
Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2016

Mark Austin,
Department of Civil and Enviromental Engineering,

University of Maryland,
College Park,

Maryland 20742, U.S.A.

Copyright c⃝2012-2016 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

Chapter 14

Modeling Three-Dimensional Solids

14.1 Solid Modeling Formalisms

Solid modeling is the process of building and analyzing geometrically complete representations
of points, lines, polygons, and three-dimensional solid objects. In a functional sense, a model is said to
be geometrically complete if it is possible to ...

... answer questions about the geometry of an object (e.g., what is the area of a poly-
gon), or perhaps the relationship among various objects (e.g., compute the intersec-
tion of a plane and three-dimensional solid), with algorithmic operations that act on
the underlying data representation, and without taxing the inferential capabilities and
pattern recognition skills of the human user.

For this to be possible, objects must be

... closed, orientable, non-self-intersecting, bounding, and connected.

These techniques are based on the idea that for any physical object, its boundaries or skin divide three
dimensional Euclidian space in two regions, one interior and another one exterior to it. A solid model
must then: (1) have a boundary that limits and encloses the inside of the solid; (2) the boundary has to
be in contact with the interior: no dangling faces or edges; (3) and is finite in size and described by a
limited amount of information [2].

Solid Modeling in Civil Engineering

Within the Civil Engineering domain, solid modeling has already been demonstrated to be an
appropriate base for interactive design of reinforced concrete beam structures [3, 35]. Further work
is needed to understand how ideas from solid modeling techniques might be used in the modeling
of large precast (building and bridge) elements, possibly containing holes/portals, and building/bridge
assemblies.

Figure 14.1 shows, for example, a bridge structure represented as an assembly of precast solid
components. Integral properties of interest include volume, surface area, centroid, and moments and
products of inertia for solid volumes. The centroid and inertia properties act as input to the computation
of principal moments of inertia and principal axes (and their orientation).

547

548 Engineering Software Development in Java

Typical Pier Cross Sections

Adjustable supports

pier segments
Precast match−cast

Match−cast "perfect−fit" joints

Precast Inverted T−cap,
Pretensioned or Postensioned.

Match−cast "perfect−fit" joints

Foundation

Typical Box−Girder Segment Cross Section

Typical Template Segment Cross Section

Figure 14.1. Elements of a precast bridge pier (Adapted from Billington [6]).

Chapter 14 549

14.2 State-of-the-Art Solid Modeling

As illustrated in Figure 14.2, there are two basic approaches to state-of-the-art solid modeling:
constructive solid geometry (CSG) and boundary representation (B-Rep) models.

Figure 14.2. Boundary and constructive solid geometry (CSG) approaches to geometric modeling.

The former assumes that physical objects can be generated from elementary volumetric primitives (e.g.,
blocks, cylinders, tetrahedrons, spheres) plus a set of theoretical operators (e.g., union, intersection,
difference) for their combination.

Boundary representation (B-Rep) models approach solid modeling through the aggregation of
all orientable surface faces enclosing an object’s volume. Surface faces that are connected to each other
by their edges, which in turn, are defined by vertices. One complicating factor with B-Rep models is
that not all collections of faces define a valid physical model. This problem can be addressed through
restrictions on face collections; for instance, each edge must belong to exactly two loops, and the or-
dering of edges must be consistent throughout the model. The vertices are the only real geometric data
of the model since they define, directly or indirectly, the other elements (faces, edges, . . .). Mantyla
and Sulonen [29] point out, however, that in order to speed up various operations on the model, bound-
ary modelers frequently store other explicit data on the connections between faces, loops, edges and
vertices.

In general terms, no single solid modeling technique is superior for all applications [2]. Ev-
idence of this observation can be found in the large number of solid modeling data structures (and
variants therein) that have been proposed over the past four decades – well known examples include
Baumgarts winged-edge data structure [4, 5] Weilers radial-edge data structure [48], the Partial Entitiy
data structure [25], as well as various techniques for modeling polyhedral surfaces [11, 24]. Before
choosing a particular technique for a solid modeler, the pros and cons of both have to be weighted and

550 Engineering Software Development in Java

compared with the desired features of the modeler.

