
Engineering Software Development

in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2013

Mark Austin,
Department of Civil and Enviromental Engineering,

University of Maryland,
College Park,

Maryland 20742, U.S.A.

Copyright c©2012-2013 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

2 Engineering Software Development in Java

Contents

9 Working with Packages, JAR and Ant 1
9.1 Working with Packages 1

Organizing Files into Packages 1
Setting the CLASSPATH 2
Program Compilation 2
Application 1. Two kinds of Apple, Fruit and Computers 2

9.2 Working with JAR Files 7
Creating JAR files 7
Inspecting the Contents of a JAR File 7
Using the code within a JAR file 8
Extracting the Contents from a JAR file 8
JAR Files as Applications 9

9.3 Program Compilation with Ant 10
9.4 Application 2: Basic Program Compilation with Ant 10

Compiling the Program with Ant 12
Creating JAR Files with Ant 13
Running Programs with Ant 14

9.5 Application 3: Not so Basic Program Compilation with Ant 14
9.6 Application 4: Dealing with many Jar Files 18
9.7 Application 5: Using Ant to Move Files Around 19
9.8 Application 6: Using Ant to Run Programs having Arguments 19

References 21

I Appendices 22

Index 23

0

Chapter 9

Working with Packages, JAR and Ant

Java provides a number of mechanisms for organizing classesinto packages and then making
the available for use via JAR files.

9.1 Working with Packages

Definition. A package is simply a group of classes. Packages are a convenient mechanism for ...

... organizing code and, in the case or team development of code, separating the work
of one developer from another.

Organizing Files into Packages

All of the source code files in a package must be located in a subdirectory that matches the full
name of the package. For example, source code files in the sub-directory

computer/

are put in the package computer. Simple put the statement

package computer;

before the first executable statement in each source code file. Similarly, files in computer/old would
have the package name

package computer.old;

Thus a hierarchy of directories will store a hierarchy of packages.

Note. To keep package names unique, Oracle recommends that package names be organized according
to the organization in which the code is being developed. Suppose, for example, that we are developing
a graphics package under the auspecies of

http://www.cee.umd.edu

The corresponding package name would be:

package edu.umd.cee.graphics;

1

2 Engineering Software Development in Java

Setting the CLASSPATH

In most applications the hierarchy of source code files will not branch from the root directory.
Therefore, we need to tell Java where to find the hierarchy of packages.

In UNIX, the PATH environmental variable contains a list of directories that will be searched
to find an appropriate file. The CLASSPATH environemt variable is to Java what PATH is to UNIX.

In UNIX/Linux/Mac OS X, you can explicitly type:

prompt >> setenv CLASSPATH /User/austin/java.d/package-and-jar.d/

or

prompt >> setenv CLASSPATH $PWD

For situations where packages are located in multiple subdirectory hierarchies, a list of paths can be
specified. Suppose, for example, the directories are:

/User/austin/project1
/User/austin/project2

The appropriate command is:

prompt >> setenv CLASSPATH /User/austin/project1:/User/austin/project2

Directories are separated by a colon(:) in UNIX/Linux and Mac OS X, a semi-colon (;) in Windows.

Program Compilation

With the CLASSPATH in place, simply type:

prompt >> javac *.java

and the source code files will be compiled.

Remark. Hint for Program Design. Keep data private. This ensure that two variables with the same
name, but in different packages will not have any unintendedinteractions.

Application 1. Two kinds of Apple, Fruit and Computers

Let’s consider a program that works with two kinds of apple, fruit and computers, and draws
upon classes in two packages. The directory and source code file names are:

Package Directory and Source Code
--
Base directory

package fruit

Chapter 9 3

/fruit/Apple.java
/fruit/Orange.java

package computer
/computer/Apple.java

--

Within the package fruit, the details of Apple.java and Orange.java are as follows:

source code

/*
* ===

* Apple.java: An apple is a piece of fruit...

* ===

*/

package fruit;

public class Apple {

// Constructor

public Apple() {}

// Return description the fruit...

public String toString() {
String s = "An Apple is a type of Fruit!!!";
return s;

}

public static void main (String [] args) {
Apple a = new Apple();
System.out.println(a);

}
}

and ...

source code

/*
* ===

* Orange.java: An orange is a piece of fruit...

