n’\liﬂ
"

s —I“"‘z'n—'- ,-—n-f'-—-“h '_"I“[L]J |E-]|l

ENCE 688R CIVIl Information Systems

Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2016

Mark Austin,

Department of Civil and Enviromental Engineering,
University of Maryland,

College Park,

Maryland 20742, U.S.A.

Copyright (©2012-2016 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

Chapter 13

Modeling Real-World Networks

13.1 Introduction

Networks occur in almost every area of engineering — for example, plumbing and HVAC net-
works are part of building engineering; highways and railways are part of transportation engineering;
communication and power networks are part of electrical engineering [10, 14, 49]. A less obvious ex-
ample is the arrangement of spaces in a building and pathways for access — rooms and spaces will be
the networks nodes; the doors and windows will be edges in the architectural graph.

Simple Example. Figure 13.1 shows a modeling schematic for a house and its surrounding grounds.

T rail :
. (]
gate‘ I’Oad —® — — @ garage “‘
path' °
— ®® house E"

_ ®
bridge @ trees
[\, | ’d“o e :
| | islan land »
L — lake -

.

Figure 13.1. Modeling for a house and its surrounding grounds.

The exterior rail and pathways connecting the buildings and the lake can be viewed as simple networks.

In Civil Systems applications, networks can be conveniently partitioned into two types: topological
networks and geometric networks. Topological networks allow for the study of problems associated
with connectivity (e.g., how are the nodes connected? Can I get from node a to node ¢?) Topological
networks abstract geometric concerns from consideration. Geometric networks, on the other hand, look
at relationships among spatial entities such as lines, polygons and solids.

439

440 Engineering Software Development in Java

13.2 Graph Data Structures and Algorithms

Practical Importance. Many problems of practical importance can be formulated in terms of ...

... a set of entities, and relationships between them.

Examples include:

e Route finding (i.e., objects = towns; relationships = road/rail links),

e Course planning (i.e., objects = courses, relationships = prerequisites),

e Circuit analysis (i.e., objects = components, relationships = wire connections), and

e Game playing: objects = board state, relationships = moves.
In computer science, graphs are used to represent networks of communication, data organization, com-
putational devices, the flow of computation, etc. In Civil Systems graphs can be used to represent civil

infrastructure networks, transportation networks, and biological networks. The modeling of building
systems can be thought of as a problem that involves collections of intertwined networks.

Mathematical Definition. A graph is a data structure consisting of:

e A set of vertices (or nodes).

e A set of edges (or arcs) connecting the vertices.
Mathematically, a graph G = (V, E), where V is a set of vertices, E = set of edges, and each edge
is formed from pair of distinct vertices in V. V and E are usually taken to be finite, and many of the

well-known results are not true for infinite graphs because many of the arguments fail in the infinite
case.

Notational Definitions. Here are few notational definitions:

1. The vertices belonging to an edge are called the ends, endpoints, or end vertices of the edge.
2. A vertex may exist in a graph and not belong to an edge.

3. The order of a graph is (the number of vertices).

4. A graph’s size is the number of edges.

5. The degree of a vertex is the number of edges that connect to it, where an edge that connects to the
vertex at both ends (a loop) is counted twice.

6. Vertices i and j are adjacent if (i, j) is an edge in the graph. The edge (i, j) is incident on vertices i
and j.

Chapter 13 441

Types of Graph
Undirected Graph.

An undirected graph is one in which edges have no orientation. The edge (a, b) is identical to
the edge (b, a), i.e., they are not ordered pairs, but sets u, v (or 2-multisets) of vertices.

Directed Graph.

A directed graph or digraph is an ordered pair D = (V, A) with

e V a set whose elements are called vertices or nodes, and

e A a set of ordered pairs of vertices, called arcs, directed edges, or arrows.

An arc a = (x, y) is considered to be directed from x to y; y is called the head and x is called the tail of
the arc; y is said to be a direct successor of x, and x is said to be a direct predecessor of y. If a path leads
from x to y, then y is said to be a successor of x and reachable from x, and x is said to be a predecessor
of y. The arc (y, x) is called the arc (x, y) inverted.

Mixed Graph

A mixed graph G is a graph in which some edges may be directed and some may be undirected.
It is written as an ordered triple G =(V, E, A) with V, E, and A defined as above. Directed and undirected
graphs are special cases.

Multigraph

A loop is an edge (directed or undirected) which starts and ends on the same vertex; these may
be permitted or not permitted according to the application. In this context, an edge with two different
ends is called a link.

The term multigraph is generally understood to mean that multiple edges (and sometimes loops)
are allowed. Where graphs are defined so as to allow loops and multiple edges, a multigraph is often
defined to mean a graph without loops, however, where graphs are defined so as to disallow loops and
multiple edges, the term is often defined to mean a graph which can have both multiple edges and loops,
although many use the term pseudograph for this meaning.

Simple Graph

As opposed to a multigraph, a simple graph is ...

... an undirected graph that has no loops and no more than one edge between any two
different vertices.

In a simple graph the edges of the graph form a set (rather than a multiset) and each edge is a distinct
pair of vertices. In a simple graph with n vertices every vertex has a degree that is less than n (the
converse, however, is not true - there exist non-simple graphs with n vertices in which every vertex has
a degree smaller than n).

Weighted Graph

442 Engineering Software Development in Java

Undirected Graph Directed Graph
O\ /\ / O O w\\ /70
O———O O——»0O
Mixed Graph Multigraph

O\ 'ic\ /'°
Figure 13.2. Undirected, directed, mixed and multigraph types.

A graph is a weighted graph if ...
... a number (weight) is assigned to each edge.

Such weights might represent, for example, costs, lengths, capacities, distances, or time etc. depending
on the problem at hand. Some authors call such a graph a network.

Labels and Trees
e A labelled graph adds names to vertices.

e Graphs are more general than trees. Trees are a special kind of connected graph, with no cycles and
a distinguished vertex (node), the root.

Connectivity Relationships

Here are a few definitions:

1. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to
v. Otherwise, they are called disconnected.

2. A graph is called connected if every pair of distinct vertices in the graph is connected; otherwise, it
is called disconnected.

3. A directed graph is called weakly connected if replacing all of its directed edges with undirected
edges produces a connected (undirected) graph.

4. A directed graph is called strongly connected if there is a path from each vertex in the graph to every
other vertex. In particular, this means paths in each direction; a path from node u to node v and

Chapter 13 443

also a path from node v to node u. Directed oneway loops within a graph will have collections of
nodes that form a strong subgraph.

Graph Paths
A path in a graph is ...

... a sequence of vertices such that from each of its vertices there is an edge to the next

vertex in the sequence.

A path may be infinite, but a finite path always has a first vertex, called its start vertex, and a last vertex,
called its end vertex. Both of them are called terminal vertices of the path. The other vertices in the path
are internal vertices.

A cycle is a path such that the start vertex and end vertex are the same. The choice of the start vertex in
a cycle is arbitrary.

Types of Path. Here are a few definitions:

1. A path with no repeated vertices is called a simple path, and a cycle with no repeated vertices or
edges aside from the necessary repetition of the start and end vertex is a simple cycle.

In modern graph theory, most often simple is implied, i.e., cycle means simple cycle and path
means simple path, but this convention is not always observed.

2. A path such that no graph edges connect two nonconsecutive path vertices is called an induced path.
3. A simple path that includes every vertex of the graph is known as a Hamiltonian path.
4. A simple cycle that includes every vertex of the graph is known as a Hamiltonian cycle.

5. A cycle with just one edge removed in the corresponding spanning tree of the original graph is
known as a Fundamental cycle.

Graph Algorithms
Graph algorithms that we will look at include:
e Searching for a path between two nodes. Can be used in game playing, Al, route finding, ...
e Finding the shortest path between two nodes.
e Finding a possible ordering of nodes given some constraints, e.g., finding order of modules to take;

order of actions to complete a task.

Two of the most commonly used algorithms and depth-first search and bread-first search. You can find
a detailed description of these algorithms in the support material handed out in class.

444 Engineering Software Development in Java

Graph Implementation
There are many varieties of graphs: un/directed, un/weighted etc.

Clearly we want to reduce implementation effort by deriving as much of each graph class as possible.
However theres no single obvious class structure to provide these varieties and this probably explains
why there are no Graphs in the JDK Collections

Adjacency Matrix Implementation

In computer science an adjacency matrix is ...

... a means of representing which vertices (or nodes) of a graph are adjacent to which
other vertices.

From a mathematical standpoint, the adjacency matrix of a finite graph G on n vertices is the n x
n matrix where the non-diagonal entry a;; is the number of edges from vertex ¢ to vertex j, and the
diagonal entry aii, depending on the convention, is either once or twice the number of edges (loops)
from vertex i to itself.

Example.

Edge List Implementation

Chapter 13 445

13.3 Conceptual Models for Partition Hierarchies and Networks

Points, lines and regions are fundamental abstractions for modeling single, self-contained objects:

Point Line Region
¥ A
\

Figure 13.3. Points, lines and regions are fundamental spatial data types.

Partitions and networks are fundamental abstractions for modeling spatially related collections of ob-
jects.

Partitions Spatially Distributed Network

Figure 13.4. Partitions and networks are two abstractions for modeling collections of spatial objects.

Examples of partitions include: rooms in a building, districts in a state, countries in a continent.
Conceptual Model. We begin with a conceptual model for partition hierarchies. Figure 13.5 says:
1. A Partition can be decomposed into 1 or more Partitions (sub-Partitions).
2. Each Partition has one boundary (here we ignore the possibility of partitions containing holes).
3. Boundaries are composed of edges (..at least 3 edges).
4. Each Edge segment has a Node and Link.
5. Nodes and Link are paired in a one-to-one correspondence.

6. A Node has a coordinate.

446

Engineering Software Development in Java

% Partition
1.n
1
Boundary
3..nT \/
Edges <> 2 Neighbour
| | | |

Node H{ Link Left Right
Coord

Figure 13.5. Conceptual model for partition hierarchies (Adapted from Chunithipaisan S. et al. [12]).

Network M Feature
0..n | 0..n |
Geometry Topology
Chain Point Node —
1 1 1
I....m
Line Coord I

Figure 13.6. Conceptual model for networks (Adapted from Chunithipaisan S. et al. [12]).

Link

Chapter 13 447

7. Edges also have Neighboring Partitions.

8. Neighboring Partitions can be classified as to whether they are on the Left and Right of the Edge.

Figure 13.6 is a conceptual model for networks. It states:

)

. A Network is composed of Features.

. Each Feature has Geometry and Topology.

. Geometry is a generalization for Chains and Points...
. A Chain corresponds to one or more Line segments.

. A Point has a coordinate.

S U A W N

. Topology is a generalization for Nodes and Links.

7. Nodes also have coordinates.

448 Engineering Software Development in Java

13.4 Liang’s Graph Representation (Adjacency Matrices and Edge Lists)

This section is adapted from Chapter 27 of Liang’s Java book.

DisplayUsMap

Seattle

Boston

Chicage
York

Figure 13.7. Network of US cities.

We present a variety of graph algorithms for analyzing a network of US cities. See Figure 13.7.

In algorithms that depend only on the details of city-to-city connetivity (and not geometry), the graph
vertices and edges can be simply declared as arrays of character strings and integers, i.e.,

String[] vertices = { "Seattle", "San Francisco", "Houston"};
int[][] edges = { { 0, 1}, { O, 3}, { O, 5},

{11, 8}, {11, 9}, {11, 10}
}i

For the generation of Figure 13.7, the array of character strings is replaced by an array of references to

City objects, each initialized with their name and coordinates, i.e.,

private City[] vertices = { new City("Seattle", 75, 50),
new City("San Francisco", 50, 210),

. city details removed
new City("Miami", 600, 400),

new City("Dallas", 408, 325),
new City("Houston", 450, 360) };

Chapter 13 449

Here the coordinates are pixel coordinates — a more elegant solution would work with the actual longi-
tude and latitude of the city and make the appropriate transformation to screeen coordinates.

Source code: Look in java-code-graphs/liang/
Graph Interface Classes and Abstract Classes

Figure 13.8 shows the hierarchy of interfaces, abstract classes and implementation classes in Liang’s
graph representation.

<< abstract >> implements << interface >>
AbstractGraph Graph
WeightedGraph UnweighedGraph

Figure 13.8. Hierarchy of graph classes and interfaces.

Modeling support is provided for unweighted and weighted graphs, stored in either an adjacecy matrix
format or edge list format, and breadth-first and depth-first traversal of the graph.

File: src/liang/model/graph/Graph java.

The graph functionality is defined through a Graph interface.

source code

/%

Graph.java: Graph interface ...

* % X

*/

package liang.model.graph;

public interface Graph<v> {
/*% Return the number of vertices in the graph =/
public int getSize();
/+*% Return the vertices in the graph x/
public java.util.List<V> getVertices();
/%% Return the object for the specified vertex index =/

public V getVertex(int index);

450 Engineering Software Development in Java

/+*% Return the index for the specified vertex object =x/
public int getIndex(V Vv);

/+*% Return the neighbors of vertex with the specified index =/
public java.util.List<Integer> getNeighbors(int index);
/+% Return the degree for a specified vertex x/

public int getDegree(int v);

/*% Return the adjacency matrix =/

public int[][] getAdjacencyMatrix();

/x% Print the adjacency matrix =/

public void printAdjacencyMatrix();

/%% Print the edges x/

public void printEdges();

/%% Obtain a depth-first search tree */

public AbstractGraph<v>.Tree dfs(int v);

/%% Obtain a breadth-first search tree */

public AbstractGraph<v>.Tree bfs(int v);

/%% Return a Hamiltonian path from the specified vertex
* Return null if the graph does not contain a Hamiltonian path =*/

public java.util.List<Integer> getHamiltonianPath(V vertex);

/%% Return a Hamiltonian path from the specified vertex label
* Return null if the graph does not contain a Hamiltonian path =*/

public java.util.List<Integer> getHamiltonianPath(int inexe);

Graphs of various data types can be assembled — see, for example, AbstractGraph; V. Tree bfs(int v).
Also notice that the interface contains explicit references to the List interface.

File: src/liang/model/graph/AbstractGraph.java.

Most of the algorithmic support for the implementation of a graph interface is provided in the Abstract-
Graph class. As we will soon see, unweighed and weighted graph implemenations will be modeled as
extensions of the specification provided within the abstract class.

Chapter 13

451

/%

*
*/

source code

Abstract Graph.java: Abstract class to implement graph interface ...

package liang.model.graph;
import java.util.sx;

public abstract class AbstractGraph<Vv> implements Graph<v> {

protected List<vV> vertices; // Store vertices
protected List<List<Integer>> neighbors; // Adjacency lists

/+*% Construct a graph from edges and vertices stored in arrays =/

protected AbstractGraph(int[][] edges, V[] vertices) {

this.vertices = new ArrayList<v>();
for (int i = 0; i < vertices.length; i++)
this.vertices.add(vertices[i]);

createAdjacencylists(edges, vertices.length);

/% Construct a graph from edges and vertices stored in List =*/

protected AbstractGraph(List<Edge> edges, List<V> vertices) {

this.vertices = vertices;
createAdjacencylists(edges, vertices.size());

/+*% Construct a graph for integer vertices 0, 1, 2 and edge list x/

protected AbstractGraph(List<Edge> edges, int numberOfVertices) {

vertices = new ArrayList<V>(); // Create vertices
for (int i = 0; i < numberOfVertices; i++) {
vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

}

createAdjacencylLists (edges, numberOfVertices);

/*% Construct a graph from integer vertices 0, 1, and edge array =/

protected AbstractGraph(int[][] edges, int numberOfVertices) {

vertices = new ArrayList<Vv>(); // Create vertices
for (int i = 0; i < numberOfVertices; i++) {
vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

}

createAdjacencylLists (edges, numberOfVertices);

/%% Create adjacency lists for each vertex =/

private void createAdjacencyLists(

int[][] edges, int numberOfVertices) {

452 Engineering Software Development in Java

// Create a linked list

neighbors = new ArrayList<List<Integer>>();
for (int i = 0; i < numberOfVertices; i++) {
neighbors.add(new ArrayList<Integer>());

}

for (int i = 0; i < edges.length; i++) {
int u edges[i][0];
int v edges[i][1];
neighbors.get(u).add(v);

}

/+% Create adjacency lists for each vertex */

private void createAdjacencyLists(
List<Edge> edges, int numberOfVertices) {

// Create a linked list
neighbors = new ArrayList<List<Integer>>();
for (int i = 0; i < numberOfVertices; i++) {

neighbors.add(new ArrayList<Integer>());

}

for (Edge edge: edges) {
neighbors.get(edge.u).add(edge.v);

}

/%% Return the number of vertices in the graph =/
public int getSize() { return vertices.size(); }
/+*% Return the vertices in the graph =/

public List<V> getVertices() { return vertices; }
/%% Return the object for the specified vertex =/
public V getVertex(int index) {

return vertices.get(index);

}

/%% Return the index for the specified vertex object */
public int getIndex(V v) {

return vertices.indexOf (v);

}

/*% Return the neighbors of vertex with the specified index =*/

public List<Integer> getNeighbors(int index) {

Chapter 13 453

return neighbors.get (index);

}

/+% Return the degree for a specified vertex =/

public int getDegree(int v) {
return neighbors.get(v).size();

}

/*% Return the adjacency matrix =/

public int[][] getAdjacencyMatrix() {
int[][] adjacencyMatrix = new int[getSize()][getSize()];
for (int i = 0; i < neighbors.size(); i++) {
for (int j = 0; j < neighbors.get(i).size(); j++) {
int v = neighbors.get(i).get(j);
adjacencyMatrix[i][v] = 1;
}

}

return adjacencyMatrix;

}

/x% Print the adjacency matrix =/

public void printAdjacencyMatrix() {
int[][] adjacencyMatrix = getAdjacencyMatrix();
for (int i = 0; i < adjacencyMatrix.length; i++) {
for (int j = 0; j < adjacencyMatrix[0].length; j++) {
System.out.print(adjacencyMatrix[i][]j] + " ");

}

System.out.println();
}
}

/%% Print the edges x/

public void printEdges() {

for (int u = 0; u < neighbors.size(); u++) {
System.out.print("Vertex " + u + ": ");
for (int j = 0; j < neighbors.get(u).size(); j++) {
System.out.print("(" + u + ", " +
neighbors.get(u).get(j) + ") ");
}

System.out.println();
}
/+*x Edge inner class inside the AbstractGraph class x/
public static class Edge {

public int u; // Starting vertex of the edge
public int v; // Ending vertex of the edge

454 Engineering Software Development in Java

/%% Construct an edge for (u, v) %/

public Edge(int u, int v) {
this.u = u;
this.v v;

}

/+% Obtain a DFS tree starting from vertex v =/
/+% To be discussed in Section 27.6 =*/

public Tree dfs(int v) {
... details of code removed ...