When it comes to evaluating integral properties of solids, different approaches are available
depending on the type of representation in use. For CSG models, it is done by decomposing the model
into small cells and computing the contribution of each cell to the total result. The decomposition is
made by a conversion algorithm and the accuracy of results depend on the arrangement of cells selected
[28]. Better results for integral properties can be achieved when using B-Rep models. Because of the
complete definition of the faces of the model, only the contribution of each face has to be evaluated,
rather than evaluating a much larger number of more or less small cells. Furthermore, since no approx-
imations are made, there is a great improvement in the accuracy of results, which can be considered to
be exact except for round off errors.

14.3 Boundary Representations and Adjacency Relations

Boundary models represent solids by ...

... a set of boundary surface faces, which in turn, are bounded by sets of edges.

The information in the boundary represenation is stored as a hierarchical data structure. It links points
together to form edges, and then groups edges to form the bounding faces of the solid. The entire
organization of the data structure serves to maintain the topological connectivity and coherence of these
points; the only true geometric data is the point coordinates.

An important concept in boundary representation models is that of adjacency relations. Adja-
cency relations are the conceptual links among the different levels of the model hierarchy, and between
neighboring elements at the same level. For example, each edge is adjacent to two faces upward in the
hierarchy, to two vertices downward in the hierarchy, and to some number of other edges at the same
level. Nine adjacency relationships for boundary models have been identified; they are:

... vertex-vertex, vertex-edge, vertex-face, edge-vertex, edge-edge, edge-face, face-
vertex, face-edge, and face-face.

Figure 14.3 shows, for example, schematics of vertex-vertex and vertex-edge relationships.

Weiler [48] states ...

... if a topological representation contains enough information to recreate all nine of
these adjacency relations without error or ambiguity, it can be considered a sufficient
adjacency topology representation.

In other words, a data representation must provide for the determination of all of the adjacency relations
in order to be geometrically complete. Answers to this problem are complicated by the fact that solids
can be defined through a variety of topological formalisms which, in turn, means that data structure
implementations need not be unique. Which one is best often boils down to issues of performance and
ability of the data structure to efficently answer adjacency queries such as:

Chapter 14 551

Figure 14.3. Vertex-vertex and vertex-edge adjacency relationships.

552 Engineering Software Development in Java

• What edges are connected to a vertex?

• What vertices are connected to a face?

A good implementation should also have compact storage requirements, and only require a constant
amount of data for each element.

14.4 Euler Operators

Euler operators were first introduced by Baumgart for generating complete polyhedral bound-
ary representation of solids [4]. These operators also guaranty that Eulers law is satisfied when ma-
nipulating the topological properties of models. The Euler-Poincare law states that for all solids the
following relationship holds:

F − E + V − L = 2(B −G) (14.1)

where the letters stand for faces, edges, vertices, faces inner loops, bodies and through holes or “genus”
respectively. Equation 14.1 applies to manifolds; that is, each edge is shared by exactly two faces, each
edge is connected by exactly two vertices, and for the three-dimensional case, at least three edges join
at each vertex. The range of applicability includes solids with curved faces or edges, and planar graphs
and polygon meshes in general [2, 16]. However, all polyhedral faces must be bounded by a single loop
of connected vertices. And faces cannot be rings or otherwise have holes in them. Equation 14.1 does
not apply to non-manifolds; that is, a solid where an edge is connected to more than two faces.

Example. A Simple Cube. Figure 14.4 shows the elements of cube: 6 faces, 8 vertices, 12 edges, zero
inner loops, one body, zero holes.

Figure 14.4. Faces, edges, and vertices in a cube.

Checking Euler’s formula: faces - edges + vertices - loops = 6 - 12 + 8 = 2(1 - 0) = 2.

