day2.describe());

System.out.println("");
System.out.printf("Today is %8s\n", day3.getDay());
System.out.printf("My work schedule: %s\n", day3.describe());

System.out.println("");
System.out.printf("Today is %8s\n", day4.getDay());
System.out.printf("My work schedule: %s\n", day4.describe());

}
}

Compiling and running WorkSchedule in the usual way leads to the output:

Today is Thursday
My work schedule: It’s a week day, so I go to work.

Today is Friday
My work schedule: Last day of the working week, so I leave early!

Today is Saturday
My work schedule: It’s been a long work week. I stay home.

Today is Sunday
My work schedule: I stay home...

Chapter 8 217

8.8 Application 1. Area and Volume of a Folded Box

Figure 8.7 shows a 10cm by 5cm sheet of metal that will be folded into a small open box.

10 cm

x
cm

5
cm

Figure 8.7. Sheetmetal schematic for a folded box.

We wish to write a Java program that will compute and print the surface area and volume of folded box
objects having the following characteristics:

Folded Box: Name Length (in) Width (in) Height (in)

Match 2.0 1.0 0.5
Shoe 12.0 8.0 7.0

The source code is as follows:

/*
* ==
* FoldedBox.java: Create instances of open folded box objects.
* Compute and print the volume and surface area of each box.
*
* Written By: Mark Austin May 2007
* ==
*/

public class FoldedBox {
private String sName;
private double dLength, dWidth, dHeight;

// Custom constructor for creating folded box objects

public FoldedBox (String sName, double dLength,
double dWidth, double dHeight) {

this.dLength = dLength;
this.dWidth = dWidth;
this.dHeight = dHeight;
this.sName = sName;

}

218 Engineering Software Development in Java

// Compute box surface area and volume

public double surfaceArea() {
return dLength*dWidth + 2.0*(dLength+dWidth)*dHeight;

}

public double volume() {
return dLength*dWidth*dHeight;

}

// Create String description of folded box characteristics ...

public String toString() {
String s = "FoldedBox: " + sName + "\n";
s = s + "Volume = " + volume() + "\n";
s = s + "Surface Area = " + surfaceArea() + "\n";
return s;

}

// ===
// Exercise methods in FoldedBox.java
// ===

public static void main (String args []) {

// Create and initialize folded box objects

FoldedBox fbMatch = new FoldedBox ("Match", 2.0, 1.0, 0.5);
FoldedBox fbShoe = new FoldedBox ("Shoe", 12.0, 8.0, 7.0);

// Print details of each folded box ...

System.out.println(fbMatch.toString());
System.out.println(fbShoe.toString());

}
}

A script of the program input and output is as follows:
prompt >>
prompt >> java FoldedBox
FoldedBox: Match
Volume = 1.0
Surface Area = 5.0

FoldedBox: Shoe
Volume = 672.0
Surface Area = 376.0
prompt >>

Points to note:

1. Each box object is described by its name (i.e., String sName) and parameters for the length,
width and height of the box. The box surface area and volume are computed with methods

Chapter 8 219

surfaceArea() and volume(), respectively. A string description of the folded box will
be created by toString().

2.

3.

220 Engineering Software Development in Java

8.9 Application 2. Complex Number Arithmetic

Complex variables and complex variable arithmetic are used in the solution of many types of
engineering problems. In electrical engineering, for example, complex numbers are a staple of circuit
analysis. In structural dynamics, complex variables can be used to formulate models of damping. In
geotechnical engineering, analysis with complex numbers and tranformations can be used to compute
streamlines for groundwater flow.

In this section we present abbreviated Java code for complex number arithmetic and a corre-
sponding test program. The full implementation has the methods:

===
Method Description
===

Complex(); Create new instance of complex number.
Negate(); Compute -ve of complex number.
Abs(); Compute absolute value of complex number.
Add(); Add two complex numbers.
Sub(); Subtract two complex numbers.
Mult(); Multiply two complex numbers.
Div(); Divide complex numbers.
Scale(); Scale complex number by real number.
Conjugate(); Compute complex conjugate.
Sqrt(); Compute square root of complex number.

toString(); Convert a complex number to a string.
===

The skeleton class library is as follows (the algorithms for arithmetic are taken from the text “Numerical
Recipies in C.”

abbreviated source code

/*
* ===
* Complex.java: A library of methods for complex number arithmetic.
*
* Written By : Mark Austin May 2006
* ===
*/

import java.lang.Math;

public class Complex {
protected double dReal, dImaginary;

// Constructor methods

public Complex() {}

public Complex(double dReal, double dImaginary) {
this.dReal = dReal;

Chapter 8 221

this.dImaginary = dImaginary;
}

// Convert complex number to a string ...

public String toString() {
String s="";

if (dImaginary >= 0)
s += s.format("%6.2f+%6.2fi", dReal, dImaginary);

else
s += s.format("%6.2f-%6.2fi", dReal, -dImaginary);

return s;
}

// Compute sum of two complex numbers cA + cB.....

public Complex Add(Complex cB) {
Complex sum = new Complex();

sum.dReal = dReal + cB.dReal;
sum.dImaginary = dImaginary + cB.dImaginary;

return (sum);
}

// Compute difference of two complex numbers cA - cB.....

public Complex Sub(Complex cB) {
Complex diff = new Complex();

diff.dReal = dReal - cB.dReal;
diff.dImaginary = dImaginary - cB.dImaginary;

return (diff);
}

// Compute product of two complex numbers cA * cB ... details removed ...