}

/%% Starting bfs search from vertex v x/
/%% To be discussed in Section 27.7 x/

public Tree bfs(int v) {

... details of code removed ...

/+% Tree inner class inside the AbstractGraph class =/
/+*%* To be discussed in Section 27.5 x/

public class Tree {
private int root; // The root of the tree
private int[] parent; // Store the parent of each vertex

private List<Integer> searchOrders; // Store the search order

... details of code removed ...

/+*% Return a Hamiltonian path from the specified vertex object
* Return null if the graph does not contain a Hamiltonian path =*/

public List<Integer> getHamiltonianPath(V vertex) {

return getHamiltonianPath(getIndex(vertex));

}

/+%x Reorder the adjacency list in increasing order of degrees =/
private void reorderNeigborsBasedOnDegree(List<Integer> list) {

.... details of code removed

public void addVertex(V vertex) {

Chapter 13 455

vertices.add(vertex);
neighbors.add(new ArrayList<Integer>());

}

public void addEdge(int u, int v) {
neighbors.get(u).add(v);
neighbors.get(v).add(u);

Notice that the vertices are stored as lists, and the adjacency lists are stored as a list of lists, i.e.,

protected List<v> vertices; // Store vertices
protected List<List<Integer>> neighbors; // Adjacency lists

File: src/liang/model/graph/UnweightedGraph.java.

source code

*
* Unweighted Graph.java: Implementation for Unweighted Graphs

*/
package liang.model.graph;
import java.util.sx;
public class UnweightedGraph<V> extends AbstractGraph<v> {
/% Construct a graph from edges and vertices stored in arrays =/
public UnweightedGraph(int[][] edges, V[] vertices) {

super (edges, vertices);

}

/*% Construct a graph from edges and vertices stored in List x/
public UnweightedGraph(List<Edge> edges, List<V> vertices) {
super (edges, vertices);

}

/+*% Construct a graph for integer vertices 0, 1, 2 and edge list =/
public UnweightedGraph(List<Edge> edges, int numberOfvVertices) {

super (edges, numberOfVertices);

}

/+*% Construct a graph from integer vertices 0, 1, and edge array =/

public UnweightedGraph(int[][] edges, int numberOfVertices) {

456 Engineering Software Development in Java

super (edges, numberOfVertices);

File: src/liang/model/graph/WeightedEdge.java.

source code

*

WeightedGraphEdge.java: Implementation for Weighted Graphs

package liang.model.graph;

public class WeightedEdge extends AbstractGraph.Edge implements Comparable<WeightedEdge> {
public int weight; // The weight on edge (u, V)

/x% Create a weighted edge on (u, v) x/

public WeightedEdge(int u, int v, int weight) {
super(u, v);
this.weight = weight;

}

/+*% Compare two edges on weights =*/

public int compareTo(WeightedEdge edge) {
if (weight > edge.weight)
return 1;
else if (weight == edge.weight) {
return 0;
} else {
return -1;

File: src/liang/model/graph/WeightedGraph.java.

source code

*

WeightedGraph.java: Implementation for Weighted Graphs

*
*/

package liang.model.graph;

Chapter 13 457

import java.util.sx;
public class WeightedGraph<V> extends AbstractGraph<v> {
// Priority adjacency lists
private List<PriorityQueue<WeightedEdge>> queues;
/+*% Construct a WeightedGraph from edges and vertices in arrays =/

public WeightedGraph(int[][] edges, V[] vertices) {
super (edges, vertices);
createQueues (edges, vertices.length);

}
/*% Construct a WeightedGraph from edges and vertices in List =/

public WeightedGraph(int[][] edges, int numberOfVertices) {
super (edges, numberOfVertices);
createQueues (edges, numberOfVertices);

}
/%% Construct a WeightedGraph for vertices 0, 1, 2 and edge list =*/

public WeightedGraph(List<WeightedEdge> edges, List<V> vertices) {
super ((List)edges, vertices);
createQueues (edges, vertices.size());

}

/*% Construct a WeightedGraph from vertices 0, 1, and edge array =/

public WeightedGraph(List<WeightedEdge> edges, int numberOfvVertices) {
super ((List)edges, numberOfVertices);
createQueues (edges, numberOfVertices);

}
/+*% Create priority adjacency lists from edge arrays =/

private void createQueues(int[][] edges, int numberOfvVertices) {
details of code removed

}
/+*% Create priority adjacency lists from edge lists x/

private void createQueues(List<WeightedEdge> edges, int numberOfvVertices) {
details of code removed

}
/+% Display edges with weights =/

public void printWeightedEdges() {
details of code removed

458 Engineering Software Development in Java

/+*% Get a minimum spanning tree rooted at vertex 0 =x/

public MST getMinimumSpanningTree() {
return getMinimumSpanningTree(0);

}
/+*% Get a minimum spanning tree rooted at a specified vertex =/

public MST getMinimumSpanningTree(int startingIndex) {
details of code removed ...

}
/%% MST is an inner class in WeightedGraph =/

public class MST extends Tree {
details of code removed ...

}

/*% Find single source shortest paths */

public ShortestPathTree getShortestPath(int sourceIndex) {
details of code removed ...

}

public void addVertex(V vertex) {
super.addVertex(vertex);
queues.add(new PriorityQueue<WeightedEdge>());

}

public void addEdge(int u, int v, int weight) {
super.addEdge(u, Vv);
queues.get(u).add(new WeightedEdge(u, v, weight));
queues.get(v).add(new WeightedEdge(v, u, weight));

Chapter 13

459

Example 1. A Simple Graph Representation

Problem Statement. This example does two things:

1. We build an unweighted graph model for Figure 13.7, and then investigate properties of the graph,
such as retrieving the number of vertices and the adjacency relationships.

2. We build a small unweighted graph defined by five nodes and an arraylist of AbstractGraph.Edge

(this is an inner class) objects.

File: src/demo/TestGraph java.

In this program we exercise the abstract graph and graph interface.

source code
/%
*
* TestGraph.java: Exercise abstract graph and graph interface
*
*/

package demo;
import liang.model.graph.x;

public class TestGraph {

public static void main(String[] args) {

String[] vertices = {

int[][]
{0,
{1,
{2,
{3,
{4,
{5,
{6,
{7,
{8,
{9,
{10,
{11,

edges = {
1}, {0, 3},
0}, {1, 2%,
1}, {2, 3},
0}, {3, 1},
2}, {4, 3},
0}, {5, 3},
5}, {6, 7},
4}, {7, 5},
4}, {8, 7},
8}, {9, 11},

2}, {10, 43},

8}, {11, 9},
}i

System.out.println("Run TestGraph()

{0,
{1,
{2,
{3,
{4,
{5,

{7,
{8,

{10,
{11,

"Seattle", "San Francisco",
"Denver", "Kansas City",
"Boston", "New York",

"Miami", "Dallas",

5},

3}

4}, {2, 10},

2}, {3, 4}, {3, 5},

5}y, {4, 7}, {4, 8}, {4, 10},

4}, {5, 6}, {5, 7},

6}, {7, 8},

9}, {8, 10}, {8, 11},

8}, {10, 11},
10}

"Los Angeles",
"Chicago",
"Atlanta",
"Houston"};

")

System.out.println("

Graph<String> graphl

System.out.println("The number of vertices in graphl:

")

new UnweightedGraph<String>(edges, vertices);

n

+ graphl.getSize());

460 Engineering Software Development in Java

System.out.println("The vertex with index 1 is + graphl.getVertex(1l));
System.out.println("The index for Miami is " + graphl.getIndex("Miami"));
System.out.println("The edges for graphl:");

graphl.printEdges();

System.out.println("Adjacency matrix for graphl:");
graphl.printAdjacencyMatrix();

// List of Edge objects for graph in Figure 27.3(a)
String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};

java.util.ArrayList<AbstractGraph.Edge>
edgelList = new java.util.ArrayList<AbstractGraph.Edge>();

edgelList.add(new AbstractGraph.Edge(0, 2));
edgelList.add(new AbstractGraph.Edge(1l, 2));
edgeList.add(new AbstractGraph.Edge(2, 4));
edgelList.add(new AbstractGraph.Edge(3, 4));

// Create a graph with 5 vertices

Graph<String> graph2 =

new UnweightedGraph<String> (edgelList, java.util.Arrays.asList(names));
System.out.println("The number of vertices in graph2: " + graph2.getSize());
System.out.println("The edges for graph2:"); graph2.printEdges();
System.out.println("\nAdjacency matrix for graph2:");
graph2.printAdjacencyMatrix();

for (int 1 = 0; i < 5; i++)
System.out.println("vertex " + i +

w, o n
H

+ graph2.getVertex(i));

System.out.println(" ")

Input and Qutput. The script of program input and output is:

Script started on Mon Apr 9 17:32:42 2012

prompt >>

prompt >> ant runOl

Buildfile: /Users/austin/ence688r.d/java-code-graphs/liang/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/liang/build.xml:9:
warning: ’‘includeantruntime’ was not set,
defaulting to build.sysclasspath=last; set to false for repeatable builds
[javac] Compiling 1 source file to /Users/austin/ence688r.d/java-code-graphs/liang/bin

run01l:
[java] Run TestGraph()
[java]

Chapter 13 461
[java] The number of vertices in graphl: 12
[java] The vertex with index 1 is San Francisco
[java]l The index for Miami is 9
[java] The edges for graphl:
[java] Vertex 0: (0, 1) (0, 3) (0, 5)
[java] Vertex 1: (1, 0) (1, 2) (1, 3)
[java] Vertex 2: (2, 1) (2, 3) (2, 4) (2, 10)
[java] Vertex 3: (3, 0) (3, 1) (3, 2) (3, 4) (3, 5)
[java] Vertex 4: (4, 2) (4, 3) (4, 5) (4, 7) (4, 8) (4, 10)
[java] Vertex 5: (5, 0) (5, 3) (5, 4) (5, 6) (5, 7)
[java] Vertex 6: (6, 5) (6, 7)
[java]l Vertex 7: (7, 4) (7, 5) (7, 6) (7, 8)
[java] Vertex 8: (8, 4) (8, 7) (8, 9) (8, 10) (8, 11)
[java] Vertex 9: (9, 8) (9, 11)
[java] Vertex 10: (10, 2) (10, 4) (10, 8) (10, 11)
[java] Vertex 11: (11, 8) (11, 9) (11, 10)
[java] Adjacency matrix for graphl:
[javal] 0 1 01 01 0 0 0 00O
[java] 1 01 1 00 00O0O0O0O0
[javal] 01 01 1 0000010
[java] 1 11 01 1000000
[java] 0 01 1 01 011010
[javal] 1 0 01 1 0110000
[javal] 0 0 0 0 01 01 0000
[javal] 0 0 0 01 1101000
[javal] 0 0 0 01 0 0 1 01 11
[javal] 0 0 0 0 0 0 001001
[javal] 0 01 01 0001001
[javal] 0 0 0 0 0 0 0 01110
[java] The number of vertices in graph2: 5
[java] The edges for graph2:
[java]l Vertex 0: (0, 2)
[java]l Vertex 1: (1, 2)
[java] Vertex 2: (2, 4)
[java]l Vertex 3: (3, 4)
[java] Vertex 4:
[java]
[java]l Adjacency matrix for graph2:
[javal 0 0 1 0 O
[java] 0 0 1 0 O
[javal 0 0 0 O 1
[javal 0 0 0 O 1
[java] 0 0 0 0 O
[java] vertex 0: Peter
[java] vertex 1: Jane
[java] vertex 2: Mark
[java] vertex 3: Cindy
[java] vertex 4: Wendy
[java]

BUILD SUCCESSFUL
3 seconds
prompt >> exit

Total time:

Script done on Mon Apr

9 17:32:58 2012

462 Engineering Software Development in Java

Example 2. Breadth-First Search

Problem Statement. Breadth-first search (BFS) is ...

... an uninformed search algorithm that begins at the root node and explores all the
neighboring nodes.

Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and so on, until it
finds the goal.

In this example we exercise a breath-first search routine on the graph shown in Figure 13.7 with
“Chicago” selected as the root node in the graph.

File: src/demo/TestBFS .java.

source code

/%

*
3
®
0]
a
w
m
0
.
Q
<
Q
3
®
0]
a
o
R
O
o))
0.
o
=
h
-
3
0
pt
]
O
Q
B
Q
(=2
B
o
c
ot
-
=
o

*
*/
package demo;
import liang.model.graph.x;

public class TestBFS {
public static void main(String[] args) {

String[] vertices = { "Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago",
"Boston", "New York", "Atlanta",
"Miami", "Dallas", "Houston"};
int[][] edges = { {0, {0, 3}, {0, 5},
{1, {1, 2}, {1, 3},
{2, {2, 3}, {2, 4}, {2, 10},
{3, {3, 1}, {3, 2}, {3, 4}, {3, 5},
{4, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
{5, {5, 3}, {5, 4}, {5, 6}, {5, 7},
{6, {6, 7},
{7, {7, 5}, {7, 6}, {7, 8},
{8, {8, 7}, {8, 9}, {8, 10}, {8, 11},
{9, {9, 11},
{10, 2}, {10, 4}, {10, 8}, {10, 11},
{11, 8}, {11, 9}, {11, 10}

}i

System.out.println("Run TestBFS()

")

System.out.println("====

Graph<String> graph =

")

new UnweightedGraph<String>(edges, vertices);

AbstractGraph<String>.Tree bfs = graph.bfs(5); // 5 is Chicago

Chapter 13

463

java.util.List<Integer> searchOrders = bfs.getSearchOrders();
System.out.println(bfs.getNumberOfverticesFound() +
" vertices are searched in this order:");

for (int i = 0; i < searchOrders.size(); i++)
System.out.println(graph.getVertex(searchOrders.get(i)));
for (int i = 0; i < searchOrders.size(); i++)
if (bfs.getParent(i) != -1)

n

System.out.println("parent of + graph.getVertex(i) +

is + graph.getVertex(bfs.getParent(i)));

System.out.println(" ")

The program output is:

Script started on Mon Apr 9 17:42:03 2012
prompt >> ant run03
Buildfile: /Users/austin/ence688r.d/java-code-graphs/liang/build.xml

compile:
[Jjavac] /Users/austin/ence688r.d/java-code-graphs/liang/build.xml:9:
warning: ’‘includeantruntime’ was not set,
defaulting to build.sysclasspath=last; set to false for repeatable builds

run03:
[java] Run TestBFS()
[java]
[java] 12 vertices are searched in this order:
[java]l Chicago
[java] Seattle
[java] Denver
[java] Kansas City
[java] Boston
[java] New York
[java]l San Francisco
[java] Los Angeles
[java] Atlanta
[java] Dallas
[java] Miami
[java] Houston
[java]l parent of Seattle is Chicago
[java] parent of San Francisco is Seattle
[java] parent of Los Angeles is Denver
[java] parent of Denver is Chicago
[java] parent of Kansas City is Chicago
[java] parent of Boston is Chicago
[java]l parent of New York is Chicago
[java] parent of Atlanta is Kansas City
[java] parent of Miami is Atlanta
[java] parent of Dallas is Kansas City

464

Engineering Software Development in Java

[java] parent of Houston is Atlanta

[java]

BUILD SUCCESSFUL

Total time: 1 second

prompt >>

prompt >> exit

Script done on Mon Apr 9 17:42:11 2012

Chapter 13 465

Example 3. Depth First Search
Problem Statement. Depth-first search (DFS) is ...

... an algorithm for traversing or searching a tree, tree structure, or graph.

Formally, DFS is an uninformed search that starts at the root (selecting some node as the root in the
graph case) and explores as far as possible (i.e., deeper and deeper) along each branch until it hits
a node that has no children. Then the search backtracks, returning to the most recent node it hasn’t
finished exploring.

Algorithms that use depth-first search as a building block include: (1) Finding connected components,
(2) Topological sorting, (3) Finding strongly connected components, and (4) Solving puzzles with only
one solution, such as mazes.