* ===

*/

package fruit;

public class Orange {

// Constructor

4 Engineering Software Development in Java

public Orange() {}

// Return description the fruit...

public String toString() {
String s = "An Orange is a type of Fruit!!!";
return s;

}

public static void main (String [] args) {
Orange a = new Orange();
System.out.println(a);

}
}

And for the computer package, Apple.java contains:

source code

/*
* ===

* Apple.java: Apple is a computer company

* ===

*/

package computer;

public class Apple {

// Constructor

public Apple() {}

// Return description the fruit...

public String toString() {
String s = "Apple is a computer company!!!";
return s;

}

public static void main (String [] args) {
Apple a = new Apple();
System.out.println(a);

}
}

The key point here is the Apple.java appears in both packages! Finally, we have a test program that
imports both packages and then calls methods in the appropriate classes.

Chapter 9 5

Apple Test Program. Here are the test program details:

source code

/*
* ===

* TestApple.java: The Apple Test program

* ===

*/

import fruit.*;
import computer.*;

public class TestApple {
public static void main (String [] args) {

// Create an apple using the complete path name...

fruit.Apple a = new fruit.Apple();
System.out.println(a);

// Create an orange using the abbreviated path name.

Orange or = new Orange();
System.out.println(or);

// Create an apple computer object

computer.Apple c = new computer.Apple();
System.out.println(c);

}
}

Basic Program Compilation

To compile the program, first we set the classpath:

prompt >> setenv CLASSPATH $PWD

Then simply type:

prompt >> javac TestApple.java

The files before and after compilation are as follows:

Before Compilation After Compilation

TestApple.java TestApple.java
fruit/Apple.java fruit/Apple.java
fruit/Orange.java fruit/Orange.java
computer/Apple.java computer/Apple.java

6 Engineering Software Development in Java

TestApple.class
fruit/Apple.class

fruit/Orange.class
computer/Apple.class

Notice that the import statements

import fruit.*;
import computer.*;

in TestApple.java allow the java compiler to find and compilethe Apple.java and Orange.java source
code files in directories fruit and computer.

Running the Program

prompt >> java TestApple

Chapter 9 7

9.2 Working with JAR Files

A JAR (Java Archive) file is simply a ZIP file that contains classes, possibly other files that a
program may need (e.g., image and sound files), and a manifestfile describing the special features of
the archive.

All of these files can be downloaded with a single HTTP requestto the the server. Use of the
ZIP compression format reduces the download time.

Creating JAR files

The most common command for creating a new JAR file has the format:

prompt >> jar cvf NameOfJARFile File1 File2 File3

Thecvf command line argument says:

• We wish to create (c) a JAR file.

• We wish the command to be verbose (v).

• We are designating the filename of the JAR file.

Example 1.From the base directory

prompt >> jar cvf Fruit.jar fruit/Apple.class fruit/Orange.class

creates a the JAR file Fruit.jar. An equivalent command is

prompt >> jar cvf Fruit.jar fruit/*.class

In either case, the output is:

Script started on Sat May 6 13:50:53 2006
prompt >>
prompt >> jar cvf Fruit.jar fruit/Apple.class fruit/Orange.class
added manifest
adding: Apple.class(in = 537) (out= 352)(deflated 34%)
adding: Orange.class(in = 540) (out= 352)(deflated 34%)
prompt >>
prompt >> exit
Script done on Sat May 6 13:51:31 2006

Inspecting the Contents of a JAR File

The syntax for inspecting the contents of the JAR file is:

prompt >> jar tvf NameOfJARFile

8 Engineering Software Development in Java

Here the command line options ”vf” are as previously explained. The command line option ”t” indicates
that we want to see the table of contents for the jar file. e.g.,

prompt >> jar tvf Fruit.jar

produces the output:

Script started on Sat May 6 13:57:49 2006
prompt >>
prompt >> jar tvf Fruit.jar

0 Sat May 06 13:51:24 EDT 2006 META-INF/
70 Sat May 06 13:51:24 EDT 2006 META-INF/MANIFEST.MF
537 Fri May 05 18:39:14 EDT 2006 Apple.class
540 Fri May 05 18:39:14 EDT 2006 Orange.class

prompt >>
prompt >> exit
Script done on Sat May 6 13:58:07 2006

Using the code within a JAR file

To use the code within a jar file we follow the syntax:

prompt >> java -cp path-to-the-jar-file class-containing-the-main-method

Example. For our fruit application, both the Apple and Orange classeshave main methods. Now
suppose that the Fruit.jar file is moved to a bin directory (i.e., relative to the base directory, the JAR file
is located in bin/Fruit.jar). To run the class file from the base directory

prompt >> java -cp bin/Fruit.jar Apple.class

Extracting the Contents from a JAR file

Syntax:

prompt >> java xvf NameOfTarFile

Example.

prompt >>
prompt >> jar xvf Fruit.jar

created: META-INF/
extracted: META-INF/MANIFEST.MF
extracted: Apple.class
extracted: Orange.class

prompt >>

The MANIFEST.MF file is located in the META-INF sub-directory.

Chapter 9 9

JAR Files as Applications

You can run JAR-packaged applications with the Java interpreter. The basic command is:

prompt >> java -jar jar-file

The -jar flag tells the interpreter that the application is packaged in the JAR file format. You can only
specify one JAR file, which must contain all the application-specific code. Before this command will
work, however, the runtime environment needs to know which class within the JAR file is the applica-
tion’s entry point.

To indicate which class is the application’s entry point, you must add a Main-Class header to the JAR
file’s manifest. The header takes the form:

Main-Class: classname

The header’s value, classname, is the name of the class that’s the application’s entry point.

Example. The contents of mainclass.mf are:

1. Main-Class: fruit.Apple
2.

It’s important to have a black line in mainclass.mf Now, type:

prompt >> jar cmf mainclass.mf Fruit.jar fruit/*.class
prompt >> java -jar Fruit.jar
An Apple is a type of Fruit!!!
prompt >>

10 Engineering Software Development in Java

9.3 Program Compilation with Ant

Ant (Another Neat Tool) is a ...

... platform-independent scripting tool for automating build processes.

It provides similar functionality to the UNIX utility programMake, but is implemented in Java, requires
the Java Platform, and is ideal for building Java projects [1].

Ant supports a large number of built-in compilation tasks including creation/removal of di-
rectories, copying files from one location to another, setting of the classpaths, and compilation of java
source code files.

Fast Answers to Frequently-Asked Questions:

1. Where can I get Ant?

See http://ant.apache.org/resources.html

2. What is the Relationship between Ant and Netbeans and Eclipse?

All of the main Java IDEs ship with Ant. So, for example, the Eclipse IDE can build and execute
Ant scripts. The NetBeans IDE uses Ant for its internal buildsystem. If you don’t want to deal
with the complexities of Ant, consider downloading and learning either Eclipse or Netbeans. One
benefit in installing Ant this way is that you will get the mostrecent release of Ant at the time the
IDE was released.

3. I have a Windows computer. Can I run Ant?

Yes. For details, see: http://ant.apache.org/manual/install.html The following sets up the environ-
ment:

set ANT_HOME=c:\ant
set JAVA_HOME=c:\jdk-1.5.0.05
set PATH=%PATH%;%ANT_HOME%\bin

9.4 Application 2: Basic Program Compilation with Ant

To see how Ant works in practice, lets repeat Application 1 (Two kinds of Fruit, Apples and
Computers), but use Ant to automate the program compilation. The packages fruit (containing Ap-
ple.java and Orange.java) and computer (containing Apple.java) will be as previously described. The
test program is TestApple.java.

Abbreviated details of the manual approach to program compilation are,

prompt >> setenv CLASSPATH $PWD
prompt >> javac TestApple.java

Chapter 9 11

Now let’s repeat the compilation, but this time use a buildfile and ant. The details ofbuild.xml are as
follows:

source code

<project>

<target name="clean">
<delete dir="build"/>

</target>

<target name="compile">
<mkdir dir="build/classes"/>
<javac srcdir="fruit" destdir="build/classes"/>

</target>

<target name="jar">
<mkdir dir="build/jar"/>
<jar destfile="build/jar/Fruit.jar" basedir="build/classes">

<manifest>
<attribute name="Main-Class" value="fruit.Apple"/>

</manifest>
</jar>

</target>

<target name="run">
<java jar="build/jar/Fruit.jar" fork="true"/>

</target>

</project>

The key points to note are as follows:

1. Ant uses XML to describe the build process and its dependencies, and by default, the XML file is
named build.xml.

2. This script file has four targets:

clean -- remove the contents of the build directory
compile -- compile the source code files

jar -- generate jar files from the class files
run -- execute the program (needs a manifest file).