// Compute divisor of two complex numbers cA / cB ... details removed ...

// Scale complex number .. details removed ...

// Compute complex number conjugate ... details removed ...

// Compute absolute value of complex number ...details removed ...

// Compute square root of complex number ... details removed ...

// Exercise methods in Complex class

public static void main (String args[]) {

System.out.println("Complex number test program");

222 Engineering Software Development in Java

System.out.println("===========================");

// Setup and print two complex numbers

Complex cA = new Complex(1.0, 2.0);
Complex cB = new Complex(3.0, 4.0);

System.out.println("Complex number cA = " + cA.toString());
System.out.println("Complex number cB = " + cB.toString());

// Test complex addition and substraction

Complex cC = cA.Add(cB);
System.out.println("Complex cA + cB = " + cC.toString());
Complex cD = cA.Sub(cB);
System.out.println("Complex cA - cB = " + cD.toString());

}
}

and covers just the most basic parts – a constructor to create complex number objects, methods to add
and substract complex numbers, a method to create a string representation, and main(), a short method
to exercise the methods for arithmetic.

The program output is:

prompt >>
Complex number test program
===========================
Complex number cA = 1.00+ 2.00i
Complex number cB = 3.00+ 4.00i
Complex cA + cB = 4.00+ 6.00i
Complex cA - cB = -2.00- 2.00i
prompt >>

Key points to note:

1. The toString() method creates a string representation of the data stored in a complex number. In the
fragment of code:

String s="";

if (dImaginary >= 0)
s += s.format("%6.2f+%6.2fi", dReal, dImaginary);

else
s += s.format("%6.2f-%6.2fi", dReal, -dImaginary);

return s;

creates an empty charater string, and then appends to it, formatted string representations of the
real and imaginery components of the complex number. For the purposes of clarity in its usage,
we have written,

Chapter 8 223

System.out.println("Complex number cA = " + cA.toString());

However, the toString() method is so common – every object implementation should have a
toString() method – that you can also write,

System.out.println("Complex number cA = " + cA);

Java will simply assume that you want to print a string representation of the object.

2. In a procedural approach to programming we would create and sum two complex numbers by
writing something like:

Complex cA = new Complex(1.0, 2.0);
Complex cB = new Complex(3.0, 4.0);

cC = cA + cB;

Since the focus in Java is on objects and the data that they store, here, instead, we write,

Complex cC = cA.Add(cB);

which can be interpreted as: to the data in object cA, add the data from object cB. Then assign
the result to a new object cC. It is important to notice that within the method Add(), the statement

Complex sum = new Complex();

allocates memory for the result of the addition operation.

224 Engineering Software Development in Java

8.10 Application 3. Point and Line Segment Operations

Problem Statement

Figure 8.8 shows a line segment in a (x-y) coordinate frame. The segment is defined as a
straight line joining two endpoints at coordinates (x1, y1) and (x2, y2).

y

x

Endpoint 1 [x1 , y1]

Endpoint 2 [x2 , y2]

Figure 8.8. Line segment in (x-y) coordinate frame.

The following program is developed in two stages. First, we write a class Point for the definition and
positioning of (x, y) coordinates. Then with the Point class in place, we write a class for defining and
computing operations on line segments. Test programs are written to exercise the capabilities of both
classes.

Program Modules and Class Hierarchy

The point and line segment operations are

===
Point Line Segment
===

Allocate a new point. Allocate a new line segment.
Set (x,y) coordinates. Set coordinates of line segment endpoints.
Get x coordinate. Get endpoint 1.
Get y coordinate. Get endpoint 2.
Print coordinates. Print endpoints of line segment.

Compute and print equation of line segment
(not implemented in program).
Compute intersection of two line segments
(not implemented in program).

Exercise methods in Point Exercise methods in LineSegment class.

Chapter 8 225

class.
===

The Point class should contain methods for constructing instances of a point, setting the (x,y)
coordinate values, retrieving the x and y coordinates, and printing the coordinates as a string. Each
of these methods can be exercised by a test program included as part of the Point class.

Similarly, the LineSegment class should contain methods for constructing instances of a
line segment, setting the coordinate values of the endpoints, retrieving endpoints 1 and 2, and
printing the details of the line segment. An advanced implementation (these details are not included in
the program) might also compute and print the equation of the line segment, and compute the intersec-
tion of two line segments. Each of these methods can be exercised by a test program included as part of
the LineSegment class.

Program Source Code

The source code for the line segment program is partitioned into two parts. The first half
contains the user-written code for the Point class. The second part of the source code contains details
of the Linesegment class.

source code

/*
* ===
* Definition of class Point : A point is represented by its
* (x,y) coordinates.
*
* Written By : Mark Austin October 1997
* ===
*/

public class Point {
protected double dX, dY; // (x,y) coordinates of the Point

// Constructor method : just create instance of class.

public Point() { }

// Create instance of class and set (x,y) coordinates.

public Point(double dX, double dY) {
setPoint(dX, dY);

}

// Set x and y coordinates of Point.

public void setPoint(double dX, double dY) {
this.dX = dX;
this.dY = dY;

}

// Get x and y coordinates.