In this example we conduct a depth-first search of the graph shown in Figure 13.7 with “Chicago”
selected as the root node in the graph.

File: src/demo/TestDFS java.

In this example we exercise the depth-first-search routine.

source code

/%

*+ TestDFS.java: Test depth-first-search routine.....

*
*/
package demo;
import liang.model.graph.x;

public class TestDFS {
public static void main(String[] args) {

String[] vertices = { "Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago",
"Boston", "New York", "Atlanta",
"Miami", "Dallas", "Houston"};

int[][] edges = {
{0, 1}, {0, 3}, {0, 5},
{1, 0}, {1, 2}, {1, 3},
{2, 1}, {2, 3}, {2, 4}, {2, 10},
{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
{6, 5}, {6, 7},
{7, 4}, {7, 5}, {7, 6}, {7, 8},
{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
{9, 8}, {9, 11},

466 Engineering Software Development in Java

{10, 2}, {10, 4}, {10, 8}, {10, 11},
{11, 8}, {11, 9}, {11, 10}

}i
System.out.println("Run TestDFS() "y
System.out.println(" ");

Graph<String> graph = new UnweightedGraph<String>(edges, vertices);
AbstractGraph<String>.Tree dfs = graph.dfs(5); // 5 is Chicago

java.util.List<Integer> searchOrders = dfs.getSearchOrders();
System.out.println(dfs.getNumberOfvVerticesFound() +
" vertices are searched in this DFS order:");

for (int i = 0; i < searchOrders.size(); i++)
System.out.print(graph.getVertex(searchOrders.get(i)) + " ");

System.out.println();

for (int i = 0; i < searchOrders.size(); i++)
if (dfs.getParent(i) != -1)
System.out.println("parent of + graph.getVertex(i) +

is + graph.getVertex(dfs.getParent(i)));

System.out.println(" ")

The program output is:

Script started on Mon Apr 9 18:25:36 2012

prompt >>

prompt >> ant run02

Buildfile: /Users/austin/ence688r.d/java-code-graphs/liang/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/liang/build.xml:9:
warning: ’‘includeantruntime’ was not set,
defaulting to build.sysclasspath=last; set to false for repeatable builds

run02:

[java] Run TestDFS()
[java]
[java]l 12 vertices are searched in this DFS order:
[java] Chicago

Seattle

San Francisco

Los Angeles

Denver

Kansas City

New York

Boston

Atlanta

Chapter 13 467
Miami
Houston
Dallas
[java] parent of Seattle is Chicago
[java] parent of San Francisco is Seattle
[java] parent of Los Angeles is San Francisco
[java] parent of Denver is Los Angeles
[java] parent of Kansas City is Denver
[java]l parent of Boston is New York
[java] parent of New York is Kansas City
[java] parent of Atlanta is New York
[java] parent of Miami is Atlanta
[java] parent of Dallas is Houston
[java] parent of Houston is Miami
[java] ========================

BUILD SUCCESSFUL

Total time:

1 secon

prompt >> exit

Script done on Mon Apr

d

9 18:25:50 2012

468 Engineering Software Development in Java

Example 4. Weighted Graph Algorithms

File: src/demo/TestWeightedGraph java.

In this example we add weights — geographical distance between cities — to the graph edges.

source code

/%

*
* TestWeightedGraph.java: Test routine weighted graphs

*
*/
package demo;

import liang.model.graph.x;
import liang.view.x;

public class TestWeightedGraph {
public static void main(String[] args) {

String[] vertices = { "Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago",
"Boston", "New York", "Atlanta",
"Miami", "Dallas", "Houston"};
int[][] edges = { {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
{1, o, 807}, {1, 2, 381}, {1, 3, 1267},
{2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
{3, 0, 1331}, {3, 1, 1267},
{3, 2, 1015}, {3, 4, 599}, {3, 5, 1003},
{4, 2, 1663}, {4, 3, 599}, {4, 5, 533},
{4, 7, 1260}, {4, 8, 864}, {4, 10, 496},
{5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
{5, 6, 983}, {5, 7, 787},
{6, 5, 983}, {6, 7, 214}%,
{7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
{8, 4, 864}, {8, 7, 888},
{8, 9, 661}, {8, 10, 781}, {8, 11, 810},
{9, 8, 661}, {9, 11, 1187},
{10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
{11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
}i
System.out.println("Run TestWeightedGraph() ");
System.out.println(" "y

WeightedGraph<String> graphl = new WeightedGraph<String>(edges, vertices);
System.out.println("The number of vertices in graphl: " + graphl.getSize());
System.out.println("The vertex with index 1 is " + graphl.getVertex(1l));
System.out.println("The index for Miami is " + graphl.getIndex("Miami"));
System.out.println("The edges for graphl:");

System.out.println(" :");

graphl.printWeightedEdges();

Chapter 13

469

System.out.println("

")

edges = new int[][]1{ {0, 1, 2},
{0, 3, 8},
{1, 0, 2},
{1, 2, 7%,
{1, 3, 3},
{2’ 1I 7}’
{3, 0, 8},
{4’ 2’ 5}’

}i

WeightedGraph<Integer> graph2
System.out.println("\nThe edges
graph2.printWeightedEdges();

{2,
{3,
{4,

3,
1,
3,

4},
3},
6}

{2,
{3,

4,
2,

5},
4},

{3,

4,

6},

new WeightedGraph<Integer>(edges, 5);
for graph2:");

System.out.println("

The program output is:

Script started on Mon Apr 9 18:31:13
prompt >> ant run04

Buildfile:

compile:

2012

/Users/austin/ence688r.d/java-code-graphs/liang/build.xml

[javac] /Users/austin/ence688r.d/java-code-graphs/liang/build.xml:9:

warning:

"includeantruntime’ was not set,

defaulting to build.sysclasspath=last; set to false for repeatable builds

run04:
[java]l Run TestWeightedGraph()
[java]
[java] The number of vertices in graphl: 12
[java] The vertex with index 1 is San Francisco
[java] The index for Miami is 9
[java] The edges for graphl:
[java] :
[java] Vertex 0: (0, 1, 807) (0, 3, 1331) (0, 5, 2097)
[java] Vertex 1: (1, 2, 381) (1, 0, 807) (1, 3, 1267)
[java] Vertex 2: (2, 1, 381) (2, 3, 1015) (2, 4, 1663) (2, 10, 1435)
[java] Vertex 3: (3, 4, 599) (3, 5, 1003) (3, 1, 1267) (3, 0, 1331) (3, 2,
[java]l Vertex 4: (4, 10, 496) (4, 8, 864) (4, 5, 533) (4, 2, 1663) (4, 7,
[java] Vertex 5: (5, 4, 533) (5, 7, 787) (5, 3, 1003) (5, 0, 2097) (5, 6,
[java] Vertex 6: (6, 7, 214) (6, 5, 983)
[java] Vertex 7: (7, 6, 214) (7, 8, 888) (7, 5, 787) (7, 4, 1260)
[java] Vertex 8: (8, 9, 661) (8, 10, 781) (8, 4, 864) (8, 7, 888) (8, 11,
[java] Vertex 9: (9, 8, 661) (9, 11, 1187)
[java] Vertex 10: (10, 11, 239) (10, 4, 496) (10, 8, 781) (10, 2, 1435)
[java] Vertex 11: (11, 10, 239) (11, 9, 1187) (11, 8, 810)
[java]

[java]

1015)
1260)
983)

810)

(4,

3,

5

470 Engineering Software Development in Java

[java] The edges for graph2:

[java] Vertex 0: (0, 1, 2) (0, 3, 8)

[java] Vertex 1: (1, 0, 2) (1, 2, 7) (1, 3, 3)

[java] Vertex 2: (2, 3, 4) (2, 1, 7) (2, 4, 5)

[java] Vertex 3: (3, 1, 3) (3, 4, 6) (3, 2, 4) (3, 0, 8)
[java]l Vertex 4: (4, 2, 5) (4, 3, 6)

[java]

BUILD SUCCESSFUL

Total time: 1 second

prompt >> exit

Script done on Mon Apr 9 18:31:20 2012

Chapter 13 471

13.5 Horstmann’s Framework for Selectable Shapes

In this section we develop code to create a scene of selectable compound shapes. Figure 13.9 shows, for
example, a scene composed of car, house, rectangle, circle, polygon and rectangular track shapes.

Scene Display for Compound Shapes

File Layers Graphi[s|

Vacation cottage

Big house e

Greenbelt Station

g Parking

,
W

Roadster &= Parking

o

Family Wagen

=

Big Truck

Figure 13.9. Scene of selectable compound shapes.

Source code: Can be downloaded as a zip file. Go to the class web page, click on the Swing Examples
link, and then scoot to the bottom of the web page.

The source code can be conveniently organized into three groups: a generic shape interface, selectable
shape abstractions, and compound shape instances.

Shape Abstractions Shape Interfaces

SelectableShape. java SceneShape. java
CompoundShape. java

Compound Shape Instances

CarShape. java HouseShape. java RectangleShape. java

472 Engineering Software Development in Java

CircleShape.java PolygonShape. jav TrackShape. java

The relationship among classes for selectable compound shapes is as follows:

<< absrract >> << interface >>
SelectableShape SceneShape

<< absrract >>
CompoundShape

T

CarShape TrackShape

Figure 13.10. Relationship among classes for selectable compound shapes.

Part 1. SceneShape Abstractions and Interface

SceneShape.java. The sceneshape interface contains a list of declarations for methods that will need to
be implemented by the hierarchy of abstract classes SelectableShape.java and CompoundShape.java.

source code

/%

Sceneshape.java: Interface to part of a scene...

* % X

*/
package shape;

import java.awt.x;
import java.awt.geom.*;

public interface SceneShape {
// Draws this item.
void draw(Graphics2D g2);

// Draws the selection adornment of this item.

Chapter 13 473

void drawSelection(Graphics2D g2);

// Sets the selection state of this item.

void setSelected(boolean b);

// Gets the selection state of this item.

boolean isSelected();

// Translates this item by a given amount.

void translate(int dx, int dy);

// Tests whether this item contains a given point.

boolean contains(Point2D p);
String getName();

Notice that separate methods are provided for drawing the shape, and then redrawing the shape after it
has been selected. The contains() method will determine whether or not a coordinate point is contained
within the compound shape.

SelectableShape.java. This class manages the selection state of a compound shape.

source code

*

SelectableShape.java: A shape that manages its selection state.

*
*/
package shape;

import java.awt.x;
import java.awt.geom.x*;

public abstract class SelectableShape implements SceneShape {
private boolean selected;

public void setSelected(boolean b) {
selected = b;

}

public boolean isSelected() {
return selected;

}

public void drawSelection(Graphics2D g2) {
translate(l, 1);

474 Engineering Software Development in Java

draw(g2);
translate(l, 1);
draw(g2);
translate(-2, -2);

CompoundShape.java. A compound scene shape that is composed of multiple geometric shapes.

source code

/%%

*
* CompoundShape.java: A scene shape that is composed of multiple geometric shapes.
*

*/

package shape;

import java.awt.x;

import java.awt.geom.*;
import java.awt.BasicStroke;
import java.awt.Color;

public abstract class CompoundShape extends SelectableShape {

private Color color = null; // Color of compound shape
private Color oldColor = Color.black; // Default color is black
protected String sName = null; // Name of compound shape
protected double X, yv; // Anchor point for compound shape

protected double width; // Width of compound shape

protected double height; // Height of compound shape

private GeneralPath path; // General path

protected int textOffSetX = 0; // Default x- offset for text label.
protected int textOffSetY = -10; // Default y- offset for text label.
boolean filledShape = false;

boolean shapeActive = false;

public CompoundShape() {
path = new GeneralPath();

}

protected void add(Shape s) {
path.append(s, false);
}

public boolean contains(Point2D pt) {
boolean insideX = (pt.getX() > x) && (pt.getX() < (x + width));
boolean insideY = (pt.getY¥() <y) && (pt.get¥() > (y - height));

// Set shapeActive to true when cursor is inside shape

if (insideX && insideY == true)
shapeActive = true;

Chapter 13 475

else
shapeActive = false;

return (insideX && insideY);

}

public void translate(int dx, int dy) {
path.transform(AffineTransform.getTranslateInstance(dx, dy));

}

// Set/get name of compound shape

public void setName (String sName) {
this.sName = sName;

}

public String getName () {
return sName;

}

// Set x- and y-offsets for text string

public void setTextOffSetX(int textOffSetX) {
this.textOffSetX = textOffSetX;

}

public void setTextOffSetY(int textOffSetY) {
this.textOffSetY = textOffSetY;
}

// Set filled shape flag

public void setColor(Color color) {
this.color = this.oldColor = color;

}
// Set filled shape flag

public void setFilledShape (boolean filledShape) {
this.filledShape = filledShape;
}

// Draw shape
public void draw(Graphics2D g2D) {
g2D.translate(x, YV);

g2D.scale(1.0, -1.0);

// Highlight shape when "cursor over shape"

if (shapeActive == false)
g2D.setColor(oldColor);
else {

g2D.setColor(Color.red);

476 Engineering Software Development in Java

// Set flag for filled shape ...

if (filledShape == false)
g2D.draw(path);

else

g2D.fill(path);

if (shapeActive == false)
g2D.setColor(oldColor);

// Add label to shape

if (sName != null)
g2D.drawString(sName, textOffSetX, textOffSetY);

// Reset affine transformation

g2D.scale(1.0, -1.0);
g2D.translate(-x, -y);

A first cut implementation of contains() is provided — the boundary of the compound shape is roughly
represented by a rectangle

TrackShape.java We define track shape segments as a means for representing edges in transportation
graphs.

Figure 13.11. Schematic for the definition of a track shape element.

As illustrated in Figure 13.11, elements are defined by an (X,y) anchor point plus offsets dX and dY.

Chapter 13 477

source code

/%%
*
* TrackShape.java: Construct track shape element
*

*/

package shape;

import Jjava.util.sx;
import java.awt.x;
import java.awt.geom.x*;

public class TrackShape extends CompoundShape {
GeneralPath star = new GeneralPath();

public TrackShape(int x, int y, double dX, double dY, double width) {
double dX0, dYo0;
double dX1, dyl;
double dX2, dy2;
double dX3, d¥3;

// Save corner reference point for shape

this.x
this.y

(double) x;
(double) y;

// Compute orientation of the track element
double dAngle = getAngle(dX, dY);

// Set the initial coordinate of the GeneralPath

dX0 = (width/2.0)*Math.sin(dAngle);
dY0 = -(width/2.0)*Math.cos(dAngle);
dX1l = -(width/2.0)*Math.sin(dAngle);
dyl = (width/2.0)*Math.cos(dAngle);

dX2 = dX - (width/2.0)=xMath.sin(dAngle);
dy2 = dY + (width/2.0)xMath.cos(dAngle);

dX3 = dX + (width/2.0)=xMath.sin(dAngle);
dy3 = dY - (width/2.0)xMath.cos(dAngle);

// Create the track polygon

star.moveTo(dX0, dY0);
star.lineTo(dX1, dyl);
star.lineTo(dX2, dY2);
star.lineTo(dX3, d¥3);
star.closePath();

add(star);

478 Engineering Software Development in Java

// Compute angle for coordinates in four quadrants

public double getAngle(double dX, double dYy) {
double angle = 0.0;

if (dY >= 0.0 && dX >= 0.0)

angle = Math.atan(dY/dX);
if (dY >= 0.0 && dX < 0.0)

angle = Math.PI + Math.atan(dY/dX);
if (dY < 0.0 && dX < 0.0)

angle = Math.PI + Math.atan(dY/dX);
if (dY < 0.0 && dX >= 0.0)

angle = 2x«Math.PI + Math.atan(dY/dX);

return angle;

}
// Test to see if a point is contained within the track element.

public boolean contains(Point2D pt) {
double xCoord = pt.getX() - this.x;
double yCoord = this.y - pt.get¥Y();
Point2D.Double testPoint = new Point2D.Double(xCoord, yCoord);

// Set shapeActive to true when cursor is inside shape
if (star.contains (testPoint) == true)

shapeActive = true;
else

shapeActive = false;

return star.contains (testPoint);

From a composite shape point of view, the track shape is modeled as a general path, i.e.,

GeneralPath star = new GeneralPath();

plus a sequence of path moves, i.e.,

star.moveTo(dX0, dY0);
star.lineTo(dX1, dyl);
star.lineTo(dX2, dY2);
star.lineTo(dx3, dy3);
star.closePath();

Finally, the star general path is added to the list of paths defined in the compound shape. A similar
procedure is used for the assembly of HouseShapes, CarShapes, and so forth.

Chapter 13

479

Part 2. SceneShape Assembly

Figure 13.12 shows a class diagram for assembling and displaying a scene of compound shapes.

JPanel

DemoSimpleGrid SimpleScreenGrid

Figure 13.12. Class hierarchy for a scene of compound shapes.

DemoSimpleGrid creates the frame. It calls SimpleScreen to create and populate a panel of compound

shapes.

DemoSimpleGrid.java

/%%

source code

Written By

DemoSimpleGrid.java. Create simple GUI with panel

Mark Austin October 2011

L T 3

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.

java.
java.
java.
java.
java.
java.
java.

lang.Math.x*;
applet.x;
util.*;

io.x;

text.x;
javax.swing.;
javax.swing.event.*;
javax.swing.border. ;

awt

awt.

awt

awt.
awt.
awt.
net.

kG
event.x;

.Color;

font.x;

image.x;

geom. *; // Needed for affine transformation....
URL;

public class DemoSimpleGrid {
public static void main(String args[]) {

// Create graphics screen

SimpleScreen canvas = new SimpleScreen();
canvas.setBackground(Color.white);

480 Engineering Software Development in Java

// 5. Create a scroll pane and add the panel to it.