Chapter 14 553

Low-Level Operators. The low-level Euler operators are denoted using descriptive mnemonic names.
Each letter of the name stands for particular operation or node:

M: make
K: kill
S: split
J: join
V: vertex
E: edge
F: face
S: solid
H: hole
R: ring

Note that the equivalent to ring in the half edge data structure is loop. There are ten Euler operators,
five of which are the inverse of the other five. A short description of the operators and a definition of the
respective C functions of some operators as used in the GWB is given ahead:

1. MVFS (make vertex face solid). This is the first operator used when creating a model. The result
is the initialization of the data structure for a solid with one face with one vertex, an empty loop
and no edges. This is called a skeletal primitive.

2. KVFS (kill vertex face solid). This is the inverse of the previous operator.

3. MEV (make edge vertex). Creates a new vertex which, along with a previous one, defines a new
edge.

4. KEV (kill edge vertex): undoes the operation made by a MEV.

5. MEF (make edge face). Creates a new edge defined by two existing vertices and hence defines a
new face. But note that one face is actually two faces with opposite orientations glued together

6. KEF (kill edge face). inverse of MEF.

7. KEMR (kill edge make ring). Splits one loop in two loops of a same face by erasing an edge. This
way, a hole is created inside the face.

8. MEKR (make edge make ring). Inverse of KEMR. Connects two loops in one. These last six
operators are called local manipulators since they are applied on the local topological properties
of boundary models.

9. MEKR (make edge make ring) and KFMRH (kill face make ring hole). While KEMR creates a
hole in one face, this operator “extends” the hole to other face and therefore to the whole solid.
However, KFMRH is also capable of creating one shell if the two argument faces belong to two
different shells.

10. MFKRH (make face kill ring hole): This is the inverse of KFMRH. These last two operators are
called global manipulators because they modify the global topological properties of the models.

Now let’s see how sequences of operators can be designed to create three dimensional solids.

554 Engineering Software Development in Java

Figure 14.5. Using Euler operations for the step-by-step assembly of a TBeam.

Chapter 14 555

Figure 14.6. Using Euler operations for the step-by-step assembly of a TBeam.

556 Engineering Software Development in Java

14.5 Half-Edge Data Structure

Figure 14.7 is a schematic of the key relationships among the six component types – solid, face,
loop, edge, halfedge and vertex – making up the half edge data structure.

previous

Vertex

Vertex

po
sit

iv
eH

al
fE

dg
e

ne
ga

tiv
eH

al
fE

dg
e

Ed
ge

Ed
ge

Edge HalfEdge

next

previous

vertex

vertex

next

next

previous

HalfEdge

Loop
halfEdge

loop
loop

loop

Face

face

Solid

this.solidfaceList

HalfEdge

loopList

next

vertex

vertex

previous

Figure 14.7. Schematic of relationships in the halfedge data structure. Note: Some relationships have
been omitted for clarity.

For convenience, the nodes of the data structure can be organized into a vertical structure containing six
layers:

I. Solid. As illustrated in Figure 14.8, solids are defined explicitly by collections of faces, edges and
vertices. Solid is the root of the data structure. Inside the data structure, a structure Solid has
references to lists of faces, edges and vertices. Lower level details (i.e., loops and halfedges) are
accessed indirectly through the Face data structure.

II. Face. Face represents one planar face delimited by a list of loops, each representing one polygonal
boundary of the face. Each face is defined by exactly one outer loop and zero or more inner
loops, representing holes in the face. Each structure Face has references to the parent solid (i.e.,
this.solid), and to the lists of loops that define it. It also has references to the face equation and to
its outer loop.

Chapter 14 557

LoopFace

Edge

Vertex

Solid

*1

1

1

*

*

1 *

Figure 14.8. UML schematic of the solid data structure.