226 Engineering Software Development in Java

public double getX() { return dX; }
public double getY() { return dY; }

// Convert the point into a String representation

public String toString()
{ return "[" + dX + ", " + dY + "]"; }

// Exercise methods in point class.

public static void main(String args[]) {
double dX, dY;

System.out.println("Point test program");
System.out.println("===============================");

// Create two new points.

Point point1 = new Point();
point1.setPoint(1.0, 1.0);
Point point2 = new Point(1.5, 4.5);

// Print (x,y) coordinates of points.

System.out.println("Point 1 : " + point1.toString());
System.out.println("Point 2 : " + point2.toString());

// Get x and y coordinates.

dX = point1.getX(); dY = point1.getY();
System.out.println("Point 1 : X coordinate = " + dX);
System.out.println(" Y coordinate = " + dY);
dX = point2.getX(); dY = point2.getY();
System.out.println("Point 2 : X coordinate = " + dX);
System.out.println(" Y coordinate = " + dY);

System.out.println("===============================");
System.out.println("End of Point test program");

}
}

source code

/*
* ===
* Definition of class LineSegment:
*
* A line segment is defined by the (x,y) coordinates of
* its two end points.
*
* Written By : Mark Austin October 1997
* ===

Chapter 8 227

*/

public class LineSegment {
protected Point p1, p2; // points defining the LineSegment

// Constructor method : just create instance of class.

public LineSegment() { }

// Create instance of class and set (x,y) coordinates.

public LineSegment(double dX1, double dY1,
double dX2, double dY2) {

setLineSegment(dX1, dY1, dX2, dY2);
}

// Set x and y coordinates of LineSegment.

public void setLineSegment(double dX1, double dY1,
double dX2, double dY2) {

p1 = new Point(dX1, dY1);
p2 = new Point(dX2, dY2);

}

// Get end points 1 and 2.

public Point getPoint1() { return p1; }
public Point getPoint2() { return p2; }

// Print details of line segment.

public void printSegment() {

System.out.println("Line Segment");
System.out.println("Point 1 : (x,y) = " + p1.toString());
System.out.println("Point 2 : (x,y) = " + p2.toString());

}

// Compute length of line segment.

public double segmentLength() {
double dLength;

dLength = (p1.getX() - p2.getX())*(p1.getX() - p2.getX()) +
(p1.getY() - p2.getY())*(p1.getY() - p2.getY());

return ((double) Math.sqrt(dLength));
}

// Exercise methods in line segment class.

public static void main(String args[]) {
double dX, dY;

228 Engineering Software Development in Java

System.out.println("LineSegment test program");
System.out.println("===============================");

// Create two new line segments.

LineSegment s1 = new LineSegment();
s1.setLineSegment(1.0, 1.0, 4.0, 5.0);
LineSegment s2 = new LineSegment(1.5, 1.5, 1.5, 4.5);

// Print details of line segments.

s1.printSegment();
s2.printSegment();

// Compute length of line segments.

System.out.println("Segment1 has length : " + s1.segmentLength());
System.out.println("Segment2 has length : " + s2.segmentLength());

// End of exercise.

System.out.println("===============================");
System.out.println("End of LineSegment test program");

}
}

Compiling and Running the Program

The line segment program has source code for two classes: Point.java and LineSegment.java.
The Point class is compiled by typing

prompt >> javac Point.java

and the LineSegment class is compiled by typing

prompt >> javac LineSegment.java

The Java compiler is pretty smart and, when the LineSegment class is being compiled, will determine
the dependency of the LineSegment and Point classes and automatically compile Point.java
into a bytecode file if it does not already exist. The list of program files before and after compilation is

FILES BEFORE COMPILATION

LineSegment.java LineSegment.class
Point.class

FILES AFTER COMPILATION

LineSegment.java
Point.java Point.java

The Point and LineSegment classes both have test programs located inside their main()methods.
Typing

Chapter 8 229

>> java Point

generates the output

Point test program
===============================
Point 1 : [1, 1]
Point 2 : [1.5, 4.5]
Point 1 : X coordinate = 1

Y coordinate = 1
Point 2 : X coordinate = 1.5

Y coordinate = 4.5
===============================
End of Point test program

The Point class test program creates and initializes two new points, the first using the default con-
structor and the setPoint() method, and the second with the Point() constructor containing two
arguments. The point coordinates are then printed by calling the toString()method to create a char-
acter string. Finally, the getX() and getY() methods are used to retrieve and print the individual x
and y point coordinates.

Similarly, the LineSegment test program generates

LineSegment test program
===============================
Line Segment
Point 1 : (x,y) = [1, 1]
Point 2 : (x,y) = [4, 5]
Line Segment
Point 1 : (x,y) = [1.5, 1.5]
Point 2 : (x,y) = [1.5, 4.5]
Segment1 has length : 5
Segment2 has length : 3
===============================
End of LineSegment test program

The line segment test program begins its execution by creating two new line segments – for simplicity
of implementation, the endpoint coordinates are specified in the program source code. After the details
of each line segment have been printed, the length of each line segment is computed and printed.

Program Architecture

Figure 8.9 shows the class hierarchy of user-defined Java code and classes from the JDK that
make up the quadratic equation solver.