JScrollPane scrollCanvas = new JScrollPane(canvas,
JScrollPane.VERTICAL SCROLLBAR AS NEEDED,
JScrollPane.HORIZONTAL SCROLLBAR AS NEEDED) ;

// Create menu toolbar ...

JToolBar toolBar = new SimpleScreenToolBar(canvas);

// Create buttons for panel along bottom of screen ...

final int NoButtons = 3;

JButton buttons[] = new JButton [NoButtons];

buttons[0] = new JButton ("Clear");

buttons[0].addActionListener(new ButtonAction(buttons[0], canvas));
buttons[1] = new JButton ("Switch Grid");
buttons[1l].addActionListener(new ButtonAction(buttons[1l], canvas));
buttons[2] = new JButton ("Border");

buttons[2].addActionListener(new ButtonAction(buttons[2], canvas));
// Create panel. Add buttons to panel.

JPanel pl = new JPanel();
for(int ii = 1; ii <= NoButtons; ii++)
pl.add(buttons[ii-1]);

JPanel panel = new JPanel();

panel.setLayout(new BorderLayout());
panel.add(toolBar, BorderLayout.NORTH);
panel.add(scrollCanvas, BorderLayout.CENTER);

JFrame frame = new JFrame('"Scene Display for Compound Shapes");
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add(panel);
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
frame.setSize(900, 800);

frame.setVisible(true);

* This class listens for action events associated with the buttons.

*
*/
class ButtonAction implements ActionListener {

private JButton b;
private SimpleScreen gs;

public ButtonAction (JButton b, SimpleScreen gs) {
this.b = b;

Chapter 13 481

this.gs = gs;

}
public void actionPerformed (ActionEvent e) {
String s = new String(e.getActionCommand());
// Clear Screen
if(s.compareTo("Clear") == 0) { gs.clearScreen(); }
// Draw Grid
if(s.compareTo("Switch Grid") == 0) {
if (gs.grop.getGrid() == false)
gs.grop.setGrid(true);
else
gs.grop.setGrid(false);
gs.paint();
}
// Draw border around region
if(s.compareTo("Border") == 0) {
if (gs.grop.getBorder() == false)
gs.grop.setBorder(true);
else
gs.grop.setBorder(false);
gs.paint();
}
}

SimpleScreen.java. SimpleScreen extends JPanel to create a panel. It then creates an arraylist of
compound shapes (i.e., via shapes = new ArrayListjSceneShape;();).

source code
/ %%
*
* SimpleScreen.java. Create simple GUI with panel
*
* Written By : Mark Austin October 2011
*
*/

import java.lang.Math.sx;
import java.applet.=x*;
import Jjava.util.sx;
import java.io.sx;

import java.text.sx;

import javax.swing.s*;

482

Engineering Software Development in Java

import
import
import
import
import
import
import
import
import

public

javax.swing.event.*;
javax.swing.border. x;

java.awt.*;
java.awt.event.x;
java.awt.Color;
java.awt.font.x*;
java.awt.image.x;
java.awt.geom. *;
java.net.URL;

class SimpleScreen extends JPanel ({

// Needed for affine transformation....

private AffineTransform

private ArrayList<SceneShape>

GraphicsGrid grid;
GraphicsOperation grop;
private Dimension size;
private Graphics gs;
int width, height;
boolean DEBUG = false;

// Matrix transform for

double[] theMatrix =

at; // save grid transform

shapes;

pixel to viewpoint coordinates

new double[6];

// Desired coordinate limits.

double
double
double
double

MinX = -
Miny = -
MaxX =
MaxY =

private
private
private
private

int xBorder
int yBorder

private
private

boolean overShape = fals

// Constructor for

SimpleScreen () {
grid = new Graphics
grop = new Graphics
shapes = new ArraylLis

CompoundShape car01

200.
200.
500.
500.

~e Ne ~e

o O © o
~

~e

= 30;
= 30;

e;

simple screen

car0l.setName("Family Wagon");

CompoundShape car02

car02.setName("Roadster");
car(02.setColor(Color.blue);

CompoundShape car03

car03.setName("Big Truck");

CompoundShape car04
car04.setTextOffSetX(

Grid();

Operation();

t<SceneShape>();

= new CarShape(0, 0, 50);
= new CarShape(100, 100, 100);
= new CarShape(300, -100, 150);
= new CarShape(200, 200, 25);

30);

Chapter 13 483

car04.setTextOffSetyY(10);

car04.setName("Parking");

CompoundShape car05 = new CarShape(200, 120, 25);
car05.setTextOffSetX(30);

car05.setTextOffSetyY(10);

car05.setName("Parking");

CompoundShape house0l = new HouseShape(-200, 400, 150);
house0l.setName("Big house");
houseOl.setTextOffSetX(0);

CompoundShape house02 = new HouseShape(350, 450, 50);
house02.setName("Vacation cottage");

CompoundShape circle0l = new CircleShape(0, 250, 50);
circle0Ol.setName("Greenbelt Station");
circleOl.setFilledShape(true);

circleOl.setColor(Color.blue);

CompoundShape circle02 = new CircleShape(0, 150, 10);
circle02.setName("College Park Station");
circle02.setFilledShape(true);

circle02.setColor(Color.green);

CompoundShape parking0l = new RectangleShape(300, 250, 350, 20)
parking0l.setName("Parking Lot 01");

parking0l.setTextOffSetX(0);

parking0l.setTextOffSetY(-5);

parking0l.setFilledShape(true);

parking0l.setColor(Color.orange);

~e

CompoundShape parking02 = new RectangleShape(100, 350, 100, 300);
parking0l.setName("Parking Lot 02");
parking02.setColor(Color.orange);

// Create a generic polygon shape

double xCoord[] = { 0, 50, 50, 150, 150, 200, 200, 0 };

double yCoord[] = { O, o, -50, -50, 0, 0, -100, -100 };
CompoundShape polygon0l = new PolygonShape(-200, -150, xCoord, yCoord);
polygon0Ol.setFilledShape(true);

polygon0Ol.setColor(Color.orange);

polygon0Ol.setName("AV Williams");

polygon0l.setTextOffSetX(0);

polygon0l.setTextOffSetY(-105);

// Create a generic track element shape

double dx = 300.0;

double dy = -200.0;

double width 10.0;

CompoundShape track0l = new TrackShape(125, -50, dx, dy, width);
trackOl.setFilledShape(true);

trackOl.setColor(Color.green);

trackOl.setName("Green Line");

484 Engineering Software Development in Java

// Build array of shapes....

shapes.add(car0l);
shapes.add(car02);
shapes.add(car03);
shapes.add(car04);
shapes.add(car05);
shapes.add(house0l);
shapes.add(house02);
shapes.add(circleOl);
shapes.add(circle02);
shapes.add(parking0l);
shapes.add(parking02);
shapes.add(polygon0Ol);
shapes.add(trackO01l);

setPreferredSize(new Dimension(900, 800));
setBackground(Color.WHITE);
setBorder (BorderFactory.createLineBorder(Color.DARK GRAY, 4));

addMouseMotionListener(new MouseMotionAdapter() {
public void mouseMoved(MouseEvent event) {
Point mousePoint = event.getPoint();
boolean newOverShape = false;
String overShapeName = null;

// Get point from mouse moved event and covert
// to grid coordinates

double dx = mousePoint.getX();

double dy = mousePoint.getY();

double dvx = dx - xBorder + MinX;

double dvy height - yBorder - dy + MinY;

newOverShape = false;

for (SceneShape s : shapes) {
if (s.contains(new Point ((int) dvx, (int) dvy))) {
newOverShape = true;
overShapeName = s.getName();
}
}
if (newOverShape != overShape) {
overShape = newOverShape;
repaint();
}
}
})i

}

public void paint() {
Graphics g = getGraphics();
super.paintComponent(g);

Chapter 13 485

paintComponent(g);

}
public void update(Graphics g) {}

public void paintComponent (Graphics g) {
super.paintComponent(g);
Dimension d = getSize();
size = getSize();
height getSize().height;
width getSize().width;

Graphics2D g2D = (Graphics2D) g.create();

g2D.setRenderingHint (RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

// Transform origin to lower right-hand corner
at = new AffineTransform();
at.translate(=xBorder, height - yBorder);
at.scale(1, -1);
g2D.setTransform (at);
// Translate to origin
g2D.translate(-MinX, -MinY);
// Draw grid
if (grop.getGrid() == true) {
grid.drawGrid(g2D, MinX, MinY, MaxX, MaxY);

}

// Draw border around grid

if (grop.getBorder() == true) {
grid.drawBorder(g2D, MinX, MinY, MaxX, MaxY);
}

// Draw scene shapes

g2D.setStroke(new BasicStroke(2));
for (SceneShape s : shapes) {
s.draw(g2D);
}
}

// Get graphics and fill in background

public void clearScreen () {
gs = getGraphics();
Graphics2D g2D = (Graphics2D) gs;

g2D.setColor(Color.white);

486 Engineering Software Development in Java

g2D.fillRect(0, 0, size.width-1, size.height-1);
}

// Draw border around graphics screen

void drawBorder() {
gs = getGraphics();
Graphics2D g2D = (Graphics2D) gs;

// Transform origin to lower right-hand corner

AffineTransform at = new AffineTransform();
at.translate(xBorder, height - yBorder);
at.scale(1, -1);

g2D.setTransform (at);

// Translate to origin and draw border

g2D.translate(-MinX, -MinY);
grid.drawBorder(g2D, MinX, MinY, MaxX, MaxY);

}

// Draw grid on graphics screen

void drawGrid() {
grop.setGrid(true);
gs = getGraphics();
Graphics2D g2D = (Graphics2D) gs;

// Transform origin to lower right-hand corner
AffineTransform at = new AffineTransform();
at.translate(xBorder, height - yBorder);
at.scale(1, -1);

g2D.setTransform (at);

// Translate to origin and draw grid

g2D.translate(-MinX, -MinY);
grid.drawGrid(g2D, MinX, MinY, MaxX, MaxY);

Points to note are as follows:

1. The mousemotion listener detects when the cursor enters the space of a new object — the screen is
repainted with the shape highlighted.

Chapter 13

487

13.6 Horstmann’s Simple Graph Editor

In this section we look at the graph representation used in Horstmann’s simple graph editor. See Figure

13.13.

File Edit

®O)[\]

Figure 13.13. Screendump of Horstmann’s graph editor.

Users and select and drag circle nodes onto the canvas and then connect nodes with straight-line edges.
Inside the toolbar, the button with four small dots represents a neutral state during which the graph
layout can be adjusted by selecting and dragging the nodes.

Software Architecture

We have organized the source code into a model and view hierarchy, i.e.,

total 0
0 drwxr-xr-x 3 austin
0 drwxr-xr-x 4 austin

./demo:
total 8
8 -rw-r--r--@ 1 austin

./horstmann:

total 0

0 drwxr-xr-x 4 austin
0 drwxr-xr-x 4 austin

./horstmann/model:
total 0
0 drwxr-xr-x 6 austin

staff
staff

staff

staff
staff

staff

102
136

506

136
136

204

Apr
Feb

Apr

Feb
Feb

Apr

10
10

21:24
17:39

21:24

17:15
17:43

20:51

demo
horstmann

SimpleGraphEditor. java

model
view

graph

488 Engineering Software Development in Java

0 drwxr-xr-x 5 austin staff 170 Apr 9 21:27 simplegraph

./horstmann/model/graph:

total 40

8 -rw-r--r--@ 1 austin staff 1605 Apr
8 -rw-r--r--@ 1 austin staff 1408 Apr
16 -rw-r--r--@ 1 austin staff 4397 Apr
8 -rw-r--r--@ 1 austin staff 1373 Apr

20:48 AbstractEdge.java
20:49 Edge.java

20:50 Graph.java

20:51 Node.java

O Y Vv v

./horstmann/model/simplegraph:

total 24

8 -rw-r--r--@ 1 austin staff 2177 Apr 9 21:27 CircleNode.java
8 -rw-r--r--@ 1 austin staff 1284 Apr 9 21:27 PointNode.java

8 -rw-r--r--@ 1 austin staff 765 Apr 9 21:27 SimpleGraph.java

./horstmann/view/editor:
total 96
8 -rw-r--r--@
8 -rw-r--r--@
16 -rw-r—--r--@
16 -rw-r—--r--@
8 -rw-r--r--@
8 -rw-r--r--@
16 -rw-r—--r--@
16 -rw-r--r--@

austin staff 1049 Apr
austin staff 2372 Apr
austin staff 4715 Apr
austin staff 7261 Apr
austin staff 1144 Apr
austin staff 887 Apr
austin staff 6690 Apr
austin staff 4567 Apr

20:40 EnumEditor.java
20:41 FormLayout.Jjava
21:16 GraphFrame.java
21:28 GraphPanel.java
21:31 LineEdge.java
20:44 LineStyle.java
20:45 PropertySheet.java
21:15 ToolBar.java

H R RPRRPRRRRPRP
[RV R V- R Vo R V- RV V- R V)

Figure 13.14 shows the essential details among classes that contribute to the graph model.

Test Program

SimpleGraphEditor.java

source code

/%%
*
* SimpleGraphEditor.java: A program for creating simple graphs
*

*/

package demo;
import javax.swing.x*;

import horstmann.view.editor.GraphFrame;
import horstmann.model.simplegraph.SimpleGraph;

public class SimpleGraphEditor {
public static void main(String[] args) {
JFrame frame = new GraphFrame(new SimpleGraph());
frame.setVisible(true);

Chapter 13 489

gmplﬁ ey Simple Circle Line
Ezieilt%r Graph Node Edge
é
Graph Graph Graph
Frame Panel i
v
«interface»
Node
«interface»
ToolBar Edge
5 "4
] Abstract
Edge

Figure 13.14. Graph classes (source: Horstmann).

490 Engineering Software Development in Java

Graph Model (horstmann.model.graph)
The graph model is comprised of the following classes: AbstractEdge.java, Edge.java, Graph.java and
Node.java. The details are as follows:

AbstractEdge.java.

source code

* AbtractEdge.java: A class that supplies convenience implementations for
* a number of methods in the Edge interface type.

*/
package horstmann.model.graph;

import java.awt.x;
import java.awt.geom.*;

public abstract class AbstractEdge implements Edge {
public Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException exception) {
return null;
}
}

public void connect(Node s, Node e) {
start = s;
end = e;

}

public Node getStart() {
return start;

}

public Node getEnd() {
return end;

}

public Rectangle2D getBounds(Graphics2D g2) {
Line2D conn = getConnectionPoints();
Rectangle2D r = new Rectangle2D.Double();
r.setFrameFromDiagonal (conn.getX1(), conn.getY1l(),
conn.getX2(), conn.getY2());
return r;

}

public Line2D getConnectionPoints() {

Chapter 13

491

Rectangle2D startBounds = start.getBounds();
Rectangle2D endBounds = end.getBounds();
Point2D startCenter = new Point2D.Double(
startBounds.getCenterX(), startBounds.getCenterY());
Point2D endCenter = new Point2D.Double(
endBounds.getCenterX(), endBounds.getCenterY());
return new Line2D.Double(
start.getConnectionPoint (endCenter),
end.getConnectionPoint (startCenter));

private Node start;
private Node end;

}
Edge.java.

source code
/%%

*
* Edge.java: An edge in a graph.

*

*/
package horstmann.model.graph;
import java.awt.sx;
import java.awt.geom.*;
import java.io.sx;
public interface Edge extends Serializable, Cloneable {
// Draw the edge.
void draw(Graphics2D g2);
// Tests whether the edge contains a point.
boolean contains(Point2D aPoint);
// Connects this edge to two nodes.
void connect(Node aStart, Node anEnd);
// Gets the starting node.
Node getStart();

// Gets the ending node.

Node getEnd();

492

Engineering Software Development in Java

// Gets the points at which this edge is connected to its nodes.

Line2D getConnectionPoints();

// Gets the smallest rectangle that bounds this edge.

Rectangle2D getBounds(Graphics2D g2);

Object clone();

}

Graph.java.
source code

/%%

*

* Graph.java: A graph consisting of selectable nodes and edges.