3. Within each target are the actions that Ant must take to buildthat target; these are performed using
built-in tasks. For example, to compile the java program, ant will first create abuild/classes
directory (Ant will only do so if it does not already exist), and then invoke the java compiler
javac to compile the java source code files infruit, and place the compiled bytecodes in
build/classes.

Therefore, in our first example, the build and compilation tasks aremkdir andjavac.

12 Engineering Software Development in Java

Compiling the Program with Ant

To compile the program, just type:

Script started on Sun May 7 10:59:08 2006
prompt >>
prompt >> ant compile
Buildfile: build.xml

compile:
[mkdir] Created dir:

/Users/austin/java.d/package-ant.d/build/classes
[javac] Compiling 2 source files to

/Users/austin/java.d/package-ant.d/build/classes

BUILD SUCCESSFUL
Total time: 2 seconds
prompt >>

The file structure after compilation is:

prompt >> ls -lsR
total 40
16 -rw-r--r-- 1 austin austin 7036 May 7 10:57 README.txt
8 -rw-r--r-- 1 austin austin 693 May 7 10:28 TestApple.java
0 drwxr-xr-x 3 austin austin 102 May 7 10:59 build
8 -rw-r--r-- 1 austin austin 593 May 7 10:39 build.xml
0 drwxr-xr-x 4 austin austin 136 May 7 10:28 computer
0 drwxr-xr-x 4 austin austin 136 May 7 10:54 fruit
8 -rw-r--r-- 1 austin austin 25 May 7 10:28 mainclass.mf

./build:
total 0
0 drwxr-xr-x 3 austin austin 102 May 7 10:59 classes

./build/classes:
total 0
0 drwxr-xr-x 4 austin austin 136 May 7 10:59 fruit

./build/classes/fruit:
total 16
8 -rw-r--r-- 1 austin austin 437 May 7 10:59 Apple.class
8 -rw-r--r-- 1 austin austin 439 May 7 10:59 Orange.class

./computer:
total 16
8 -rw-r--r-- 1 austin austin 542 May 7 10:28 Apple.java

./fruit:
total 16
8 -rw-r--r-- 1 austin austin 538 May 7 10:28 Apple.java
8 -rw-r--r-- 1 austin austin 544 May 7 10:28 Orange.java
prompt >>
prompt >> exit
Script done on Sun May 7 10:59:41 2006

Chapter 9 13

The source codee filesfruit/Apple.java andfruit/Orange.java are compiled into byte-
codesfruit/Apple.class andfruit/Orange.class, respectively. Also, notice that the java
compiler is instructed to only look infruit/ for source code files, socomputer/Apple.java
remains uncompiled. There are two ways of solving this problem:

1. Broaden the compile directive to look in both/fruit and/compile, or

2. Create separate compile directives for the fruit and computer programs.

Creating JAR Files with Ant

Just type:

prompt >> ant jar

The compilation output and abbreviated file structure is as follows:

Script started on Sun May 7 11:06:05 2006
prompt >> ant jar
Buildfile: build.xml

jar:
[mkdir] Created dir:

/Users/austin/java.d/package-ant.d/build/jar
[jar] Building jar:

/Users/austin/java.d/package-ant.d/build/jar/Fruit.jar

BUILD SUCCESSFUL
Total time: 1 second
prompt >>

prompt >> ls -lsR
total 40
0 drwxr-xr-x 4 austin austin 136 May 7 11:06 build

./build:
total 0
0 drwxr-xr-x 3 austin austin 102 May 7 10:59 classes
0 drwxr-xr-x 3 austin austin 102 May 7 11:06 jar

./build/jar:
total 8
8 -rw-r--r-- 1 austin austin 1242 May 7 11:06 Fruit.jar

prompt >>
prompt >> exit
Script done on Sun May 7 11:06:34 2006

14 Engineering Software Development in Java

Running Programs with Ant

prompt >> ant run

This generates the output:

Script started on Sun May 7 11:09:39 2006
prompt >> ant run
Buildfile: build.xml

run:
[java] An Apple is a type of Fruit!!!