The face equation is a four dimensional vector: the first three coefficients store a unitary vector
normal to the face and oriented to the inside of the solid; the fourth coefficient is the distance from
the origin to the center of the face projected on the direction of the face vector. In order for the
normal vectors to be consistently oriented to the inside of the solid, the vertices of all outer loops
have to be arranged in the same direction, in this case clockwise, when faced from the outside.

III. Loop. A loop represents a polygonal boundary of its parent face. While the vertices of outer loops
are arranged clockwise (as viewed from the outside of the solid), for inner loops the arrangement
is counter clockwise. As we will soon see, this arrangement of vertices plays a central role in the
design of algorithms to compute integral properties of objects with holes.

The structure Loop has references to its parent face, to the list of half edges that define the loop.

IV. Edge. Surprisingly, edges play a relatively minor role in the half edge data structure. As detailed
below, each edge is associated with exactly two half edges. All other information (e.g., start and
end vertices) is obtained indirectly through the half-edge connectivity relationships.

V. HalfEdge. The structure HalfEdge ties everything together and provides the connectedness infor-
mation critical to the development of adjacency queries. Each half edge is connected to a vertex
(from which it starts), a face on its left side (when looking along the half-edge from the origin), if
there is one, and to exactly one edge. Each half edge also has references to predecessor and suc-
cessor half edges. The latter enables development of loops within a face. Each edge is associated
with exactly two half edges, each belonging to different, but adjacent, faces. One half edge will
have a positive orientation; the other half edge will have a negative orientation.

VI. Vertex. A vertex contains the homogeneous coordinate representation of a point in a three dimen-
sional space. The structure Vertex has pointers to a vertex identifier, to its parent half edge and
to the next and previous vertex in the vertex list.

Implementation of the Half Edge Data Structure. In early implementations of the half edge data
structure (see, for example, references [3, 35, 28]), the Node, Edge, and Loop data structures also
contained references to next and previous items (i.e., they were explicitly coded as doubly linked lists).
While that latter allows for systematic access to every element of the data structure, the resulting graph
of data structures is overly complicated in our opinion.

558 Engineering Software Development in Java

To simplify the details of implementation, we assume that each face, edge and vertex object
will have a unique numerical ID. As illustrated in Figure 14.7, only the Halfedge data structure will
contain direct references to next and previous items in a Loop. Retrieval of adjacency information (e.g.,
finding the two face objects bounding an edge) is achieved through the halfEdges bounding an edge and,
in turn, references to the parent loop and face.

Chapter 14 559

14.6 Application 1. Assembly/Properties of a Rectangular Block

We begin with definition and engineering analysis of a rectangular block having edge lengths
of 3 units, 3 units, and 5 units along the x, y, and z axes respectively. Three-dimensional views of the
block are shown in Figures 14.9 and 14.10. Two steps are needed to define the block topology and
geometry:

Step I. Create a Planar Lamina. First we create a rectangular lamina in the x-y plane having four
verticies and four edges. The lamina has one surface composed of two faces (c.f., the two faces of a
piece of paper). This task is completed with five function calls to the Euler operators, namely:

Solid sA = new Solid ("Rectangular Block");
sA.mvfs(1, 1, 1.0, 1.0, 0.0);
sA.mev(1, 1, 2, 4.0, 1.0, 0.0);
sA.mev(1, 2, 3, 4.0, 4.0, 0.0);
sA.mev(1, 3, 4, 1.0, 4.0, 0.0);
sA.mef(1, 4, 1, 2);

The operator mfvs and the three mev’s define the four vertices of face 1. The first three edges are
defined by the mev’s, along with the end vertex of each edge. Face 1 is then completely represented by
defining the last edge spanning vertices 1 and 4 previously created. The mef function also creates face
2 that, together with face 1, makes up a surface.

Step II. Translational Sweep. The rectangular block is created by moving face 1 through a translational
sweep, i.e.,

Face face = sA.findFace(1);
sA.sweep(face, 0.0, 0.0, 5.0);

The function sweep() sweeps face 1 away from face 2 a distance of 5.0 units in the z direction. Face
1 is retrieved by method findFace().