*

*/

package horstmann.model.graph;

import
import
import
import
import

public

java.
java.
java.
java.
java.

awt.x;
awt.geom. *;
io.%;
util.x;
util.List;

abstract class Graph implements Serializable {

// Constructs a graph with no nodes or edges.

public Graph() {

}

nodes
edges

= new ArrayList<Node>();
= new ArrayList<Edge>();

// Adds an edge to the graph that joins the nodes containing
// the given points. If the points aren’t both inside nodes,
// then no edge is added.

public boolean connect(Edge e, Point2D pl, Point2D p2) {
Node nl = findNode(pl);
Node n2 = findNode(p2);

if (nl

{

!= null && n2 != null)

e.connect(nl, n2);
edges.add(e);
return true;

}

return false;

Chapter 13 493

// Adds a node to the graph so that the top left corner of
// the bounding rectangle is at the given point.

public boolean add(Node n, Point2D p) {
Rectangle2D bounds = n.getBounds();
n.translate(p.getX() - bounds.getX(), p.getY() - bounds.get¥Y());
nodes.add(n);
return true;

}

// Finds a node containing the given point.

public Node findNode(Point2D p) {
for (int i = nodes.size() - 1; i >= 0; i--) {
Node n = nodes.get(i);
if (n.contains(p)) return n;

}

return null;

}
// Finds an edge containing the given point.

public Edge findEdge(Point2D p) {
for (int i = edges.size() - 1; i >= 0; i--)
{
Edge e = edges.get(i);
if (e.contains(p)) return e;

}

return null;
}
// Draws the graph.
public void draw(Graphics2D g2) {
for (Node n : nodes)
n.draw(g2);
for (Edge e : edges)
e.draw(g2);
}

// Removes a node and all edges that start or end with that node

public void removeNode(Node n) {

for (int i = edges.size() - 1; i >= 0; i--) {
Edge e = edges.get(i);
if (e.getStart() == || e.getEnd() == n)

edges.remove(e);

}

nodes.remove(n);

}

// Removes an edge from the graph.

494 Engineering Software Development in Java

public void removeEdge(Edge e) {
edges.remove(e);

}

// Gets the smallest rectangle enclosing the graph

public Rectangle2D getBounds(Graphics2D g2) {
Rectangle2D r = null;
for (Node n : nodes) {
Rectangle2D b = n.getBounds();
if (r == null) r = b;
else r.add(b);
}

for (Edge e : edges)

r.add(e.getBounds(g2));
return r == null ? new Rectangle2D.Double() : r;

}

// Gets the node types of a particular graph type.
public abstract Node[] getNodePrototypes();

// Gets the edge types of a particular graph type.
public abstract Edge[] getEdgePrototypes();

// Gets the nodes of this graph.

public List<Node> getNodes() {
return Collections.unmodifiableList(nodes);

}

// Gets the edges of this graph.

public List<Edge> getEdges() {
return Collections.unmodifiableList(edges);

}

private ArrayList<Node> nodes;
private ArrayList<Edge> edges;

}
Node.java.

source code
/%%

*
* Node.java: A node in a graph.
*

*/

Chapter 13

495

package horstmann.model.graph;

import java.awt.x;

import java.awt.geom.x*;

import java.io.sx;

public interface Node extends Serializable, Cloneable {
/%%

Draw the node.
@param g2 the graphics context

*/
void draw(Graphics2D g2);

/ %%
Translates the node by a given amount.
@param dx the amount to translate in the x-direction
@param dy the amount to translate in the y-direction

*/
void translate(double dx, double dy);

/%%
Tests whether the node contains a point.
@param aPoint the point to test
@return true if this node contains aPoint
*/

boolean contains(Point2D aPoint);

/%%
Get the best connection point to connect this node
with another node. This should be a point on the boundary
of the shape of this node.
@param aPoint an exterior point that is to be joined
with this node
@return the recommended connection point

*/

Point2D getConnectionPoint(Point2D aPoint);

/ %%
Get the bounding rectangle of the shape of this node
@return the bounding rectangle

*/

Rectangle2D getBounds();

Object clone();

496 Engineering Software Development in Java

Simple Graph Model (horstmann.model.simplegraph)
The simple graph model is defined by three classes; CircleNode.java, PointNode.java and Simple-
Graph java.

CircleNode.java

source code

/ %%
*
* CircleNode.java: A circular node that is filled with a color.

*

*/

package horstmann.model.simplegraph;

import java.awt.x;
import java.awt.geom.x*;

import horstmann.model.graph.x*;
public class CircleNode implements Node {

public CircleNode(Color aColor) {
size = DEFAULT SIZE;
x = 0;
y = 0;
color = aColor;

}

public void setColor(Color aColor) {
color = aColor;

}

public Color getColor() {
return color;

}

public Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException exception) {
return null;

}
}

public void draw(Graphics2D g2) {
Ellipse2D circle = new Ellipse2D.Double(x, y, size, size);
Color oldColor = g2.getColor();
g2.setColor(color);
g2.fill(circle);
g2.setColor(oldColor);
g2.draw(circle);

Chapter 13

497

public void translate(double dx, double dy) {
X += dx;
y += dy;

}

public boolean contains(Point2D p) {
Ellipse2D circle = new Ellipse2D.Double(
X, y, size, size);
return circle.contains(p);

}

public Rectangle2D getBounds() {
return new Rectangle2D.Double(x, y, size, size);

}

public Point2D getConnectionPoint(Point2D other) {

double centerX = x + size / 2;

double centerY =y + size / 2;

double dx = other.getX() - centerX;

double dy = other.getY() - centery;

double distance = Math.sqrt(dx * dx + dy = dy);

if (distance == 0) return other;

else return new Point2D.Double(
centerX + dx x (size / 2) / distance,
centerY + dy * (size / 2) / distance);

}

private double x;

private double y;

private double size;

private Color color;

private static final int DEFAULT SIZE = 10;

}

PointNode.java
source code

/%%

*
* PointNode.java: An inivisible node that is used in the toolbar to draw an

edge.

*

*/
package horstmann.model.simplegraph;

import java.awt.x;
import java.awt.geom.x*;

import horstmann.model.graph.x*;

public class PointNode implements Node {

498 Engineering Software Development in Java

// Constructs a point node with coordinates (0, 0)

public PointNode() {
point = new Point2D.Double();

}

public void draw(Graphics2D g2) {}

public void translate(double dx, double dy) {
point.setLocation(point.getX() + dx,
point.getY() + dy);
}

public boolean contains(Point2D p) {
return false;

}

public Rectangle2D getBounds() {
return new Rectangle2D.Double(point.getX(), point.getY(), 0, 0);
}

public Point2D getConnectionPoint(Point2D other) {
return point;

}
public Object clone() {
try
{
return super.clone();
}
catch (CloneNotSupportedException exception)
{
return null;
}
}
private Point2D point;
}
SimpleGraph.java
source code
/%%

*

* SimpleGraph.java: A simple graph with round nodes and straight edges.
*

*/

package horstmann.model.simplegraph;

import java.awt.x;
import Jjava.util.sx;

Chapter 13 499

import horstmann.model.graph.x;
import horstmann.view.editor.sx;

public class SimpleGraph extends Graph {
public Node[] getNodePrototypes() {
Node[] nodeTypes = { new CircleNode(Color.BLACK), new CircleNode(Color.WHITE) };
return nodeTypes;

}

public Edge[] getEdgePrototypes() {
Edge[] edgeTypes = { new LineEdge() };
return edgeTypes;

Simple Graph View Editor (horstmann.view.editor)

The simple graph view editor package is comprised of the following classes:

EnumEditor. java GraphFrame. java LineEdge. java
PropertySheet. java FormLayout. java GraphPanel. java
LineStyle.java ToolBar.java

500 Engineering Software Development in Java

13.7 Working with JGraphT

JGraphT is a free Java graph library that provides mathematical graph-theory objects and algo-
rithms. JGraphT supports various types of graphs including:

e Directed and undirected graphs.
e Graphs with weighted / unweighted / labeled or any user-defined edges.
e Various edge multiplicity options, including: simple-graphs, multigraphs, pseudographs.
e Unmodifiable graphs - allow modules to provide “read-only” access to internal graphs.
e Listenable graphs - allow external listeners to track modification events.
e Subgraphs graphs that are auto-updating subgraph views on other graphs.
e All compositions of above graphs.
Although powerful, JGraphT is designed to be simple and type-safe (via Java generics). For example,

graph vertices can be of any objects. You can create graphs based on: Strings, URLs, XML documents,
etc; you can even create graphs of graphs!

JGraphT employs a combination of interfaces and abstract classes to ensure complete and consistent
implementations.

JGraphT Interface Hierarchy

1. Graph.java. This is the root interface in the graph hierarchy. It provides for a mathematical graph-
theory graph object G(V,E) that contains a set V of vertices and a set E of edges. Each edge
e=(v1,v2) in E connects vertex v1 to vertex v2.

2. UndirectedGraph.java. This is the root interface for all graphs whose all edges are undirected.
3. DirectedGraph.java. This is the root interface for all graphs whose all edges are directed.

4. ListenableGraph.java. This is the root interface for graphs that provide for listeners on structural
change events.

5. WeightedGraph.java. This is the root interface for all graphs whose edges have non-uniform
weights.

JGraphT Abstract Class Hierarchy

As a production library jgrapht provides a complex hierarchy of abstract classes, rooted at Abstract-
Graph. Part of the hierarchy includes:

1. AbstractGraph.java. This class provides a skeletal implementation of the Graph interface that is
applicable to both directed graphs and undirected graphs.

Chapter 13 501

<< interface >>

Graph
Z} extends
<< interface >> << interface >> << interface >> << interface >>
UndirectedGraph DirectedGraph ListenableGraph WeightedGraph

Figure 13.15. Hierarchy of interface classes in JGraphT.

<< abstract >> implements << interface >>
AbstractGraph Graph
extends
<< abstract >>
AbstractBaseGraph
Z% extends
SimpleGraph SimpleDirectedGraph DefaultDirectedGraph
implements implements
<< interface >> << interface >>
UndirectedGraph DirectedGraph

Figure 13.16. Hierarchy of abstract classes and interface implementations in JGraphT.

502 Engineering Software Development in Java

2. AbstractBaseGraph.java. This class provides the most general implementation of the Graph in-
terface. Subclasses of AbstractBaseGraph will add restrictions to get more specific graphs (e.g.,
directed graphs). This graph implementation guarantees deterministic vertex and edge set order-
ing (e.g., via LinkedHashMap and LinkedHashSet).

AbstractGraph provides very high-level methods for graph operations such as removal of all graph
edges. No reference is made to how the vertices and edges will be stored. AbstractBaseGraph fills in
these details, e.g.,

public abstract class AbstractBaseGraph<V, E> extends AbstractGraph<v, E>
implements Graph<v, E> {

private EdgeFactory<V, E> edgeFactory;

private EdgeSetFactory<V, E> edgeSetFactory;

private Map<E, IntrusiveEdge> edgeMap;

private transient Set<E> unmodifiableEdgeSet = null;
private transient Set<V> unmodifiableVertexSet null;
private Specifics specifics;

Here we see that edges and vertices will be stored via implementations of the Set interface.

Types of Graph supported in JGraphT

1. SimpleGraph.java. A simple graph is an undirected graph for which at most one edge connects
any two vertices, and loops are not permitted.

2. SimpleDirectedGraph.java. A simple directed graph is a directed graph in which neither multiple
edges between any two vertices nor loops are permitted.

3. DefaultDirectedGraph.java. A default directed graph is a non-simple directed graph that permits
loops, but prohibits multiple edges between any two vertices.

3. DefaultListenableGraph.java. A graph backed by the the graph specified at the constructor, which
can be listened to by GraphListener and by VertexSetListeners. Operations on this graph pass
through to the the backing graph. Any modification made to this graph or the backing graph will
be reflected by the other graph.

Chapter 13

Details of the JgraphT Graph Interface

The root interface in the graph hierarchy. A mathematical graph-theory graph object G(V, E)
contains a set V of vertices and a set E of edges. Each edge e=(v1,v2) in E connects vertex vl to vertex

v2. Implementation of this interface can provide simple-graphs, multigraphs, pseudographs etc.

This library works best when vertices represent arbitrary objects and edges represent the rela-

tionships between them. Vertex and edge instances may be shared by more than one graph.

Through the use of java generics, a graph can be typed to specific classes for vertices V and
edges E<T>. Such a graph can contain vertices of type V and all sub-types and Edges of type E and all

sub-types.

The abbreviated source code is as follows:

source code

(C)

Graph.java: JGraphT Graph interface

Copyright 2003-2007, by Barak Naveh and Contributors.

Original Author: Barak Naveh
Contributor(s): John V. Sichi

Christian Hammer

$Id: Graph.java 568 2007-09-30 00:12:18Z perfecthash §$

L I S T R R R I

package org.jgrapht;

import java.util.sx;

public

/

E I T S R . T

interface Graph<v, E> {

*

Returns a set of all edges connecting source vertex to target vertex if
such vertices exist in this graph. If any of the vertices does not exist
or is null, returns null. If both vertices

exist but no edges found, returns an empty set.

In undirected graphs, some of the returned edges may have their source
and target vertices in the opposite order. In simple graphs the returned
set is either singleton set or empty set.

/

public Set<E> getAllEdges(V sourceVertex, V targetVertex);

/

* X * X *

*

Returns an edge connecting source vertex to target vertex if such
vertices and such edge exist in this graph. Otherwise returns
null. If any of the specified vertices is <code>null</code>
returns null

504

Engineering Software Development in Java

*

*

*

*

In undirected graphs, the returned edge may have its source and target
vertices in the opposite order.

/

public E getEdge(V sourceVertex, V targetVertex);

/ %
*
*
*

*

*

Returns the edge factory using which this graph creates new edges. The
edge factory is defined when the graph is constructed and must not be
modified.

/

public EdgeFactory<V, E> getEdgeFactory();

/

* %k X 3k X ok Xk kX X Xk X X X F X X

~

*

Creates a new edge in this graph, going from the source vertex to the
target vertex, and returns the created edge. Some graphs do not allow
edge-multiplicity. In such cases, if the graph already contains an edge
from the specified source to the specified target, than this method does
not change the graph and returns <code>null</code>.

The source and target vertices must already be contained in this
graph. If they are not found in graph IllegalArgumentException is
thrown.

This method creates the new edge <code>e</code> using this graph’s
EdgeFactory. For the new edge to be added e

must not be equal to any other edge the graph (even if the graph

allows edge-multiplicity). More formally, the graph must not contain any
edge e2 such that e2.equals(e). If such

e2< is found then the newly created edge e is

abandoned, the method leaves this graph unchanged returns null.

public E addEdge(V sourceVertex, V targetVertex);

/

L I T T R R S T R R

*

Adds the specified edge to this graph, going from the source vertex to
the target vertex. More formally, adds the specified edge, <code>
e</code>, to this graph if this graph contains no edge <code>e2</code>
such that <code>e2.equals(e)</code>. If this graph already contains such
an edge, the call leaves this graph unchanged and returns <tt>false</tt>.
Some graphs do not allow edge-multiplicity. In such cases, if the graph
already contains an edge from the specified source to the specified
target, than this method does not change the graph and returns <code>
false</code>. If the edge was added to the graph, returns <code>
true</code>.

The source and target vertices must already be contained in this
graph. If they are not found in graph IllegalArgumentException is
thrown.

~

public boolean addEdge(V sourceVertex, V targetVertex, E e);

Chapter 13 505

b T R R

*

Adds the specified vertex to this graph if not already present. More
formally, adds the specified vertex, <code>v</code>, to this graph if
this graph contains no vertex <code>u</code> such that <code>
u.equals(v)</code>. If this graph already contains such vertex, the call
leaves this graph unchanged and returns <tt>false</tt>. In combination
with the restriction on constructors, this ensures that graphs never
contain duplicate vertices.

~

public boolean addvVertex(V v);

/

* % ok X * X *

Returns true if and only if this graph contains an edge going

from the source vertex to the target vertex. In undirected graphs the
same result is obtained when source and target are inverted. If any of
the specified vertices does not exist in the graph, or if is

null, returns false.

public boolean containsEdge(V sourceVertex, V targetVertex);

/%%

*

*

*

*

*

Returns <tt>true</tt> if this graph contains the specified edge. More
formally, returns <tt>true</tt> if and only if this graph contains an
edge <code>e2</code> such that <code>e.equals(e2)</code>. If the
specified edge is <code>null</code> returns <code>false</code>.

/

public boolean containsEdge(E e);

/%%

* Returns <tt>true</tt> if this graph contains the specified vertex. More
* formally, returns <tt>true</tt> if and only if this graph contains a

* vertex <code>u</code> such that <code>u.equals(v)</code>. If the

*
*/

specified vertex is <code>null</code> returns <code>false</code>.

public boolean containsVertex(V v);

/

EE T R I I

~

*

Returns a set of the edges contained in this graph. The set is backed by
the graph, so changes to the graph are reflected in the set. If the graph
is modified while an iteration over the set is in progress, the results
of the iteration are undefined.

<p>The graph implementation may maintain a particular set ordering (e.g.
via {@link java.util.LinkedHashSet}) for deterministic iteration, but
this is not required. It is the responsibility of callers who rely on
this behavior to only use graph implementations which support it.</p>

public Set<E> edgeSet();

506 Engineering Software Development in Java

/ %%

* Returns a set of all edges touching the specified vertex. If no edges are
* touching the specified vertex returns an empty set.

*/

public Set<E> edgesOf(V vertex);

/ %%

*

Removes all the edges in this graph that are also contained in the

* specified edge collection. After this call returns, this graph will

* contain no edges in common with the specified edges. This method will
* invoke the {@link #removeEdge(Object)} method.

*/

public boolean removeAllEdges(Collection<? extends E> edges);

/ %%

* Removes all the edges going from the specified source vertex to the

* specified target vertex, and returns a set of all removed edges. Returns

<code>null</code> if any of the specified vertices does not exist in the

graph. If both vertices exist but no edge is found, returns an empty set.
This method will either invoke the {@link #removeEdge(Object)} method, or
the {@link #removeEdge(Object, Object)} method.

* % * ¥ X

public Set<E> removeAllEdges(V sourceVertex, V targetVertex);

/ %%

* Removes all the vertices in this graph that are also contained in the
* specified vertex collection. After this call returns, this graph will
contain no vertices in common with the specified vertices. This method

will invoke the {@link #removeVertex(Object)} method.