BUILD SUCCESSFUL
Total time: 1 second
prompt >>
prompt >> exit
Script done on Sun May 7 11:09:47 2006

The equivalent keyboard command is:

prompt >> java -jar build/jar/Fruit.jar

Combining Steps: Compile, jar and run

All three steps can be achieved in one step:

prompt >> ant compile jar run

9.5 Application 3: Not so Basic Program Compilation with Ant

Application 2 requires that the software developer be intimately involved with each step of the
program development (e.g., clean, then compile, then run).In our third application, we ask Ant to step
things up a bit.

1. The source code files (e.g., in /src folder) are separated from the compile files (e.g., in /build folder).

1. The Apple source code files (e.g., /src/fruit/Apple.java) are separated from the test folder (e.g.,
/test/TestApple.java).

2. Dependencies among various aspects of the compilation are introduced (e.g., you cannot run a
program unless it has already been compiled).

Before compilation the files are as follows:

total 16
8 -rwxr-xr-x 1 austin staff 1783 Oct 10 17:28 build.xml
0 drwxr-xr-x 5 austin staff 170 Oct 10 10:51 src
0 -rw-r--r-- 1 austin staff 0 Oct 10 17:31 temp
0 drwxr-xr-x 3 austin staff 102 Oct 10 17:24 test

Chapter 9 15

./src:
total 0
0 drwxr-xr-x 4 austin staff 136 Oct 10 10:12 computer
0 drwxr-xr-x 6 austin staff 204 Oct 10 16:32 fruit
0 drwxr-xr-x 6 austin staff 204 Oct 10 11:00 music

./src/computer:
total 16
8 -rwxr-xr-x 1 austin staff 542 Oct 10 10:12 Apple.java

./src/fruit:
total 32
8 -rwxr-xr-x 1 austin staff 538 Oct 10 10:12 Apple.java
8 -rwxr-xr-x 1 austin staff 544 Oct 10 10:12 Orange.java

./src/music:
total 32
8 -rwxr-xr-x 1 austin staff 638 Oct 10 10:53 Apple.java
8 -rwxr-xr-x 1 austin staff 775 Oct 10 11:00 Beatles.java

./test:
total 8
8 -rwxr-xr-x 1 austin staff 814 Oct 10 17:24 TestApple.java

Ant works with the build file:

source code

<project basedir = "." default="compile">

<target name="clean">
<delete dir="build"/>
<delete dir="lib"/>

</target>

<target name="compile">
<mkdir dir="build/classes/fruit"/>
<javac srcdir="src/fruit" destdir="build/classes"/>
<mkdir dir="build/classes/computer"/>
<javac srcdir="src/computer" destdir="build/classes"/>
<mkdir dir="build/classes/music"/>
<javac srcdir="src/music" destdir="build/classes"/>

</target>

<target name="jar" depends="compile">
<mkdir dir="lib"/>
<jar destfile="lib/Fruit.jar" basedir="build/classes">

<manifest>
<attribute name="Main-Class" value="fruit.Apple"/>

</manifest>
</jar>
<jar destfile="lib/Computer.jar" basedir="build/classes">

<manifest>
<attribute name="Main-Class" value="computer.Apple"/>

16 Engineering Software Development in Java

</manifest>
</jar>
<jar destfile="lib/Music.jar" basedir="build/classes">

<manifest>
<attribute name="Main-Class" value="music.Apple"/>

</manifest>
</jar>

</target>

<target name="run" depends="jar">
<java jar="lib/Fruit.jar" fork="true"/>
<java jar="lib/Computer.jar" fork="true"/>
<java jar="lib/Music.jar" fork="true"/>

</target>

<target name="test" depends="jar">
<mkdir dir="build/classes/test"/>
<javac srcdir="test" destdir="build/classes"/>
<jar destfile="lib/TestApple.jar" basedir="build/classes">

<manifest>
<attribute name="Main-Class" value="TestApple"/>

</manifest>
</jar>
<java jar="lib/TestApple.jar" fork="true"/>

</target>

</project>

There are five targets:

1. <target name="clean"> removes the class files and the library of jar files (stored in lib/*.jar).