The quadratic equation solver and line segment programs employ essentially the same hierarchy of
classes for simple mathematical computations and program output. What is new in the point and line
program is its use of two classes of user-defined Java code. A line segment endpoint is defined by the
skeleton class

23
0

En
gi
ne
er
in
g
So
ftw

ar
e
D
ev
el
op
m
en
ti
n
Ja
va

Object

OutputStream

PrintStream

FilterOutputStream

println ()

java.io package

System

out

StringMath

sqrt()

Point LineSegment

java.lang package

double dX
double dY

Point point1
Point point2

printSegment ()
segmentLength ()
getPoint2()
getPoint1()
setLiueSegment ()
LineSegment ()
main ()

Point ()
main ()

setPoint ()
getX ()
getY ()
toString ()

Point.java LineSegment.java

User-defined Java code

Figure 8.9. Class hierarchy for line segment program.

Chapter 8 231

public class Point {
protected double dX, dY;

..... methods for class Point...
}

and the line segment by

public class LineSegment {
protected Point p1, p2;

..... methods for class LineSegment...
}

The connectivity between these classes is indicated by the dashed arrows in Figure 8.9.

Constructor Methods

Both the Point and LineSegment classes support multiple constructor methods. We look
at the former in detail. As demonstrated in the Point test program, Point objects can be created
using either of the methods:

// Constructor method : just create instance of class.

public Point() { }

// Create instance of class and set (x,y) coordinates.

public Point(double dX, double dY) {
setPoint(dX, dY);

}

The default constructor (i.e., public Point() {}) must be explicitly listed when more than one
constructor is used in a class.

232 Engineering Software Development in Java

8.11 Application Program: Design of a Data Array

This program implements a simple data array; that is, a class that stores a one-dimensional
array of floating-point numbers and its name, and methods to compute basic statistics (e.g., minimum,
maximum and average array element values) and arithmetic operations (e.g., sum and difference of two
data arrays).

data [3]

Data Array Declaration

DataArray A = new DataArray("First" , 4);

Layout of Memory

String sName

int iNoElements: 4

double [] data 4

0.0

0.0

0.0

0.0

\0tsriF

A

data . length

data [0]

data [1]

data [2]

Figure 8.10. Layout of memory for a data array.

Figure 8.10 shows a typical statement for setting up a data array object, followed by the layout of
memory that is generated.

source code

/*
* ==
* DataArray.java: Compute simple operations on a one-dimensional array
* of double precision floating point numbers.
*
* Written by: Mark Austin April 2009
* ==
*/

import java.lang.Math;
import java.util.*;
import java.io.*;
import java.text.*;

Chapter 8 233

public class DataArray {
private String sName;
private int iNoElements;
private double data[];

// Define NoColums to be a "constant" (see use below)

public final static int NoColumns = 5;

// Array constructors

DataArray(int iNoElements) {
this.iNoElements = iNoElements;
this.data = new double [iNoElements];

// Initialize array elements (strictly speaking, don’t need to do this)...

for(int i = 0; i < iNoElements; i++)
setElement(i, (double) 0.0);

}

DataArray(String sName, int iNoElements) {
this.sName = sName;
this.iNoElements = iNoElements;
this.data = new double [iNoElements];

}

DataArray(String sName) {
this.sName = sName;

}

// ======================================
// Set/get name for data array
// ======================================

public void setName (String sName) {
this.sName = sName;

}

public String getName() { return this.sName; }

// ======================================
// Retrieve and set matrix element values
// ======================================

public double getElement(int i) {
double returnValue;

if(i < 0 || i >= iNoElements) throw new
RuntimeException("*** In getElement(): Array element index out of range");

returnValue = data[i];
return returnValue;

}

234 Engineering Software Development in Java

public void setElement(int i, double value) {

if(i < 0 || i >= iNoElements) throw new
RuntimeException("*** In setElement(): Array element index out of range");

this.data[i] = value;
}

// ==
// Convert array to string format
// ==

public String toString() {
String s = "Array: " + this.sName + "\n";

for (int i = 1; i <= iNoElements; i = i + 1) {
s += s.format(" %10.3e", data[i-1]);
if (i % NoColumns == 0 || i == iNoElements)

s += "\n";
}

return s;
}

/* == */
/* Method to read an array of data from a file */
/* == */

public void readDataFile(String fileName) throws IOException {
String sLine;

// [a] Open reader to the input file

FileReader inputFile = new FileReader(fileName);
BufferedReader in = new BufferedReader(inputFile);

// [b] Read file contents ...

try {

// [b.1] Get no of lines in input file

sLine = in.readLine();
StringTokenizer st = new StringTokenizer(sLine);
if (st.hasMoreTokens() == true)

this.iNoElements = Integer.parseInt(st.nextToken());
else

System.out.println("*** ERROR in input file ");

// [b.2] Dynamically allocate memory for the array

this.data = new double [iNoElements];

// [b.3] Read measurements from data file

Chapter 8 235

for (int i = 1; i <= iNoElements; i = i + 1) {
sLine = in.readLine();
StringTokenizer st1 = new StringTokenizer(sLine);
if (st1.hasMoreTokens() == true) {

double dItem = Double.parseDouble (st1.nextToken());
this.setElement (i-1, dItem);

}
}

}

catch (FileNotFoundException e){}
catch (EOFException e){}

// [c] Close input file

in.close();
}

// ==
// Compute sum and difference of two data arrays...
// ==

public DataArray Add(DataArray dA) {

// Check compatibility of array lengths

if(this.iNoElements != dA.iNoElements) throw new
RuntimeException("*** In Add(): Incompatible array lengths");