*

*

*/
public boolean removeAllVertices(Collection<? extends V> vertices);

/ %%
* Removes an edge going from source vertex to target vertex, if such
* vertices and such edge exist in this graph. Returns the edge if removed
* or <code>null</code> otherwise.

*/
public E removeEdge(V sourceVertex, V targetVertex);

/
Removes the specified edge from the graph. Removes the specified edge
from this graph if it is present. More formally, removes an edge <code>
e2</code> such that <code>e2.equals(e)</code>, if the graph contains such
edge. Returns <tt>true</tt> if the graph contained the specified edge.
(The graph will not contain the specified edge once the call returns).

L I T

public boolean removeEdge(E e);

/ %%

Chapter 13

507

EE R T

Removes the specified vertex from this graph including all its touching
edges if present. More formally, if the graph contains a vertex <code>
u</code> such that <code>u.equals(v)</code>, the call removes all edges
that touch <code>u</code> and then removes <code>u</code> itself. If no
such <code>u</code> is found, the call leaves the graph unchanged.
Returns <tt>true</tt> if the graph contained the specified vertex. (The
graph will not contain the specified vertex once the call returns).

public boolean removeVertex(V v);

/%%
*
*
*

*

*/

Returns a set of the vertices contained in this graph. The set is backed
by the graph, so changes to the graph are reflected in the set. If the
graph is modified while an iteration over the set is in progress, the
results of the iteration are undefined.

public Set<V> vertexSet();

/%%
*
*

*

*/

Returns the source vertex of an edge. For an undirected graph, source and

target are distinguishable designations (but without any mathematical
meaning).

public V getEdgeSource(E e);

/%%
*
*

*

*/

Returns the target vertex of an edge. For an undirected graph, source and

target are distinguishable designations (but without any mathematical
meaning).

public V getEdgeTarget(E e);

/ %%
*
*

*

*/

Returns the weight assigned to a given edge. Unweighted graphs return 1.
(as defined by {@link WeightedGraph#DEFAULT EDGE WEIGHT}), allowing
weighted-graph algorithms to apply to them where meaningful.

public double getEdgeWeight(E e);

508 Engineering Software Development in Java

Example 1. Assemble a Collection of Graph Nodes

Problem Statement. In this example we create and print a collection of “character string” nodes, i.e.,

Node 1 Node 2 Node 3 Node 4 Node 5

Figure 13.17. Collection of five nodes

There are no edges in this example.

File: demo/jgrapht/SimpleDirectedGraph.java.

source code

* TestComponent.java. Create and print a collection of nodes.

*/
package jgrapht;
import java.util.sx;
import org.jgrapht.s;
import org.jgrapht.graph.sx;

import org.jgrapht.alg.x*;

public class SimpleDirectedGraph {
public static void main(String args[]) {

// Create a directed graph of "string" nodes

DirectedGraph<String, DefaultEdge> g =
new DefaultDirectedGraph<String,DefaultEdge>(DefaultEdge.class);

g.addvVertex("Node 1");
g.addVertex("Node 2");
g.addvVertex("Node 3");
g.addvVertex("Node 4");
g.addVertex("Node 5");
System.out.println(g.toString());

Script of Input/Output. Here is a short script of input and output for the program execution.

Script started on Mon Apr 9 10:43:11 2012

Chapter 13 509

prompt >> ant runOl
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ‘includeantruntime’ was not set, defaulting to build.sysclasspath=last;
set to false for repeatable builds

run01l:
[java] ([Node 1, Node 2, Node 3, Node 4, Node 5], [])

BUILD SUCCESSFUL

Total time: 1 second

prompt >>

prompt >> exit

Script done on Mon Apr 9 10:43:20 2012

510 Engineering Software Development in Java

Example 2. Operations on Simple Directed Graphs

Problem Statement. In this example, we assemble the directed graph shown in Figure 13.18 ...

Subgraphs of strongly connected components

Figure 13.18. Directed graph and annotations for strongly connected subgraphs.

and then,

1. Compute the set (or subsets) of strongly connected components,
2. Compute the shortest path from node i to node c.

1. Compute the shortest path from node ¢ to node i.

Recall that a directed graph is strongly connected if it ...

... contains a directed path from u to v and a directed path from v to u for every pair
of vertices u, v.

A valid path from node c to node i does not exist, so the path algorithm should simply return null.

File: demo/jgrapht/TestDirectedGraph.java.

source code

/%%
*
* TestDirectedGraph.java. Demonstrate operations that can be performed on
* directed graphs.

*

*

*/

package jgrapht;

Chapter 13 511

import java.util.List;

import org.jgrapht.alg.x*;
import org.jgrapht.x*;
import org.jgrapht.graph.sx;

public class TestDirectedGraph {
public static void main(String args[]) {

System.out.println("TestDirectedGraph ... "y
System.out.println(" ");

// Constructs a directed graph with the specified vertices and edges

DirectedGraph<String, DefaultEdge> directedGraph =
new DefaultDirectedGraph<String, DefaultEdge> (DefaultEdge.class);

directedGraph.addvertex("a");
directedGraph.addvVertex("b");
directedGraph.addvertex("c");
directedGraph.addvertex("d");
directedGraph.addvVertex("e");
directedGraph.addvertex("f");
directedGraph.addvertex("g");
directedGraph.addvVertex("h");
directedGraph.addvertex("i");
directedGraph.addEdge("a", "b");
directedGraph.addEdge("b", "d");
directedGraph.addEdge("d", "c");
directedGraph.addEdge("c", "a");
directedGraph.addEdge("e", "d");
directedGraph.addEdge("e", "f");
directedGraph.addEdge("£f", "g");
directedGraph.addEdge("g", "e");
directedGraph.addEdge("h", "e");
directedGraph.addEdge("i", "h");

// Computes all the strongly connected components of the directed graph

StrongConnectivityInspector sci = new StrongConnectivityInspector(directedGraph);
List stronglyConnectedSubgraphs = sci.stronglyConnectedSubgraphs();

// Prints the strongly connected components

System.out.println("Strongly connected components:");
for (int i = 0; i < stronglyConnectedSubgraphs.size(); i++) {
System.out.println(stronglyConnectedSubgraphs.get(i));

}
System.out.println();

// Prints the shortest path from vertex i to vertex c. This certainly
// exists for our particular directed graph.

System.out.println("Shortest path from i to c:");
List path = DijkstraShortestPath.findPathBetween(directedGraph, "i", "c");

512 Engineering Software Development in Java

System.out.println(path + "\n");

// Prints the shortest path from vertex c to vertex i. This path does
// NOT exist for our particular directed graph. Hence the path is
// empty and the variable "path" must be null.

System.out.println("Shortest path from c to i:");
path = DijkstraShortestPath.findPathBetween(directedGraph, "c", "i");
System.out.println(path);

Input and Output. The script of input/output for the program execution is as follows:

Script started on Mon Apr 9 10:45:38 2012
prompt >> ant run02
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ’‘includeantruntime’ was not set, defaulting to build.sysclasspath=last;
set to false for repeatable builds

run02:
[java] TestDirectedGraph ...
[java]
[java] Strongly connected components:
[Javal ([il, [1)
[java] ([h]l, [])

[Javal ([e, £, g, [(e,£), (£,9), (9,e)])

[java] ([a, b, ¢, dl, [(a,b), (b,d), (d,c), (c,a)])
[java]

[java] Shortest path from i to c:

[javal [(1i : h), (h : e), (e : d), (d :)]

[java]

[java] Shortest path from c to i:

[java]l null

BUILD SUCCESSFUL

Total time: 1 second

prompt >>

prompt >> exit

Script done on Mon Apr 9 10:45:47 2012

Chapter 13 513

Example 3. A Strongly Connected Graph with Cycles

Problem Statement. This program creates directed graphs as shown on the left- and right-hand sides
of Figure 13.19.

Part 1: Createcycles = true. Part 2: Createcycles = false.

= O=—0

@—{‘D O O—©

Figure 13.19. Test graph containing cycles.

For each graph, algorithms find and print the details of any implicit loops (cycles).

File: demo/jgrapht/TestDirectedGraph?2 java.

source code

/%%
*
* TestDirectedGraph2.java: Create a depencency chart, directed graph,
* then locate and print any implicit loops (cycles).
*

*/

package jgrapht;

import java.util.Iterator;
import java.util.Set;

import org.jgrapht.alg.CycleDetector;

import org.jgrapht.traverse.TopologicalOrderIterator;
import org.jgrapht.graph.DefaultDirectedGraph;

import org.jgrapht.graph.DefaultEdge;

public class TestDirectedGraph2 {
/ %%
* @param createCycles true - create a directed graph which contains
* cycles. false - create a directed graph which does not contain any cycles.

*/

public static void test(boolean createCycles) {

514

Engineering Software Development in Java

CycleDetector<String, DefaultEdge> cycleDetector;
DefaultDirectedGraph<String, DefaultEdge> g;

g = new DefaultDirectedGraph<String, DefaultEdge>(DefaultEdge.class);
// Add vertices, e.g. equations.

g.addVertex("a");
g.addvertex("b");
g.addvVertex("c");
g.addvVertex("d");
g.addvertex("e");

// Add edges, e.g. dependencies.
// 2 cycles,

// a = f(b)

// b = f(c)

// c = f(a)

// and
// d = f(e)
// e = f£(d)

g.addEdge("b", "a");
g.addEdge("c", "b");

if (createCycles) {
g.addEdge("a", "c");
}
g.addEdge("e", "d");
if (createCycles) {
g.addEdge("d", "e");
}
// Print details of assembled graph
System.out.println(g.toString());
// Test: Are there cycles in the dependencies?
cycleDetector = new CycleDetector<String, DefaultEdge>(g);
// Cycle(s) detected.
if (cycleDetector.detectCycles()) {
Iterator<String> iterator;
Set<String> cycleVertices;
Set<String> subCycle;
String cycle;
System.out.println("Cycles detected.");

// Get all vertices involved in cycles.

cyclevVertices = cycleDetector.findCycles();

Chapter 13 515

// Loop through vertices trying to find disjoint cycles.

while (! cycleVertices.isEmpty()) {
System.out.println("Cycle:");

// Get a vertex involved in a cycle.
iterator = cycleVertices.iterator();
cycle = iterator.next();

// Get all vertices involved with this vertex.
subCycle = cycleDetector.findCyclesContainingVertex(cycle);
for (String sub : subCycle) {

System.out.println(" " + sub);
// Remove vertex so that this cycle is not encountered
// again.

cycleVertices.remove(sub);

}
// No cycles. Just output properly ordered vertices.

else {
String v;
TopologicalOrderIterator<String, DefaultEdge> orderIterator;

orderIterator = new TopologicalOrderIterator<String, DefaultEdge>(g);
System.out.println("\nOrdering:");
while (orderIterator.hasNext()) {

v = orderIterator.next();

System.out.println(v);

}
public static void main(String [] args) {

System.out.println("Case 1: Create graph with cycles.");
System.out.println(" ");

test(true);

System.out.println("Case 2: Create graph with no cycles.");
System.out.println(" ");

test(false);

System.out.println("All done");
System.exit (0);

Input and Output. The script of input and output is as follows:

516 Engineering Software Development in Java

Script started on Wed Apr 11 18:28:39 2012
prompt >> ant run03
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ’‘includeantruntime’ was not set, defaulting to build.sysclasspath=last;
set to false for repeatable builds

run03:
[java] Case 1l: Create graph with cycles.
[java] ========================
[javal ([a, b, ¢, d, e], [(b,a), (c,b), (a,c), (e,d), (d,e)])

[java] Cycles detected.
[java] Cycle:

[java] d

[java] e

[java] Cycle:

[java] b

[java]l c

[java]l a

[java] Case 2: Create graph with no cycles.
[java] ========================

[javal ([a, b, ¢, d, e]l, [(b,a), (c,b), (e,d)])
[java]

[java] Ordering:

[javal c

[java] e

[javal b

[java]l d

[java] a

[java]l All done

BUILD SUCCESSFUL

Total time: 1 second

prompt >> exit

Script done on Wed Apr 11 18:28:47 2012

Chapter 13 517

Example 4. Dependency Graph for Human Organs and Body Systems

Problem Statement. The nodes within a JGraphT graph can be any Java objects — the graph structure
itself describes the relationship among these objects.

Organs Systems

Heart = Circulatory
Lung B Respiratory
Liver ' o0 ~

N J | Digestive
Stomach /
Brain —

~ g | Nervous]
SpinalCord |

Defined, but notadded tothe graph ... | _ ' _____
[Eye] [Immune]
[Kidney]

Figure 13.20. Graph of human organs and body systems.

As illustrated in Figure 13.20, in this example we will build a graph — actually, a disconneted graph — of
dependency relationships between human organs and their membership in body systems. For example,
the heart is part of the circulatory body system.

File: demo/jgrapht/HumanOrgansGraph.java.

source code

/%

518

Engineering Software Development in Java

Ex

Sl

HumanOrgansGraph.java: Demo of JGraphT API.

ample code from Wicked Cool Java (No Starch Press)

Copyright (C) 2005 Brian D. Eubanks

ightly modified by Mark Austin November 2011

L . T

packag

import
import

import
import
import
import

public

e jgrapht;

java.util.List;
java.util.Set;

org.jgrapht.x;

org.jgrapht.alg.x;

org.jgrapht.graph.x;
org.jgrapht.graph.ListenableDirectedGraph;

class HumanOrgansGraph {

enum Organs { HEART, LUNG, LIVER, STOMACH, BRAIN, SPINALCORD, EYE, KIDNEY };
enum Systems { CIRCULATORY, DIGESTIVE, NERVOUS, RESPIRATORY, IMMUNE };

Lis

/%
*

*

*/

pub

tenableDirectedGraph graph = null;

Create an instance using the provided graph.
@param g The graph to use, or null to create a new one.

lic HumanOrgansGraph(ListenableDirectedGraph g) {
if (g == null) {

g = new ListenableDirectedGraph<Enum, DefaultEdge> (DefaultEdge.class);
}

graph = g;
// Add vertices to the graph

.addVertex(Organs.HEART) ;
.addVertex (Organs.LUNG) ;
.addVertex(Organs.BRAIN) ;
.addVertex (Organs.STOMACH) ;
.addvVertex(Organs.LIVER);
.addVertex(Organs.SPINALCORD) ;

(e puteRuTo puTe JTe JVe}

.addVertex (Systems.CIRCULATORY) ;
.addVertex(Systems.NERVOUS) ;
.addVertex(Systems.DIGESTIVE);
.addVertex (Systems .RESPIRATORY) ;

Q Q QY

// Link the vertices by edges

g.addEdge (Organs.HEART, Systems.CIRCULATORY);

Chapter 13 519

g.addEdge (Organs.LUNG, Systems.RESPIRATORY);
g.addEdge (Organs.BRAIN, Systems .NERVOUS) ;
g.addEdge(Organs.SPINALCORD, Systems .NERVOUS) ;
g.addEdge (Organs.STOMACH, Systems.DIGESTIVE) ;
g.addEdge (Organs.LIVER, Systems.DIGESTIVE) ;

// Simple test to see if certain vertices are in the graph ...

System.out.println("");
System.out.println("Test for existence of organs/systems");

System.out.println(" "y

System.out.println("Test: Graph contains Systems.NERVOUS : " +
g.containsVertex (Systems.NERVOUS));

System.out.println("Test: Graph contains Organs.EYE : " +

g.containsVertex (Organs.EYE));

// Traverse the edges connected to DIGESTIVE vertex ...

System.out.println("");
System.out.println("Count set relationships in graph");
System.out.println(" ");

Set digestiveLinks = g.edgesOf(Systems.DIGESTIVE);

System.out.printf("There are %3d digestive organs in the graph\n",
digestiveLinks.size());

Set lungLinks = g.edgesOf(Organs.LUNG);

System.out.printf("The lung is part of %3d systems in the graph\n",
lungLinks.size());

// Walk along incoming edges and print source vertices ...

System.out.println("");
System.out.println("Print list of organs in the digestive system");
System.out.println(" "y

for (Object item : digestiveLinks) {
DefaultEdge edge = (DefaultEdge) item;
Object source = graph.getEdgeSource(edge);
System.out.println("Source: " + source.toString());

System.out.println(" ")

// Exericse methods in human organ graph ...
public static void main(String[] args) {

System.out.println("Assemble Graph of Human Organ Systems");
System.out.println(" ");

new HumanOrgansGraph(null);

520 Engineering Software Development in Java

Input and Qutput. The script of input and output is as follows:

Script started on Mon Apr 9 11:01:35 2012
prompt >> ant run04
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ’‘includeantruntime’ was not set,
defaulting to build.sysclasspath=last;
set to false for repeatable builds

run04:
[java]l Assemble Graph of Human Organ Systems
[java]
[java]
[java] Test for existence of organs/systems
[java]

[java] Test: Graph contains Systems.NERVOUS : true
[java] Test: Graph contains Organs.EYE : false
[java]

[java] Count set relationships in graph

[java]
[java] There are 2 digestive organs in the graph
[java] The lung is part of 1 systems in the graph
[java]

[java]l Print list of organs in the digestive system
[java]
[java] Source: STOMACH
[java]l Source: LIVER
[java]

BUILD SUCCESSFUL

Total time: 1 second

prompt >>

prompt >> exit

Script done on Mon Apr 9 11:01:45 2012

A few points to note:
1. The graph is implemented as a listenable directed graph, i.e.,

Graph g = new ListenableDirectedGraph<Enum, DefaultEdge> (DefaultEdge.class);

Here, Graph is the interface implemented by ListenableDirectedGraph. The syntax,

<Enum, DefaultEdge> (DefaultEdge.class);

tells the compiler that the graph nodes and edges will be of type Eunum (for enumerated data
types) and DefaultEdge, respectively.