2. <target name="compile"> compiles source code in the directories:

src/fruit,
src/computer, and
src/music.

The bytecodes are put in

build/classes/fruit
build/classes/computer
build/classes/music

3. <target name="jar" depends="compile"> creates jar files for each of the three cases
and puts them in the lib/ directory; i.e.,

lib/Fruit.jar,
lib/Computer.jar,
lib/Music.jar,

Chapter 9 17

4. <target name="run" depends="jar">executes the main methods in each of the jar files:

lib/Fruit.jar,
lib/Computer.jar,
lib/Music.jar,

5. <target name="test" depends="jar"> compile the source code

test/TestApple.java

into the jar file

test/TestApple.jar

Execute the main method in test/TestApple.jar.

Dependencies between the targets:

<target name="test" depends="jar">
<target name="run" depends="jar">
<target name="jar" depends="compile">

Therefore, you should be able to clean the system (i.e., ant clean) and then run the ”test” target. This
gives:

Buildfile: build.xml

compile:
[mkdir] Created dir: /Users/austin/java.d/package-ant2.d/build/classes/fruit
[javac] Compiling 2 source files to /Users/austin/java.d/package-ant2.d/build/classes
[mkdir] Created dir: /Users/austin/java.d/package-ant2.d/build/classes/computer
[javac] Compiling 1 source file to /Users/austin/java.d/package-ant2.d/build/classes
[mkdir] Created dir: /Users/austin/java.d/package-ant2.d/build/classes/music
[javac] Compiling 2 source files to /Users/austin/java.d/package-ant2.d/build/classes

jar:
[mkdir] Created dir: /Users/austin/java.d/package-ant2.d/lib

[jar] Building jar: /Users/austin/java.d/package-ant2.d/lib/Fruit.jar
[jar] Building jar: /Users/austin/java.d/package-ant2.d/lib/Computer.jar
[jar] Building jar: /Users/austin/java.d/package-ant2.d/lib/Music.jar

test:
[mkdir] Created dir: /Users/austin/java.d/package-ant2.d/build/classes/test
[javac] Compiling 1 source file to /Users/austin/java.d/package-ant2.d/build/classes

[jar] Building jar: /Users/austin/java.d/package-ant2.d/lib/TestApple.jar
[java] An Apple is a type of Fruit!!!
[java] An Orange is a type of Fruit!!!
[java] Apple is a computer company!!!
[java] Apple is a recording company!!!

18 Engineering Software Development in Java

[java] The Beatles: John, Paul, George, Ringo
[java]
[java]

BUILD SUCCESSFUL
Total time: 1 second

9.6 Application 4: Dealing with many Jar Files

Now let’s deal the problem of compiling a program that has many (perhaps dozens) or jar files. Rather
than explicity list every single filename, we can ...

... use regular expressions to vastly simplify the collection of jar file names.

Consider:

total 3320
0 drwxr-xr-x@ 4 austin staff 136 Aug 13 2012 antlr

272 -rwxr-xr-x@ 1 austin staff 136065 Aug 13 2012 aterm-java-1.6.jar
0 drwxr-xr-x 19 austin staff 646 Aug 13 2012 jena
0 drwxr-xr-x 5 austin staff 170 Aug 13 2012 jgrapht

1224 -rwxr-xr-x@ 1 austin staff 622820 Aug 13 2012 pellet-core.jar
520 -rwxr-xr-x@ 1 austin staff 266122 Aug 13 2012 pellet-datatypes.jar
104 -rwxr-xr-x@ 1 austin staff 52156 Aug 13 2012 pellet-el.jar
0 drwxr-xr-x 4 austin staff 136 Aug 13 2012 pellet-jena

792 -rwxr-xr-x@ 1 austin staff 404602 Aug 13 2012 pellet-query.jar
408 -rwxr-xr-x@ 1 austin staff 207217 Aug 13 2012 pellet-rules.jar

./antlr:
total 312

8 -rwxr-xr-x@ 1 austin staff 1429 Aug 13 2012 LICENSE.txt
304 -rwxr-xr-x@ 1 austin staff 151989 Aug 13 2012 antlr-runtime-3.2.jar