// Compute sum of data arrays

DataArray daSum = new DataArray(this.iNoElements);
for(int i = 0; i < iNoElements; i++)

daSum.data[i] = data[i] + dA.data[i];

return (daSum);
}

public DataArray Sub(DataArray dA) {

// Check compatibility of array lengths

if(this.iNoElements != dA.iNoElements) throw new
RuntimeException("*** In Sub(): Incompatible array lengths");

// Compute difference of data array values

DataArray daDiff = new DataArray(this.iNoElements);
for(int i = 0; i < iNoElements; i++)

daDiff.data[i] = data[i] - dA.data[i];

return (daDiff);
}

// ==

236 Engineering Software Development in Java

// Compute basic statistics on array values
// ==

public double max() {
double dMaxValue = data[0];

for(int i = 1; i < iNoElements; i++)
dMaxValue = Math.max(data[i], dMaxValue);

return (dMaxValue);
}

public double min() {
double dMinValue = data[0];

for(int i = 1; i < iNoElements; i++)
dMinValue = Math.min(data[i], dMinValue);

return (dMinValue);
}

public double average () {
double dSum = 0.0;

for(int i = 0; i < iNoElements; i++)
dSum = dSum + data[i];

return (dSum/iNoElements);
}

public double range () {
return (max() - min());

}

public double std() {
double dMean = average();

double dSum = 0.0;
for (int i = 0; i < iNoElements; i = i + 1)

dSum = dSum + data[i]*data[i];

return Math.sqrt(dSum/iNoElements - dMean*dMean);
}

// ==
// Exercise methods in array class
// ==

public static void main(String[] args) {

// Create, initialize and print a small array

DataArray A = new DataArray("First", 4);
A.setElement(0, 1.0);
A.setElement(1, 2.0);

Chapter 8 237

A.setElement(2, 3.0);
A.setElement(3, 4.0);

System.out.println(A.toString());
System.out.println(A.getName() + ".(Max element value) = " + A.max());
System.out.println(A.getName() + ".(Min element value) = " + A.min());
System.out.println(A.getName() + ".(Range) = " + A.range());
System.out.println(A.getName() + ".(Average value) = " + A.average());
System.out.println(A.getName() + ".(Standard Deviation) = " + A.std());
System.out.println("");

// Initialize and print a second data array ...

DataArray B = new DataArray("Second", 4);
B.setElement(0, 5.0);
B.setElement(1, 7.0);
B.setElement(2, 6.0);
B.setElement(3, 8.0);
System.out.println(B);

// Compute/print A + B ...

DataArray daSum = A.Add(B);
daSum.setName("A+B");
System.out.println(daSum);

// Compute/print A - B ...

DataArray daDiff = A.Sub(B);
daDiff.setName("A-B");
System.out.println(daDiff);

// Read data from a file

DataArray sensor1 = new DataArray("Sensor 1");

try {
sensor1.readDataFile("sensor1.txt");

}
catch (IOException e){}

// Print measurements ...

System.out.println(sensor1.toString());
}

}

Now let the contents of file sensor1.txt be:

7
0.210
0.211
0.210

238 Engineering Software Development in Java

0.211
0.212
0.215
0.213

The script of code shows the commmand input and output generated by DataArray.

prompt >> java DataArray
Array: First

1.000e+00 2.000e+00 3.000e+00 4.000e+00

First.(Max element value) = 4.0
First.(Min element value) = 1.0
First.(Range) = 3.0
First.(Average value) = 2.5
First.(Standard Deviation) = 1.118033988749895

Array: Second
5.000e+00 7.000e+00 6.000e+00 8.000e+00

Array: A+B
6.000e+00 9.000e+00 9.000e+00 1.200e+01

Array: A-B
-4.000e+00 -5.000e+00 -3.000e+00 -4.000e+00

Array: Sensor 1
2.100e-01 2.110e-01 2.100e-01 2.110e-01 2.120e-01
2.150e-01 2.130e-01

prompt >>

Key points to note are as follows:

• Notice that when an object of type data array is created, the array element values are automatically
set to zero. Individual array elements can be initialized with statements of the type:

A.setElement (0, 1.0);
A.setElement (1, 2.0);

and so forth.

• The method readData() reads arrays from a file located locally on your computer.

File format: The first line contains the number of elements in the array. Then, one array element
is located on each line. See, for example, the layout of data in sensor1.txt .

Chapter 8 239

8.12 Hiding Data in Object Oriented Software

As already noted, encapsulation involves separating the interface of a class from its implemen-
tation. There are two key benefits in the use of encapsulation:

1. You can’t accidentally corrupt the value of a field – instead, you have to use a method to change a
value.

2. The separation of interface and implementation makes it easier to modify the code within a class
without breaking any other code that uses it.

In this example we create classes for circle and colored circle specifications, and then test classes to
exercise the methods within each class.

The relationship between the classes is as follows:

TestColoredCircle class

private methods

Circle class

ColoredCircle Class

interface: public methods and data

private data

protected data

private methods

TestCircle class

Figure 8.11. Relationship between the classes Circle and ColoredCircle, and their corresponding test
classes.

As illustrated in Figure 8.11 encapsulation involves:

1. Data Hiding. Variables and methods internal to the object implementation will be declared as
private and/or protected. Private data is only available within the class in which it is declared.
Protected data is only available within the class in which it is declared, and, its subclasses.

2. Access Methods. Access to data/properties of the object will only be possible through setXXX()
and getXXX() methods. For example, the Circle class contains the methods setRadius() and
getRadius().