Systematic Assembly of the Block Topology and Geometry. At the conclusion of Step I the block
topology and geometry, and details of half-edge and edge-vertex connectivity are as follows:

List Solid: "Rectangular Block"
Face count = 2
Edge count = 4
Vertex count = 4
Max face ID = 2
Max vertex ID = 4

Faces:
FaceId(1):
<OUTER LOOP> :v1+he(1,4) -> v4+he(4,3) -> v3+he(3,2) -> v2+he(2,1) ->
Face Equation = Vector(0.0, 0.0, -1.0)
FaceId(2):
<OUTER LOOP> :v4-he(1,4) -> v1-he(2,1) -> v2-he(3,2) -> v3-he(4,3) ->
Face Equation = Vector(0.0, 0.0, 1.0)

560 Engineering Software Development in Java

Figure 14.9. Three-dimensional view of the rectangular block example. Viewpoint is looking along the
z axis, with negative z values on the horizon.

Figure 14.10. Three-dimensional view of the rectangular block example. Viewpoint is looking along
the x axis, with negative x values on the horizon.

Chapter 14 561

e5

y

x

v1 v2

v3v4

z

Unfolded faces 1 and 2.

Unfolded faces 1 through 6 in the complete block

face 1

v1

v4

Generation of Rectangular Lamina

Translational
Sweep

e1

face 2

v1

v4

e1

e3 e3

e4e4

v2

e2

v3

face 3

v3 v4

face 2face 4face 1

v1

face 6

v4

v2 v1

v4 v3

face 5

v1 v2

e1

e1

e2

e3

e3

e4e4

e10 e11

e12

v5

v8

v6

e9

v7

e5 e6

e8

e8

e7

e6

e10

Figure 14.11. Schematic for systematic generation of a rectangular block. Solid oneway arrows denote
a positive half edge. Negative half edges are drawn as dashed oneway arrows.

562 Engineering Software Development in Java

Edges:
Edge():+ve he -> vertex 2 -ve he -> vertex 1
Edge():+ve he -> vertex 3 -ve he -> vertex 2
Edge():+ve he -> vertex 4 -ve he -> vertex 3
Edge():+ve he -> vertex 1 -ve he -> vertex 4

Verticies:
VertexId 1: Vertex(1) has coordinate (1.0, 1.0, 0.0)
VertexId 2: Vertex(2) has coordinate (4.0, 1.0, 0.0)
VertexId 3: Vertex(3) has coordinate (4.0, 4.0, 0.0)
VertexId 4: Vertex(4) has coordinate (1.0, 4.0, 0.0)

Volume("Rectangular Block") = 0.0
SurfaceArea("Rectangular Block") = 18.0

Points to note:

1. Faces 1 and 2 are each defined by a single outer loop. By convention, the outside perimeter of
each face is defined by a loop of half edges, oriented so that a systematic traversal will occur
in a clockwise direction (as viewed from outside the solid). Inward pointing face normals are
computed by applying the right-hand rule to the exterior loop of half edges.

2. Each edge is associated with one positive half edge and one negative half edge. The top right-hand
schematic of Figure 14.11 shows faces 1 and 2 unfolded, together with the vertices and edges.
The positive and negative half edges are drawn as solid and dashed oneway arrows respectively.

3. The notation:

<OUTER LOOP> :v1+he(1,4) -> v4+he(4,3)

indicates that the outer loop for face 1 begins with an edge anchored to vertex v1 and positive
and negative half-edges beginning at vertices v1 and v4 respectively. This is followed by an edge
anchored to vertex v4 with positive and negative half-edges beginning at vertices v4 and v3, and
so forth. The perimeter of face 2 is also traversed in a clockwise direction, but in this case all of
the participating half edges are negative half edges, as indicated by the notation -he(...).

4. The rectangular lamina has one surface aggregated from two faces and zero thickness. This is
refected in our computation of lamina surface area and volume.