./jena:
total 22904
3288 -rwxr-xr-x@ 1 austin staff 1680523 Aug 13 2012 arq-2.8.4.jar

8 -rwxr-xr-x@ 1 austin staff 1682 Aug 13 2012 copyright.txt
6320 -rwxr-xr-x@ 1 austin staff 3233439 Aug 13 2012 icu4j-3.4.4.jar
416 -rwxr-xr-x@ 1 austin staff 210961 Aug 13 2012 iri-0.8-sources.jar
304 -rwxr-xr-x@ 1 austin staff 151589 Aug 13 2012 iri-0.8.jar

2944 -rwxr-xr-x@ 1 austin staff 1506473 Aug 13 2012 jena-2.6.3-tests.jar
3712 -rwxr-xr-x@ 1 austin staff 1900385 Aug 13 2012 jena-2.6.3.jar
392 -rwxr-xr-x@ 1 austin staff 198945 Aug 13 2012 junit-4.5.jar
704 -rwxr-xr-x@ 1 austin staff 358180 Aug 13 2012 log4j-1.2.13.jar

1304 -rwxr-xr-x 1 austin staff 665064 Aug 13 2012 lucene-core-2.3.1.jar
48 -rwxr-xr-x@ 1 austin staff 23445 Aug 13 2012 slf4j-api-1.5.8.jar
24 -rwxr-xr-x@ 1 austin staff 9679 Aug 13 2012 slf4j-log4j12-1.5.8.jar
56 -rwxr-xr-x@ 1 austin staff 26514 Aug 13 2012 stax-api-1.0.1.jar
8 -rwxr-xr-x@ 1 austin staff 6 Aug 13 2012 version.txt

1024 -rwxr-xr-x@ 1 austin staff 524224 Aug 13 2012 wstx-asl-3.2.9.jar
2352 -rwxr-xr-x@ 1 austin staff 1203860 Aug 13 2012 xercesImpl-2.7.1.jar

Now we can simply write:

Chapter 9 19

<!-- Define properties and filesets for classpath -->

<property name="lib.dir" value="lib" />
<property name="build.dir" value="build" />

<path id="files-classpath">
<fileset dir="${lib.dir}" includes="**/*.jar"/>
<fileset dir="${lib.dir}/jena" includes="**/*.jar"/>
<fileset dir="${lib.dir}/antlr" includes="**/*.jar"/>
<pathelement path="${build.dir}"/>

</path>

to include all of the jar files in the lib folder, plus the classes positioned in the build directory.

9.7 Application 5: Using Ant to Move Files Around

In the script:

<!-- == -->
<!-- Compile Java source code. -->
<!-- == -->

<target name="compile" description="Compile java source code">
<mkdir dir="build" />
<mkdir dir="build/demo" />
<javac srcdir="./src" destdir="./build"

classpath = "{java.class.path}"
classpathref = "files-classpath"
fork="true"/>

<mkdir dir ="build/demo/data" />
<copy todir="build/demo/data">

<fileset dir="src/demo/data" />
</copy>

</target>

a set of data files is copied from directory (folder)src/demo/data to directorybuild/demo/data.

9.8 Application 6: Using Ant to Run Programs having Arguments

Sometimes java application programs will import files, either from pre-defined directories (e.g.,
images files), or as data files specified as a program argument.The latter can be incorporated into ant
files, e.g.,

<!-- Program 02: Run demo.DateTimeBrowser -->

<target name="run02" depends = "compile" description="Run demo.DateTimeBrowser">
<java classname = "demo.DateTimeBrowser"

classpath = "{java.class.path}"
classpathref = "files-classpath" fork="true">

20 Engineering Software Development in Java

<arg value="./build/demo/data/DateTimeFile.dat"/>
</java>

</target>

executes the programdemo.DateTimeBrowserwith the program argument:

./build/demo/data/DateTimeFile.dat.

Bibliography

[1] Holzner S.Ant - The Definitive Guide (2nd Edition). O’Reilly Media, 2005.

21

Part I

Appendices

22

Index

Ant, 10
creating JAR files, 13
program compilation, 10–13
running programs, 14–20

CLASSPATH, 2

Eclipse, 10

JAR files, 7–9
Java

ant, 10
package, 1

Java Archive (JAR) files, 7

MANIFEST file, 8

Netbeans, 10

23