Source code for Circle.java
source code

240 Engineering Software Development in Java

/*
* ==
* Circle(): Implementation of the Circle class where data and circle
* properties can only be accessed through an interface.
*
* Note. It is common programming practice to begin variable names
* with an underscore (e.g., _xxxx) when variables are either private
* or protected.
*
* Written by: Mark Austin April, 2009
* ==
*/

import java.lang.Math.*;

public class Circle {
protected double _dX, _dY, _dRadius;

// Constructor methods ...

public Circle () {}

public Circle(double dX, double dY, double dRadius) {
_dX = dX;
_dY = dY;
_dRadius = dRadius;

}

// Compute the circle area

private double Area() {
return Math.PI*_dRadius*_dRadius;

}

// Create public interface for variables and area computation....

public void setX (double dX) { _dX = dX; }

public double getX () { return _dX; }

public void setY (double dY) { _dY = dY; }

public double getY () { return _dY; }

public void setRadius (double dRadius) { _dRadius = dRadius; }

public double getRadius () { return _dRadius; }

public double getArea() { return Area(); }

// Copy circle parameters to a string format ...

public String toString() {
return "(x,y) = (" + _dX + "," + _dY + "): Radius = " + _dRadius;

}

Chapter 8 241

}

Source code for ColoredCircle.java
source code

/*
* ===
* ColoredCircle(): Implementation of the ColoredCircle class where
* data and circle properties can only be accessed
* through an interface.
*
* Written By: Mark Austin April 2009
* ===
*/

import java.awt.Color;

public class ColoredCircle extends Circle {
private Color _color;

// Constructor methods

public ColoredCircle() {
super();
_color = Color.blue;

}

public ColoredCircle(double dX, double dY, double dRadius, Color color) {
super();

_dX = dX;
_dY = dY;
_dRadius = dRadius;
_color = color;

}

// Set and retrieve colors

public void setColor(Color color) {
_color = color;

}

public String getColors() {
return "Color (r,g,b) = (" + _color.getRed() +

"," + _color.getGreen() + "," + _color.getBlue() + ")";
}

}

Exercise the Circle Interface (TestCircle.java)

242 Engineering Software Development in Java

source code

/*
* ==
* TestCircle(): Exercise methods in the Circle class.
*
* Written by: Mark Austin April, 2009
* ==
*/

import java.lang.Math.*;

public class TestCircle {

public static void main(String [] args) {

System.out.println("Exercise methods in class Circle");
System.out.println("================================");

Circle cA = new Circle();
cA.setX(1.0);
cA.setY(2.0);
cA.setRadius(3.0);

Circle cB = new Circle(1.0, 2.0, 2.0);

System.out.printf("Circle cA : %s\n", cA.toString());
System.out.printf("Circle cA : Area = %5.2f\n", cA.getArea());

System.out.printf("Circle cB : %s\n", cB);
System.out.printf("Circle cB : Area = %5.2f\n", cB.getArea());

}
}

The program output is:

prompt >>
prompt >> java TestCircle
Exercise methods in class Circle
================================
Circle cA : (x,y) = (1.0,2.0): Radius = 3.0
Circle cA : Area = 28.27
Circle cB : (x,y) = (1.0,2.0): Radius = 2.0
Circle cB : Area = 12.57
prompt >>

Exercise the ColoredCircle Interface (TestColoredCircle.java)
source code

/*
* ===

Chapter 8 243

* TestColoredCircle(): Test interface methods in ColoredCircle.
*
* Written By: Mark Austin April 2009
* ===
*/

import java.awt.Color;

public class TestColoredCircle {

public static void main(String [] args) {

System.out.println("Exercise methods in class ColoredCircle");
System.out.println("=======================================");

// Create, initialize, and print circle "cA" ...

ColoredCircle cA = new ColoredCircle(1.0, 2.0, 3.0, Color.blue);
cA.setX(1.0);
cA.setY(2.0);
cA.setRadius(3.0);
cA.setColor(Color.blue);

System.out.println("Circle cA:" + cA.toString());
System.out.println(cA.getColors());

// Create, initialize, and print circle "cB" ...

ColoredCircle cB = new ColoredCircle(-1.0, -2.0, 3.0, Color.orange);
System.out.println("Circle cB:" + cB.toString());
System.out.println(cB.getColors());

}
}

The program output is:

prompt >>
prompt >> java TestColoredCircle
Exercise methods in class ColoredCircle
=======================================
Circle cA:(x,y) = (1.0,2.0): Radius = 3.0
Color (r,g,b) = (00000000,0,255)
Circle cB:(x,y) = (-1.0,-2.0): Radius = 3.0
Color (r,g,b) = (255,200,0)
prompt >>

244 Engineering Software Development in Java

8.13 Exercises

This section covers Java programming with objects. It is a work in progress!

8.1 As shown in Figure 8.12 below, rectangles may be defined by the (x,y) coordinates of corner
points that are diagonally opposite.

2y

x

Point (x . y)

Point (x . y)1 1

2

Figure 8.12. Definition of a rectangle via diagonally opposite corner points

With this definition in place, the following script of code is a very basic implementation of a class
for creating and working with rectangle objects.
/*
* ==
* Rectangle.java : A library of methods for creating and managing rectangles
*
* double area() -- returns the area of a rectangle
* double perimeter() -- returns the perimeter of a rectangle
*
* Written By : Mark Austin November 2005
* ==
*/

import java.lang.Math;

public class Rectangle {
protected double dX1, dY1; // Coordinate (x,y) for corner 1....
protected double dX2, dY2; // Coordinate (x,y) for corner 2....