Step II expands the model from 2 faces to 6 faces, from 4 edges to 12 edges, and from 4 vertices to 8
vertices:

List Solid: "Rectangular Block"
Face count = 6
Edge count = 12
Vertex count = 8
Max face ID = 6
Max vertex ID = 8

Chapter 14 563

Faces:
FaceId(1):
<OUTER LOOP> :v8+he(8,5) -> v5+he(5,6) -> v6+he(6,7) -> v7+he(7,8) ->
Face Equation = Vector(0.0, 0.0, -1.0)
FaceId(2):
<OUTER LOOP> :v4-he(1,4) -> v1-he(2,1) -> v2-he(3,2) -> v3-he(4,3) ->
Face Equation = Vector(0.0, 0.0, 1.0)
FaceId(3):
<OUTER LOOP> :v6-he(5,6) -> v5+he(5,4) -> v4+he(4,3) -> v3-he(6,3) ->
Face Equation = Vector(0.0, -1.0, 0.0)
FaceId(4):
<OUTER LOOP> :v7-he(6,7) -> v6+he(6,3) -> v3+he(3,2) -> v2-he(7,2) ->
Face Equation = Vector(-1.0, 0.0, 0.0)
FaceId(5):
<OUTER LOOP> :v8-he(7,8) -> v7+he(7,2) -> v2+he(2,1) -> v1-he(8,1) ->
Face Equation = Vector(0.0, 1.0, 0.0)
FaceId(6):
<OUTER LOOP> :v5-he(8,5) -> v8+he(8,1) -> v1+he(1,4) -> v4-he(5,4) ->
Face Equation = Vector(1.0, 0.0, 0.0)

Edges:
Edge():+ve he -> vertex 2 -ve he -> vertex 1
Edge():+ve he -> vertex 3 -ve he -> vertex 2
Edge():+ve he -> vertex 4 -ve he -> vertex 3
Edge():+ve he -> vertex 1 -ve he -> vertex 4
Edge():+ve he -> vertex 5 -ve he -> vertex 4
Edge():+ve he -> vertex 6 -ve he -> vertex 3
Edge():+ve he -> vertex 5 -ve he -> vertex 6
Edge():+ve he -> vertex 7 -ve he -> vertex 2
Edge():+ve he -> vertex 6 -ve he -> vertex 7
Edge():+ve he -> vertex 8 -ve he -> vertex 1
Edge():+ve he -> vertex 7 -ve he -> vertex 8
Edge():+ve he -> vertex 8 -ve he -> vertex 5

Verticies:
VertexId 1: Vertex(1) has coordinate (1.0, 1.0, 0.0)
VertexId 2: Vertex(2) has coordinate (4.0, 1.0, 0.0)
VertexId 3: Vertex(3) has coordinate (4.0, 4.0, 0.0)
VertexId 4: Vertex(4) has coordinate (1.0, 4.0, 0.0)
VertexId 5: Vertex(5) has coordinate (1.0, 4.0, 5.0)
VertexId 6: Vertex(6) has coordinate (4.0, 4.0, 5.0)
VertexId 7: Vertex(7) has coordinate (4.0, 1.0, 5.0)
VertexId 8: Vertex(8) has coordinate (1.0, 1.0, 5.0)

Volume("Rectangular Block") = 45.0
SurfaceArea("Rectangular Block") = 78.0

Engineering Properties. Recall that the product of inertia of a solid is zero if one of the coordinate
axis involved is perpendicular to a plane of symmetry of the body. By inspection, it can be seen that the
prism has two planes of symmetry, and therefore the three products of inertia are zero. As defined, the
principal axes are parallel to the coordinate axes (see Appendix A.8).

564 Engineering Software Development in Java

14.7 Application 2: Properties of a Rectangular Block containing a Hole

We now define a rectangular block containing a hole. See Figure 14.12.

Figure 14.12. Rectangular block containing a hole.