Chapter 13 521

2. For convenience, the sets of human organ and body system entities are defined as enumerated data

types, i.e.,
enum Organs { HEART, LUNG, ... EYE, KIDNEY };
enum Systems { CIRCULATORY, ... RESPIRATORY, IMMUNE };

Entities are added to the graph by calling the add Vertex() method, e.g.,

g.addVertex(Organs.HEART);

And relationships between organs and body systems is defined by adding an edge to the graph,
e.g.,

g.addEdge(Organs.HEART, Systems.CIRCULATORY);

Notice that eye and kidney are defined as body organs, and immune is defined as a body system,
but none of these entities are actually added to the graph.

3. When assembly of the graph is complete, tests are conducted to see if certain vertices are in the
graph. The test program also traverse the graph to count the number of organs belonging to the
digestive systems, and to see which system the lungs belong.

522 Engineering Software Development in Java

Example 5. Demonstrate Topological Sort
A topological sort (or topological ordering) of a directed graph is ...

... a linear ordering of its vertices such that, for every edge u-v, u comes before v in the
ordering.

For example, the vertices of the graph may represent tasks to be performed, and the edges may represent
constraints that one task must be performed before another. In this case, ...

... a topological ordering is just a valid sequence for the tasks.

Topological ordering is possible if and only if the graph has no directed cycles/loops, and in such cases,
multiple valid orderings may be possible.

Problem Statement. In this example, we exercise we compute the assembly sequence for the structural
configuration shown in Figure 13.21.

K) ~4—— Pier Cap

A3 B3
A2 B2 | <«— Bridge Columns
Al B1

-4—— Foundation

-4— Footings

--7 2=

Footings 1 and 2 Footings 3 and 4

Figure 13.21. Front elevation view of a bridge pier, foundation and footings.

The modeling procedure is as follows:

1. Create a graph with one vertex for each of the structural components (e.g., Footingl, ColA!, and so
forth).

2. Specify dependency relationships between the components.

3. Compute a valid assembly sequence through a topological ordering of the graph vertices.

Chapter 13

523

Step 1: Define a graph of nodes.

Pier Cap Footing1

ColB3 ColB2 Footing2

ColA3 ColB1 Foundation Footing3

ColA2 ColAl Footing4

Figure 13.22. Graph of bridge components (and no graph edges).
Step 2: Specify dependencies among the components.
— Pier Cap Footingl
ColB3] ColB2 Footing2
f '

— ColA3 ColB1 Foundation Footing3
ColA2 | ColAl Footing4

Figure 13.23. Graph of bridge components and dependency relationships for assembly.

524 Engineering Software Development in Java

Figures 13.22 and 13.23 show the graph configuration at steps 1 and 2 of the procedure.

File: demo/jgrapht/TopologicalBlocks.java.

source code

/ %
* TopologicalBlocks. Simulate assembly sequence for a stack of blocks.
*

*/

package jgrapht;
import java.util.Iterator;

import org.jgrapht.x*;

import org.jgrapht.DirectedGraph;

import org.jgrapht.graph.x;

import org.jgrapht.traverse.TopologicalOrderIterator;
import org.jgrapht.graph.DefaultDirectedGraph;

import org.jgrapht.graph.DefaultEdge;

import org.jgrapht.traverse.x;

public class TopologicalBlocks {
public static void main (String args[]) {
TopologicalBlocks run = new TopologicalBlocks();

run.testBridge();

}
public void testBridge() {

DirectedGraph<String, DefaultEdge> graph =
new DefaultDirectedGraph<String, DefaultEdge>(DefaultEdge.class);

String v[] = new String[l12];

v[0] = "ColAl";
v[2] = "ColAa2";
v[4] = "ColA3";
v[1] = "COlB1";
v[3] = "ColB2";
v[5] = "ColB3";
v[7] = "Foundation";
v[6] = "Pier Cap";
v[8] = "Footingl";
v[9] = "Footing2";
v[10] = "Footing3";
v[1ll] = "Footing4";

// Throw blocks into library in random order

graph.addvertex(v[11l]);

Chapter 13 525

graph.addVertex(v[10]);
graph.addVertex(v[9]);
graph.addvVertex(v[8]);

graph.addvVertex(v[7]);
graph.addvVertex(v[6]);
graph.addvVertex(v[0]);
graph.addvertex(v[1l]);
graph.addvertex(v[2]);
graph.addvVertex(v[3]);
graph.addvVertex(v[4]);
graph.addvertex(v[5]);

!/
// Specify dependencies among blocks

//

// Need lay foundation before building the columns

graph.addEdge(v[7], v[01]1);
graph.addEdge(v[7]1, v[1]1);

// Specify assembly order for Pier A...

graph.addEdge(v([0], v[2]);
graph.addEdge(v[2], Vv[4]);

// Specify assembly order for Pier B...

graph.addEdge(v[1l], Vv[3]);
graph.addEdge(v[3], V[51]);

// Add pier cap to columns

graph.addEdge(v[4], Vv[61]);
graph.addEdge(v[5], Vv[61]);

// Put footings under foundation ...
graph.addEdge(v[8], Vv[7]);
graph.addEdge(v[9], V[7]);
graph.addEdge(v[10], Vv[7]);
graph.addEdge(v([11l], Vv[7]);

graph.addEdge(v[8], Vv[9]);
graph.addEdge(v[9], Vv[10]);

Iterator<String> iter = new TopologicalOrderIterator<String, DefaultEdge>(graph);

System.out.println("Sequence of Assembly");

System.out.println("==s========== ")
int i1 = 0;
while (iter.hasNext() != false) {

String s = (String) iter.next();

526 Engineering Software Development in Java

System.out.println(s.toString());

Input and Output.

Script started on Mon Apr 9 11:07:05 2012
prompt >> ant run07
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ’‘includeantruntime’ was not set,
defaulting to build.sysclasspath=last; set to false for repeatable builds

run07:

[java] Sequence of Assembly
[java]
[java] Footing4
[java] Footingl
[java] Footing2
[java] Footing3
[java] Foundation
[java] ColAl
[java] COlB1
[java] ColA2
[java]l ColB2
[java] ColA3
[java] ColB3
[java] Pier Cap

BUILD SUCCESSFUL

Total time: 1 second

prompt >>

prompt >> exit

Script done on Mon Apr 9 11:07:15 2012

Chapter 13 527

Example 6. Graphs of Relationship Edges

Problem Statement.

friend

friend

friend

friend

Figure 13.24. Graph of labeled relationship edges.

File: demo/jgrapht/TestLabeledEdges.java.

source code

package jgrapht;

import java.util.ArrayList;

import org.jgrapht.DirectedGraph;

import org.jgrapht.graph.DirectedMultigraph;
import org.jgrapht.graph.ClassBasedEdgeFactory;
import jgrapht.RelationshipEdge;

public class TestLabeledEdges {

private static final String friend "friend";
private static final String enemy = "enemy";

public static void main(String[] args) {

System.out.println("In TestLabeledEdges.main()....");
System.out.println("—--——------""-——----- ")

DirectedGraph<String, RelationshipEdge> graph =
new DirectedMultigraph<String, RelationshipEdge>(
new ClassBasedEdgeFactory<String, RelationshipEdge>(RelationshipEdge.clas

528 Engineering Software Development in Java

ArrayList<String> people = new ArrayList<String>();
people.add("John");

people.add("James");

people.add("Sarah");

people.add("Jessica");

// John is everyone'’s friend

for (String person : people) {
graph.addVertex(person) ;
graph.addEdge (people.get(0), person,

new RelationshipEdge<String>(people.get(0), person, friend));

}
// Apparently James doesn’t really like John
graph.addEdge("James", "John", new RelationshipEdge<String>("James", "John", enemy));
// Jessica is Sarah and James’'s friend
graph.addEdge("Jessica", "Sarah",

new RelationshipEdge<String>("Jessica", "Sarah", friend));
graph.addEdge("Jessica", "James",

new RelationshipEdge<String>("Jessica", "James", friend));

// But Sarah doesn’t really like James

graph.addEdge("Sarah", "James",
new RelationshipEdge<String>("Sarah", "James", enemy));

// Print relationship graph

System.out.println ("Part 1: Relationship Graph");
System.out.println (" ")

System.out.println (graph.toString());
// Print list of edge relationships
System.out.println ("");

System.out.println ("Part 2: Enumeration of Edge Relationships");
System.out.println ("=========== ")s

System.out.println (graph.edgeSet().toString());

for (RelationshipEdge edge : graph.edgeSet()) {
if (edge.equals(enemy)) {
System.out.printf("%s is an enemy of %s\n", edge.getV1(), edge.getV2());
} else if (edge.equals(friend)) {
System.out.printf("%s is a friend of %s\n", edge.getV1(), edge.getV2());

Chapter 13 529

File: demo/jgrapht/RelationshipEdge.java.

Here is the source code for a customized edge that stores a character string relationship (i.e., “friend” or
“enemy”’).

IntrusiveEdge

Z} — Defined in JGraphT

DefaultEdge

RelationshipEdge <& Custom definition

Figure 13.25. Class hierarchy for the definition of relationship edges.

As illustrated in Figure 13.25, the class relationship edge is defined as an extension of DefaultEdge,
which is provided as part of JGraphT.

source code

package jgrapht;

import java.util.ArrayList;
import org.jgrapht.x*;
import org.jgrapht.graph.x;

public class RelationshipEdge<V> extends DefaultEdge {
private V vl;
private V v2;
private String label;

public RelationshipEdge(V v1, V v2, String label) {
this.vl = vl;
this.v2 = v2;
this.label = label;

}

public V getVl1l() {
return vl;

}

public V getv2() {
return v2;

}

public boolean equals(String label) {

530 Engineering Software Development in Java

if (label.equals(this.label) == true)
return true;

else
return false;

}

public String toString() {
return label;

Program Input and Output.

Script started on Thu Apr 12 12:02:04 2012
prompt >> ant run05

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ’‘includeantruntime’ was not set,
defaulting to build.sysclasspath=last; set to false for repeatable builds

run05:
[java] In TestLabeledEdges.main()....
[java] ————————— o~
[java]
[java] Part 1: Relationship Graph
[Jjava]

[java]l ([John, James, Sarah, Jessica] ,
[friend = (John,John),
friend = (John,James),

friend = (John,Sarah),
friend = (John,Jessica),
enemy = (James,John),
friend = (Jessica,Sarah),

friend = (Jessica,James),

enemy = (Sarah,James)])
[java]
[java] Part 2: Enumeration of Edge Relationships
[java]

[java] [friend, friend, friend, friend, enemy, friend, friend, enemy]
[java]l John is a friend of John

[java] John is a friend of James

[java] John is a friend of Sarah

[java]l John is a friend of Jessica

[java] James is an enemy of John

[java] Jessica is a friend of Sarah

[java]l Jessica is a friend of James

[java] Sarah is an enemy of James

BUILD SUCCESSFUL

Total time: 1 second

prompt >> exit

Script done on Thu Apr 12 12:02:18 2012

Chapter 13

531

13.8 Graph-Based Modeling of the Washington DC Metro System

Problem Statement. In this example we use JGraphT to build a model of the Washington DC Metro

System.
206 Washington DC Metro System (Plan View)
Wheaton
=
Shady Grove Greenbelt
L
ilver Spring College Park
L L
Takoma Park
New Carrollton
DuPont Circle * =
Catholic Univ
Metro Center Gallery Place nion Station
— Stadium-Armory

Vienna Ballston-GMU Rosalyn Smithsonian L Enfant Plaza Eastern Market ® ofp
[] > [] ® [] L] L Y

Pentagon City

* =

National Airport

bl .

Figure 13.26. Plan view for a fragment of the Washington DC Metro System.

Figure 13.26 shows the fragment of the metro system that will be considered. The graph model will be
implemented in two steps. First, we will create and test a symbol table for the storage of metro station
objects. Then in step two we will use JGraphT to systematically assemble a graph model for a fragment
of the DC Metro System. Finally, the algorithms within JGraphT will be called for route planning for
“College Park” station to “National Airport” and “College Park™ station to “New Carollton” station.

Part 1: Create Symbol Table for MetroStations

Source Code: MetroStation.java.

source code

/%

532 Engineering Software Development in Java

* MetroStation.java: Representation for a Metrostation.

*/
package metro;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import metro.MetroBubble;
import metro.Coordinate;

public class MetroStation {
protected boolean parking false;
protected boolean security false;
protected boolean busroute = false;
protected boolean waypoint = true;

protected List onTrack;
String stationName;
String mapFile;

MetroBubble hint;
Coordinate coord;

// Contructor methods ...
public MetroStation() {}

public MetroStation(String name, double dX, double dY) {
stationName = name;
onTrack = new ArrayList(); // Initialize array list of line colors
coord = new Coordinate (dX, dY);
hint = new MetroBubble();

public MetroStation(String name, double dX, double dYy,
boolean park, boolean sec, boolean br) {
stationName = name;
onTrack = new ArrayList(); // Initialize array list of line colors
coord = new Coordinate (dX, dY);
hint = new MetroBubble();

parking = park;
security = sec;
busroute br;

public void setMapFile(String file){
mapFile = file;

}

// Deal with bubble message

public void setBubbleMessage (String sMessage) {

Chapter 13 533

hint.setMessage(sMessage);

}

// Deal with station name

public void setStationName (String sName) {
stationName = sName;

}

public String getStationName () {
return stationName;

}

// Deal with station coordinates

public void setCoord (Coordinate c) {
coord = c;

}

public Coordinate findCoord () {
return coord;

}

// Assign metro station to a track

public void add(String track) {
onTrack.add (track);

}

// Deal with bus route

public void setWayPoint(boolean waypoint) {
this.waypoint = waypoint;

}

public boolean getWayPoint() {
return waypoint;

}

// Deal with bus route

public void setBusRoute(boolean busroute) {
this.busroute = busroute;

}

public boolean getBusRoute() {
return busroute;

}

// Deal with security

public void setSecurity(boolean security) {
this.security = security;

534 Engineering Software Development in Java

public boolean getSecurity() {
return security;

}

// Deal with parking

public void setParking(boolean park) {
parking = park;

}

public boolean getParking() {
return parking;

}
// Convert description of metro station to a string

public String toString() {

String s = "MetroStation(\"" + stationName + "\")\n" +
" Coordinates = (" + coord.getX() + "," + coord.getY() + ")\n" +
" Parking = " + parking + "\n";

// Walk along array list and add line names to string "s"

if (onTrack.size() > 0) {

s = s.concat(" Track =4{ ");
for (int i = 0; i < onTrack.size(); i = 1i + 1)
s = s.concat(onTrack.get(i) + " ");

s s.concat("}\n");

return s;

Source Code: SymbolTable java.

source code
/%
*
* Compilation: javac SymbolTable.java
* Execution: java SymbolTable
*
* Symbol table implementation using Java’s HashMap library.
* If you add a key-value pair and the key is already present,
* the new key-value pair replaces the old one.
*
*/

package testmetro;

import java.util.HashMap;
import java.util.Set;

Chapter 13

535

import java.util.Iterator;
import java.util.Map;

import metro.sx;
public class SymbolTable {

private HashMap st = new HashMap();

public void put(String key, Object value) { st.put(key, value); }
public Object get(String key) { return st.get(key); }
public String toString() { return st.toString(); }

// Return an array contains all of the keys

public String[] keys() {
Set keyvalues = st.entrySet();
String[] keys = new String[st.size()];
Iterator it = keyvalues.iterator();

for (int i = 0; i < st.size(); i++) {
Map.Entry entry = (Map.Entry) it.next();
keys[i] = (String) entry.getKey();

}

return keys;

}

/***
* Test routine.
**/
public static void main(String[] args) {

SymbolTable st = new SymbolTable();

// Create metro stations

MetroStation gA = new MetroStation("Greenbelt", 4.0,
gA.setParking(true);
MetroStation gB = new MetroStation("College Park", 3.5,
gB.setParking(true);
MetroStation gC = new MetroStation("Silver Spring", 0.0,
gC.setParking(true);
MetroStation gD = new MetroStation("Fort Totten", 0.0,
gD.setParking(false);
MetroStation gE = new MetroStation("Union Station", 0.0,
gE.setParking(false);
MetroStation gF = new MetroStation("DuPont Circle", -3.0,

gF.setParking(false);
MetroStation gG = new MetroStation("Catholic University", 0.0,
gG.setParking(false);

// Insert (key, value pairs) for metro stations

st.put("Greenbelt", gA);
st.put("College Park", gB);

536 Engineering Software Development in Java

st.put("Silver Spring", gC);
st.put("Fort Totten", gD);
st.put("Union Station", gE);
st.put("DuPont Circle", gF);

st.put("Catholic University", gG);

// Define stations along the green and red lines

String redLine[] = { "Silver Spring", "Fort Totten",
"Catholic University", "Union Station",

"DuPont Circle" };
String greenLine[] = { "Greenbelt", "College Park",

"Fort Totten" };
// Add track assignments to Metro Station Descriptions
for (int i = 0; i < redLine.length; i =i + 1) {

MetroStation m = (MetroStation) st.get(redLine[i]);
m.add("Red");

for (int j = 0; j < greenLine.length; j = Jj + 1) {
MetroStation m = (MetroStation) st.get(greenLine[]j]);
m.add("Green");

}

// Ride along track and retrieve station information.
System.out.println(st.get("Fort Totten").toString());
// Use toString() method to print contents of symbol table

System.out.println(st.toString());

An abbreviated script of program input/output is as follows:

Script started on Fri Apr 13 10:30:41 2012
prompt >> ant runlO
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ‘includeantruntime’ was not set, defaulting to build.sysclasspath=last;

runlO:
[java] MetroStation("Fort Totten")
[java]l Coordinates = (0.0,2.0)
[java] Parking = false
[java] Track = { Red Green }

[java]

Chapter 13

537

[java] { Catholic University=MetroStation("Catholic University")

[java] Coordinates = (0.0,1.0)

[javal Parking = false

[java] Track = { Red }

[java]l , DuPont Circle=MetroStation("DuPont Circle")
[java]l Coordinates = (-3.0,0.0)

[java] Parking = false

[java] Track = { Red }

lines of output removed ...