// Constructor methods

public Rectangle() {}

public Rectangle(double dX1, double dY1, double dX2, double dY2) {
this.dX1 = dX1; this.dY1 = dY1;
this.dX2 = dX2; this.dY2 = dY2;

}

Chapter 8 245

// Convert rectangle details to a string ...

public String toString() {
return "Rectangle: Corner 1: (x,y) = " + "(" + dX1 + "," + dY1 + ")\n" +

" Corner 2: (x,y) = " + "(" + dX2 + "," + dY2 + ")\n";
}

// ====================================
// Compute rectangle area and perimeter
// ====================================

public double area() {
return Math.abs((dX2-dX1)*(dY2-dY1));

}

public double perimeter() {
return 2.0*Math.abs(dX2-dX1) + 2.0*Math.abs(dY2-dY1);

}

// Exercise methods in the Rectangle class

public static void main (String args[]) {

System.out.println("Rectangle test program ");
System.out.println("===========================");

// Setup and print details of a small rectangle....

Rectangle rA = new Rectangle(1.0, 1.0, 3.0, 4.0);
System.out.println(rA.toString());

// Print perimeter and area of the small rectangle....

System.out.println("Perimeter = " + rA.perimeter());
System.out.println("Area = " + rA.area());

}
}

The script of program output is as follows:

Script started on Fri Apr 21 10:17:29 2006
prompt >>
prompt >> java Rectangle
Rectangle test program
===========================
Rectangle: Corner 1: (x,y) = (1.0,1.0)

Corner 2: (x,y) = (3.0,4.0)

Perimeter = 10.0
Area = 6.0
prompt >> exit
Script done on Fri Apr 21 10:17:39 2006

The Rectangle class has methods to create objects (i.e, Rectangle), convert the details of a rectan-

246 Engineering Software Development in Java

gle object into a string format (i.e., toString), and compute the rectangle area and perimeter (i.e.,
area() and permieter(), respectively). The implementation uses two pairs of doubles (dX1, dY1)
and (dX2, dY2) to define the corner points.

Suppose that, instead, the corner points are defined via a Vertes class, where
public class Vertex {

protected double dX, double dY

..... details of constructors and other methods removed ...
}

The appropriate modification for Rectangle is:
public class Rectangle {

protected Vertex vertex1; // First corner point....
protected Vertex vertex2; // Second corner point....

..... details rectangle removed
}

Fill in the missing details (i.e., constructors and toString() method) of class Vertex. Modify the
code in Rectangle to use Vertex class. The resulting program should have essentially has the same
functionality as the original version of Rectangle. Hint. Your implementation should make use
of the toString() method in Vertex.

8.2 There are lots of problems in engineering where the position of point needs to be evaluated with
respect to a shape. Evaluation procedures can be phrased in terms of questions. For example, is
the point inside (or outside) the shape?; Does the point lie on the boundary of the shape?; Does
the point lie above/below the shape? Does the point lie to the left or right of the shape?; How far
is the point from the perimeter?

Inside

y

x

Above

Below

Left Right

Point is to the "right" of the rectangle.

Point is "above" and to the "right of the rectangle

Figure 8.13. Classification of an (x,y) cooordinate relative to a rectangle

Figure 8.13 illustrates these ideas for one of the simplest cases possible, one point and a
rectangle. Extend the functionality of the Rectangle class so that the possition of a point can be
evaluated with respect to a specific rectangle object.

Chapter 8 247

The appropriate method declarations are as follows:
public boolean isInside (Vertex v) { ... }
public boolean isOutside (Vertex v) { ... }
public boolean isOnPerimeter (Vertex v) { ... }
public boolean isAbove (Vertex v) { ... }
public boolean isBelow (Vertex v) { ... }
public boolean isLeft (Vertex v) { ... }
public boolean isRight (Vertex v) { ... }

If the (x,y) coordinates of a vertex are inside a particular rectangle, then isInside () should
return true. Otherwise, it should return false. From Figure 8.13 is should evident that some
points will result in multiple methods returning true. For example, points in the top right-hand
side of the coordinate system will be outside, to the right, and above the rectangle.

Fill in the details of each method, and then develop a test program to exercise the procedures.
Perhaps the most straight forward way of doing this is to write an extensive set of tests in the
main() method for class Rectangle.

8.3 Figure 8.14 shows three types of spatial relationship (touching, overlap, and enclosure) between
two rectangle.

B overlaps with A

A A A

B
B

B

B touches A B enclosed by A

Figure 8.14. Spatial relationships between two rectangles

Extend the functionality of the Rectangle class to support the evaluation of these three types of
relationships.

8.4 A data array class is a one dimensional array of floating-point numbers together with methods
to compute statistics on the stored values (e.g., maximum value, minumum value). Download,
compile, and run the DataArray java code from the class web site. Re-code the rainfall analysis
program so that it uses the DataArray facilities.

Hint. Your solution will have two source code files, DataArray.java and RainfallAnalysis.java.
Don’t change any of the code in DataArray.java; just write a new version of RainfallAnalysis.java.
The files before and after compilation should be:

Before After
===================== =====================
RainfallAnalysis.java RainfallAnalysis.java
DataArray.java DataArray.java

RainfallAnalysis.class
DataArray.class

248 Engineering Software Development in Java

===================== =====================

You should find that your implementation is considerably shorter than in Problem 22.