Since this volume only has one plane of symmetry (i.e., the X − Y plane), the POIs Ixz and Iyz must
be zero and one of the principal axis must be perpendicular to the XY plane.

Source Code

Here is the source code for creating and printing an empty floorslab solid containing a hole.

// Test Problem 2: Create and print an empty "floorslab" solid containing hole ...

double dr = 4.0; double dx = 20.0; double dy = 10.0;

// Define the floorslab exterior

Solid sB = new Solid ("Floorslab");
sB.mvfs(1, 1, 0.0, 0.0, 0.0);
sB.mev(1, 1, 2, dx, 0.0, 0.0);
sB.mev(1, 2, 3, dx, dy, 0.0);
sB.mev(1, 3, 4, 0.0, dy, 0.0);
sB.mef(1, 4, 1, 2);

// Create a hole in the slab ...

sB.mev(1, 1, 5, dr, dr, 0.0);

Chapter 14 565

sB.mev(1, 5, 6, dr, dy-dr, 0.0);
sB.mev(1, 6, 7, dx-2*dr, dy-dr, 0.0);
sB.mev(1, 7, 8, dx-2*dr, dr, 0.0);
sB.mef(5, 8, 1, 3);

// Kill edge make ring

sB.kemr(1, 5, 1);

// Kill face make ring hole

sB.kfmrh(2, 3);

// Sweep face into a solid

Face faces = sB.findFace(1);
sB.sweep(faces, 0.0, 0.0, 1.0);

System.out.println("");
System.out.println("Flat floor slab exterior with offset hole");
System.out.println("===");

System.out.println(sB);
System.out.println("Volume(\"" + sB.solidName + "\") = " + sB.getVolume());
System.out.println("SurfaceArea(\"" + sB.solidName + "\") = " + sB.getSurfaceArea());

Output

Flat floor slab exterior with offset hole
===

List Solid: "Floorslab"
Face count = 10
Edge count = 24
Vertex count = 16
Max face ID = 10
Max vertex ID = 16

Faces:
FaceId(1):
<OUTER LOOP> :v12+he(12,9) -> v9+he(9,10) -> v10+he(10,11) -> v11+he(11,12) ->
<INNER LOOP> :v16+he(16,13) -> v13+he(13,14) -> v14+he(14,15) -> v15+he(15,16) ->
Face Equation = Vector(0.0, 0.0, -1.0)
FaceId(2):
<OUTER LOOP> :v4-he(1,4) -> v1-he(2,1) -> v2-he(3,2) -> v3-he(4,3) ->
<INNER LOOP> :v8-he(5,8) -> v5-he(6,5) -> v6-he(7,6) -> v7-he(8,7) ->
Face Equation = Vector(0.0, 0.0, 1.0)
FaceId(3):
<OUTER LOOP> :v10-he(9,10) -> v9+he(9,1) -> v1+he(1,4) -> v4-he(10,4) ->
Face Equation = Vector(1.0, 0.0, 0.0)
FaceId(4):
<OUTER LOOP> :v11-he(10,11) -> v10+he(10,4) -> v4+he(4,3) -> v3-he(11,3) ->
Face Equation = Vector(0.0, -1.0, 0.0)
FaceId(5):
<OUTER LOOP> :v12-he(11,12) -> v11+he(11,3) -> v3+he(3,2) -> v2-he(12,2) ->