[java] , College Park=MetroStation("College Park")

[java] Coordinates = (3.5,8.0)
[java] Parking = true

[java]l Track = { Green }
[java]l }

BUILD SUCCESSFUL
Total time: 3 seconds
prompt >> exit

Script done on Fri Apr 13 10:30:51 2012

Figure 13.27 shows the layout of memory for the symbol table, hashmap, and metrostation objects
stored inside the symbol table.

Ny

Metrostation object

- Greenbelt
SymbolTable HashMap i
o Keys
[> >
[= Greenbelt | @ —
@ - College Park | @ —»
Y
- College Park

Metrostation object

Figure 13.27. Layout of memory for the symbol table, hashmap, and metrostation objects stored inside
the symbol table.

The hashmap uses a charager string (e.g., “Greenbelt”) to compute a key. It then stores a reference to a
metrostation object — in other words, the metrostation objects are not part of the hashmap per se.

538 Engineering Software Development in Java

Part 2: Assemble a MetroSystem Graph

Source Code: MetroSystemGraph.java.

source code
/ %%
*
* MetroSystemGraph.java. Create a directed graph for the Washington DC
* Metro System.
*
* Written by: Mark Austin October,
*
*/

package testmetro;
import java.util.List;

import org.jgrapht.alg.x*;
import org.jgrapht.sx;
import org.jgrapht.graph.sx;

import metro.x;
import testmetro.SymbolTable;

public class MetroSystemGraph {
String sName;
SymbolTable stations;
DirectedGraph<MetroStation, DefaultEdge> metro;

// Constructor methods

public MetroSystemGraph() {
stations = new SymbolTable();

metro = new DefaultDirectedGraph<MetroStation, DefaultEdge> (DefaultEdge.class);

}

public MetroSystemGraph(String sName) {
this.sName = sName;
stations = new SymbolTable();

metro = new DefaultDirectedGraph<MetroStation, DefaultEdge> (DefaultEdge

}

// Create Metro Station objects
public void metroStations() {

System.out.println("Creating metro stations...");

// Create metro stations. (X,y) coordinates measured in miles

// from Union Station.

MetroStation gA = new MetroStation("Greenbelt",
gA.setParking(true);
MetroStation gB = new MetroStation("College Park",

12.0);

10.0);

.class);

Chapter 13

539

gB.setParking(true);

MetroStation gC = new MetroStation("Silver Spring",

gC.setParking(true);

MetroStation gD = new MetroStation("Fort Totten",

gD.setParking(true);

MetroStation gE = new MetroStation("Union Station",

gE.setParking(false);

MetroStation gF = new MetroStation("DuPont Circle",

gF.setParking(false);

MetroStation gG = new MetroStation("Catholic University",

gG.setParking(false);

MetroStation gH = new MetroStation("Judiciary Sq",

gH.setParking(false);

MetroStation gI = new MetroStation("National Airport",

gI.setParking(true);

// Add metro stations along the "orange" line

MetroStation oA = new MetroStation("New Carrollton",

OoA.setParking(true);

MetroStation oB = new MetroStation("Stadium-Armory",

oB.setParking(true);
MetroStation oC = new MetroStation("L Enfant Plaza",
oC.setParking(false);

MetroStation oD = new MetroStation("Smithsonian",
oD.setParking(false);
MetroStation oE = new MetroStation("Metro Center",
oE.setParking(false);
MetroStation oF = new MetroStation("Rosalyn",
oF.setParking(false);
MetroStation oG = new MetroStation("Ballston-GMU",
oG.setParking(false);
MetroStation oH = new MetroStation("Vienna",

oH.setParking(true);

5.0,

1.0,

-1.0,

-1.5,

-1.5,

-4.5,

-6.5,

-12.0,

-0.5,

0.0,

0.0,

-3.0,

0.0,

-1.0,

-1.0,

// Add metro stations to the metro system database/symbol table.

stations.put("Greenbelt", gA);
stations.put("College Park", gB);
stations.put("Silver Spring", gC);
stations.put("Fort Totten", gD);
stations.put("Union Station", gE);
stations.put("DuPont Circle", gF);
stations.put("Catholic University", gG);
stations.put("Judiciary Sq", gH);
stations.put("National Airport", gI);

// Add stations along the orange line

stations.put("New Carrollton", oA);
stations.put("Stadium-Armory", oB);
stations.put("L Enfant Plaza", oC);
stations.put("Smithsonian", oD);
stations.put("Metro Center", OoE);

)i

stations.put("Rosalyn", OF

540 Engineering Software Development in Java

stations.put("Ballston-GMU", oG);
stations.put("Vienna", oH);

// Define stations along the green and red lines

String redLine[] = { "Silver Spring", "Fort Totten",
"Catholic University", "Union Station",

"Metro Center", "DuPont Circle" };
String greenLine[] = { "Greenbelt", "College Park",
"Fort Totten", "Judiciary Sq",

"L Enfant Plaza" };
{ "National Airport",
"L Enfant Plaza",
"Judiciary Sq" };
"New Carrollton",
"Stadium-Armory",
"L Enfant Plaza",
"Smithsonian",
"Metro Center",
"Rosalyn",
"Ballston-GMU",
"Vienna" };

String yellowLine[]

String orangeLine[]

]
-~

// Add track assignments to metro station descriptions

for (int i = 0; i < redLine.length; i =i + 1) {
MetroStation m = (MetroStation) stations.get(redLine[i]);
m.add("Red");

for (int j = 0; j < greenLine.length; j = Jj + 1) {
MetroStation m = (MetroStation) stations.get(greenLine[j]);
m.add("Green");

for (int j = 0; j < yellowLine.length; j = j + 1) {
MetroStation m = (MetroStation) stations.get(yellowLine[]]);
m.add("Yellow");

for (int j = 0; j < orangeLine.length; j = j + 1) {
MetroStation m = (MetroStation) stations.get(orangeLine[]]);
m.add("Orange");

// Transfer symboltable references to directed graph
String names[] = stations.keys();
for (int j = 0; j < names.length; j =3 + 1) {

MetroStation m = (MetroStation) stations.get(names[]j]);
metro.addVertex(m);

// Connectivity details for the DC Metrosystem Network

Chapter 13 541

public void metroNetwork() {
MetroStation start, end;

System.out.println("Creating metro network...");

// Create track/links along green line

start = (MetroStation) stations.get("Greenbelt");
end (MetroStation) stations.get("College Park");

metro.addEdge(start, end);
metro.addEdge(end, start);

start = (MetroStation) stations.get("College Park");
end (MetroStation) stations.get("Fort Totten");
metro.addEdge(start, end);
metro.addEdge(end, start);

start = (MetroStation) stations.get("Fort Totten");
end (MetroStation) stations.get("Judiciary Sq");
metro.addEdge(start, end);
metro.addEdge(end, start);

start (MetroStation) stations.get("Judiciary Sq");
end (MetroStation) stations.get("L Enfant Plaza");
metro.addEdge(start, end);
metro.addEdge(end, start);

// Create links along red line

start = (MetroStation) stations.get("Silver Spring");
end (MetroStation) stations.get("Fort Totten");
metro.addEdge(start, end);

metro.addEdge(end, start);

start = (MetroStation) stations.get("Fort Totten");

end (MetroStation) stations.get("Catholic University");
metro.addEdge(start, end);

metro.addEdge(end, start);

start = (MetroStation) stations.get("Catholic University");
end (MetroStation) stations.get("Union Station");
metro.addEdge(start, end);

metro.addEdge(end, start);

start = (MetroStation) stations.get("Union Station");
end (MetroStation) stations.get("Metro Center");
metro.addEdge(start, end);
metro.addEdge(end, start);

start (MetroStation) stations.get("Metro Center");
end (MetroStation) stations.get("DuPont Circle");
metro.addEdge(start, end);
metro.addEdge(end, start);

542

Engineering Software Development in Java

// Create links along yellow line

start =
end
metro.addEdge(start, end);
metro.addEdge(end, start);

start =
end
metro.addEdge(start, end);
metro.addEdge(end, start);

// Create links along orange line

start
end

metro.addEdge(start, end);
metro.addEdge(end, start);

start = (MetroStation) stations.get(
(MetroStation) stations.get(

end
metro.addEdge(start, end);
metro.addEdge(end, start);

start = (MetroStation) stations.get(
(MetroStation) stations.get(

end
metro.addEdge(start, end);
metro.addEdge(end, start);

start =
end
metro.addEdge(start, end);
metro.addEdge(end, start);

start = (MetroStation) stations.get(
(MetroStation) stations.get(

end
metro.addEdge(start, end);
metro.addEdge(end, start);

start =
end
metro.addEdge(start, end);
metro.addEdge(end, start);

start =
end
metro.addEdge(start, end);
metro.addEdge(end, start);

}

// Print details of the Metro System

public void print() {

(MetroStation) stations.get(
(MetroStation) stations.get(

(MetroStation) stations.get(
(MetroStation) stations.get(

(MetroStation) stations.get(
(MetroStation) stations.get(

"Stadium-Armory"
"L Enfant Plaza"

(MetroStation) stations.get(
(MetroStation) stations.get(

(MetroStation) stations.get(
(MetroStation) stations.get(

(MetroStation) stations.get(
(MetroStation) stations.get(

"Judiciary Sq");

"L Enfant Plaza");

"L Enfant Plaza");
"National Airport");

"New Carrollton");
"Stadium-Armory");

"L Enfant Plaza");
"Smithsonian");

"Smithsonian");
"Metro Center");

"Metro Center");
"Rosalyn");

"Rosalyn");
"Ballston-GMU");

"Ballston-GMU");
"Vienna");

System.out.println("Washington DC Metro System");

System.out.println("

")

Chapter 13 543

System.out.println(stations.toString ());

}

/7
// Build metro system model and exercise graph algorithms

/! ======s==========s=================

public static void main(String args[]) {

System.out.println("Create Washington DC Metro System Graph");
System.out.println(" ");

// Build model of metro stations and rail network ...

MetroSystemGraph ms = new MetroSystemGraph("DC Metro");
ms.metroStations();

ms .metroNetwork() ;

ms.print();

// Retrieve and print details of individual metro stations

System.out.println("");

System.out.println("Print Metro Station Details");
System.out.println("===s======== ")
System.out.println(ms.stations.get("Greenbelt").toString());
System.out.println(ms.stations.get("Fort Totten").toString());

System.out.println(ms.stations.get("L Enfant Plaza").toString());

// =============================
// Graph Analysis
// =============================

// Part 1. Compute and print all the strongly connected components
// of the directed graph

StrongConnectivityInspector sci new StrongConnectivityInspector(ms.metro);
List stronglyConnectedSubgraphs = sci.stronglyConnectedSubgraphs();

System.out.println("Strongly connected graph components:");
System.out.println("============ "y

for (int i = 0; i < stronglyConnectedSubgraphs.size(); i++) {
System.out.println(stronglyConnectedSubgraphs.get(i));

}
System.out.println();

// Part 2. Prints the shortest path from vertex i to vertex c. This
// certainly exists for our particular directed graph.

System.out.println("");
System.out.println("Shortest path from \"Greenbelt\" to \"National Airport\"");
System.out.println("============ ")s

MetroStation start0l = (MetroStation) ms.stations.get("Greenbelt");

544 Engineering Software Development in Java

MetroStation end0l = (MetroStation) ms.stations.get("National Airport");
List path0l1 = DijkstraShortestPath.findPathBetween(ms.metro, start0l, endOl);
System.out.println(path0l + "\n");

System.out.println("Shortest path from \"Greenbelt\" to \"New Carrollton\"");
System.out.println("============ ")s

MetroStation start02 = (MetroStation) ms.stations.get("Greenbelt");
MetroStation end02 = (MetroStation) ms.stations.get("New Carrollton");

List path02 = DijkstraShortestPath.findPathBetween(ms.metro, start02, end02);
System.out.println(path02 + "\n");

The abbreviated input/output is as follows:

Script started on Sun Apr 1 12:47:30 2012
prompt >> runll
Buildfile: /Users/austin/ence688r.d/java-code-graphs/build.xml

compile:
[javac] /Users/austin/ence688r.d/java-code-graphs/build.xml:8:
warning: ‘includeantruntime’ was not set, defaulting to build.sysclasspath=last;
set to false for repeatable builds
runll:
[java] Create Washington DC Metro System Graph
[java]
[java] Creating metro stations...
[java] Creating metro network...
[java]l Washington DC Metro System

[java]

[java]l { Catholic University=MetroStation("Catholic University")
[java] Coordinates = (0.0,1.0)

[java] Parking = false

[java]l Track = { Red }

[java] , Ballston-GMU=MetroStation("Ballston-GMU")

[java] Coordinates = (-6.5,0.0)

[javal Parking = false

[java] Track = { Orange }

. metro stations removed from the output

[java] , New Carrollton=MetroStation("New Carrollton")

[java]l Coordinates = (5.0,8.0)
[java] Parking = true

[java] Track = { Orange }

[javal , Vienna=MetroStation("Vienna")
[java] Coordinates = (-12.0,0.0)
[java] Parking = true

[java]l Track = { Orange }

Chapter 13 545

[java] , College Park=MetroStation("College Park")

[java] Coordinates = (5.0,10.0)
[java]l Parking = true

[java] Track = { Green }

[java]l }

[java]

[java] Print Metro Station Details
[java]

[java]l MetroStation("Greenbelt")
[java] Coordinates = (5.0,12.0)
[java] Parking = true

[java]l Track = { Green }

[java]

[java] MetroStation("Fort Totten")
[java]l Coordinates = (0.0,2.0)
[java] Parking = true

[java] Track = { Red Green }
[java]

[java] MetroStation("L Enfant Plaza")
[javal Coordinates = (-1.0,-1.0)
[javal Parking = false

[java] Track = { Green Yellow Orange }
[Java]

[java] Strongly connected graph components:
[java]

[java]l ([MetroStation("Catholic University")

[java]l , MetroStation("Ballston-GMU")

[java] , MetroStation("DuPont Circle")

[javal , MetroStation("National Airport")

[javal , MetroStation("Metro Center")

[java] , MetroStation("Smithsonian")

[javal , MetroStation("L Enfant Plaza")

[java] , MetroStation("Rosalyn")

[java] , MetroStation("Silver Spring")

[javal , MetroStation("Judiciary Sq")

[javal , MetroStation("Greenbelt")

[java] , MetroStation("Union Station")

[java] , MetroStation("Stadium-Armory")

[java]l , MetroStation("Fort Totten")

[java] , MetroStation("New Carrollton")

[javal , MetroStation("Vienna")

[java] , MetroStation('"College Park")

[java]l 1, [(MetroStation("Greenbelt"), MetroStation("College Park"),
[java]l (MetroStation("College Park"), MetroStation('"Greenbelt")),

details of graph edges removed

[java]l (MetroStation("Vienna"), MetroStation("Ballston-GMU")) 1)
[java]

[java] Shortest path from "Greenbelt" to "National Airport"

[java] ========================

[javal [(MetroStation("Greenbelt") : MetroStation("College Park")),
[java]l (MetroStation("College Park") : MetroStation("Fort Totten")),
[java]l (MetroStation("Fort Totten") : MetroStation("Judiciary Sq")),
[java] (MetroStation("Judiciary Sq") : MetroStation("L Enfant Plaza")),

546

Engineering Software Development in Java

MetroStation("National Airport"))

MetroStation("College Park")),
MetroStation("Fort Totten")),
MetroStation("Judiciary Sq")),
MetroStation("L Enfant Plaza")),
MetroStation("Stadium-Armory")),
MetroStation("New Carrollton"))

[java] (MetroStation("L Enfant Plaza")
[java]]

[java]

[java] Shortest path from "Greenbelt" to "New Carrollton"
[java]

[javal [(MetroStation("Greenbelt")
[java] (MetroStation("College Park")
[java] (MetroStation("Fort Totten")
[java]l (MetroStation("Judiciary Sq")
[java] (MetroStation("L Enfant Plaza")
[java] (MetroStation("Stadium-Armory")
[javal 1

[java]

BUILD SUCCESSFUL

Total time: 3 seconds
prompt >> exit

prompt >>

Script done on Sun Apr

1 12:47:41 2012