8.5 This problem will give you practice at using the DataArray class to read, compute, and print the
statistics of data collected from a structural engineering experiment in which strain measurements
are recorded over an extended period of time.

Bending Moment Diagram

P (t) P (t)

Sensor 2
Sensor 3
Sensor 4

Sensor 1

Front Elevation View of a Structural Experiment End Elevation

Figure 8.15. Structural experiment.

Figure 8.15 shows front and end elevation views of the experimental setup, and the bending mo-
ment diagram that will result from the symmetrically applied loading. Four sensors are attached
to the center of the beam (where the bending moment will be constant. Since shear forces will be
zero, any cracks that will develop will be vertical).

Now suppose that four files (i.e., sensor1.txt,sensor2.txt,sensor3.txt and sensor4.txt)
contain the sensor strain measurements:

Sensor 1 Sensor 2 Sensor 3 Sensor 4
--

-0.010 -0.0025 0.0025 0.010
-0.011 -0.0030 0.0026 0.011
-0.010 -0.0032 0.0027 0.010
-0.011 -0.0034 0.0030 0.015
-0.012 -0.0036 0.0100 0.120
-0.015 -0.0040 0.0150 0.250
-0.017 -0.0042 0.0250 ***** <- failed!

--

Things to do:

1. Download, compile, and run the DataArray.java program from the java examples web page.

2. Create four data files for the experimental data. I suggest that you call them sensor1.txt
.. etc. Notice that sensor 4 fails, and hence contains an incomplete set of measurements.

Chapter 8 249

3. Write a program (e.g., ExperimentalAnalysis.java) that will read and store each set of exper-
imental measurements in a DataArray object. For each set of data, compute and print the
maximum and minimum values, the range, average and standard deviation.

Your solution should have six files: ExperimentalAnalysis.java (which you will write), DataAr-
ray.java (given), and the data files sensor1.txt through sensor4.txt.

8.6 Suppose that we need to compute the sum of the geometric series,

Sum(c, n) = c+ c2 + c3 + · · ·+ cn, (8.1)

where “c” is a complex number of the form c = a + bi, and “n” is a positive integer. The sum of a
geometric series can be computed efficiently in two ways; (1) Using Horner’s rule to re-write the
series as,

Sum(c, n) = c (1 + c (1 + · · · c(1 + c)) · · ·) , (8.2)

and (2) Using a geometric summation formula,

Sum(c, n) = c+ c2 + · · ·+ cn =

[

c− c(n+1)

1− c

]

(8.3)

Starting with the Complex.java package handed out in class, write a Java program that will prompt
a user for the coefficients a, b, and n, and then compute the series summation using Horner’s rule
and the geometric summation formula. In each case, show that

(1 + 2i) + (1 + 2i)2 + (1 + 2i)3 evaluates to − 13 + 4i. (8.4)

8.7 If a, b, and c are complex numbers, show that solutions to

a · x2 + b · x + c = 0 (8.5)

are given by

x =
−b±

√
b2 − 4ac

2a
(8.6)

Use your library of methods for complex number arithmetic and equation 8.6 to show that solu-
tions to

(2.00 + 2.00i) x2 + (3.00 + 3.00i) x + (3.00 + 5.00i) = 0.0 (8.7)

250 Engineering Software Development in Java

are x1 = −0.5445 − 1.2164i and x2 = −0.9555 + 1.2164i.

Check that x1 and x2 are in fact solutions to Equation 8.7 by evaluating each term, and arranging
real and complex components in a table of output.

Hint. You need to remember that all of the arithmetic in this problem needs to work with complex
numbers. Hence, suppose that you want to compute the roots to the equation:

2x2 − 3x+ 2 = 0.0 (8.8)

where the coefficients are all real numbers. In this context, you need to implement the equation
as if it were written:

(2 + 0i)x2 − (3 + 0i)x+ (2 + 0i) = 0.0 (8.9)

Your solution should consist of two files: Complex.java and Quadratic.java. You can down-
load Complex.java from the class web site. Quadratic.java will simply call the methods in Com-
plex.java; therefore, there is no need to change the contents of Complex.java.

8.8 Lots of problems in Civil Engineering boil down to evaluation of some sort of geometric relation-
ship among various kinds of objects (e.g., points, lines, areas, volumes).

Point (x3, y3)

Point (x1, y1) Point (x2, y2)

Point (x4 , y4)

Near Line Zone

End Zone End Zone

Figure 8.16. Distance of point to a line segment.

Figure 8.16 shows a line segment defined by two pairs of points (x1, y1) and (x2, y2), plus two
single points located at coordinates (x3, y3) and (x4, y4).

Write a Java program that will:

1. Prompt a user for (x,y) coordinates of the line segment end points,
2. Prompt a user for (x,y) coordinates of a single point,
3. Compute and print the equation of the line segment,

Chapter 8 251

4. Compute and print the distance of the single point from the line segment.

Notice that if the single point is located inside the “near line zone” then the point-to-line distance
is defined by the perpendicular distance from the line to the point. This distance is defined by
standard formulae. For cases where the single point lies in an “end zone” then the distance is
simply the euclidean distance from the closest end point and the single point itself.