566 Engineering Software Development in Java

Face Equation = Vector(-1.0, 0.0, 0.0)
FaceId(6):
<OUTER LOOP> :v9-he(12,9) -> v12+he(12,2) -> v2+he(2,1) -> v1-he(9,1) ->
Face Equation = Vector(0.0, 1.0, 0.0)
FaceId(7):
<OUTER LOOP> :v14-he(13,14) -> v13+he(13,5) -> v5+he(5,8) -> v8-he(14,8) ->
Face Equation = Vector(0.0, -1.0, 0.0)
FaceId(8):
<OUTER LOOP> :v15-he(14,15) -> v14+he(14,8) -> v8+he(8,7) -> v7-he(15,7) ->
Face Equation = Vector(1.0, 0.0, 0.0)
FaceId(9):
<OUTER LOOP> :v16-he(15,16) -> v15+he(15,7) -> v7+he(7,6) -> v6-he(16,6) ->
Face Equation = Vector(0.0, 1.0, 0.0)
FaceId(10):
<OUTER LOOP> :v13-he(16,13) -> v16+he(16,6) -> v6+he(6,5) -> v5-he(13,5) ->
Face Equation = Vector(-1.0, 0.0, 0.0)

Edges:
Edge():+ve he -> vertex 2 -ve he -> vertex 1
Edge():+ve he -> vertex 3 -ve he -> vertex 2
Edge():+ve he -> vertex 4 -ve he -> vertex 3
Edge():+ve he -> vertex 1 -ve he -> vertex 4
Edge():+ve he -> vertex 6 -ve he -> vertex 5
Edge():+ve he -> vertex 7 -ve he -> vertex 6
Edge():+ve he -> vertex 8 -ve he -> vertex 7
Edge():+ve he -> vertex 5 -ve he -> vertex 8
Edge():+ve he -> vertex 9 -ve he -> vertex 1
Edge():+ve he -> vertex 10 -ve he -> vertex 4
Edge():+ve he -> vertex 9 -ve he -> vertex 10
Edge():+ve he -> vertex 11 -ve he -> vertex 3
Edge():+ve he -> vertex 10 -ve he -> vertex 11
Edge():+ve he -> vertex 12 -ve he -> vertex 2
Edge():+ve he -> vertex 11 -ve he -> vertex 12
Edge():+ve he -> vertex 12 -ve he -> vertex 9
Edge():+ve he -> vertex 13 -ve he -> vertex 5
Edge():+ve he -> vertex 14 -ve he -> vertex 8
Edge():+ve he -> vertex 13 -ve he -> vertex 14
Edge():+ve he -> vertex 15 -ve he -> vertex 7
Edge():+ve he -> vertex 14 -ve he -> vertex 15
Edge():+ve he -> vertex 16 -ve he -> vertex 6
Edge():+ve he -> vertex 15 -ve he -> vertex 16
Edge():+ve he -> vertex 16 -ve he -> vertex 13

Verticies:
VertexId 1: Vertex(1) has coordinate (0.0, 0.0, 0.0)
VertexId 2: Vertex(2) has coordinate (20.0, 0.0, 0.0)
VertexId 3: Vertex(3) has coordinate (20.0, 10.0, 0.0)
VertexId 4: Vertex(4) has coordinate (0.0, 10.0, 0.0)
VertexId 5: Vertex(5) has coordinate (4.0, 4.0, 0.0)
VertexId 6: Vertex(6) has coordinate (4.0, 6.0, 0.0)
VertexId 7: Vertex(7) has coordinate (12.0, 6.0, 0.0)
VertexId 8: Vertex(8) has coordinate (12.0, 4.0, 0.0)
VertexId 9: Vertex(9) has coordinate (0.0, 0.0, 1.0)
VertexId 10: Vertex(10) has coordinate (0.0, 10.0, 1.0)
VertexId 11: Vertex(11) has coordinate (20.0, 10.0, 1.0)

Chapter 14 567

VertexId 12: Vertex(12) has coordinate (20.0, 0.0, 1.0)
VertexId 13: Vertex(13) has coordinate (4.0, 4.0, 1.0)
VertexId 14: Vertex(14) has coordinate (12.0, 4.0, 1.0)
VertexId 15: Vertex(15) has coordinate (12.0, 6.0, 1.0)
VertexId 16: Vertex(16) has coordinate (4.0, 6.0, 1.0)

Volume("Floorslab") = 184.00000000000006
SurfaceArea("Floorslab") = 448.0

