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Chapter 14

Modeling Three-Dimensional Solids

14.1 Solid Modeling Formalisms

Solid modeling is the process of building and analyzing getizally complete representations
of points, lines, polygons, and three-dimensional soligcs. In a functional sense, a model is said to
be geometrically complete if it is possible to ...

... answer questions about the geometry of an object (e.g.hat is the area of a poly-
gon), or perhaps the relationship among various objects (g., compute the intersec-
tion of a plane and three-dimensional solid), with algorithmic operations that act on
the underlying data representation, and without taxing theinferential capabilities and

pattern recognition skills of the human user.

For this to be possible, objects must be

... closed, orientable, non-self-intersecting, boundin@nd connected.

These techniques are based on the idea that for any phybjeat oits boundaries or skin divide three
dimensional Euclidian space in two regions, one interia another one exterior to it. A solid model
must then: (1) have a boundary that limits and encloses giédrof the solid; (2) the boundary has to
be in contact with the interior: no dangling faces or edg8%a6d is finite in size and described by a
limited amount of information [1].

Solid Modeling in Civil Engineering

Within the Civil Engineering domain, solid modeling hasealdy been demonstrated to be an
appropriate base for interactive design of reinforced petecbeam structures [2, 12]. Further work
is needed to understand how ideas from solid modeling tqalsi might be used in the modeling
of large precast (building and bridge) elements, possibhtaining holes/portals, and building/bridge
assemblies.

Figure 14.1 shows, for example, a bridge structure reptedeas an assembly of precast solid
components. Integral properties of interest include vausurface area, centroid, and moments and
products of inertia for solid volumes. The centroid andtiagoroperties act as input to the computation
of principal moments of inertia and principal axes (andrtbeientation).
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14.2 State-of-the-Art Solid Modeling

As illustrated in Figure 14.2, there are two basic approsithstate-of-the-art solid modeling:
constructive solid geometry (CSG) and boundary representéB-Rep) models.

GIS: accumulative CAD: generative
Boundary Representation Constructive Solid Geometry
» Aggregation of all surfaces + Volumetric primitives
enclosing the object’s volume » Set theoretical operators for
combination: ®
L

S1Y
ols

Figure 14.2.Boundary and constructive solid geometry (CSG) approaithgeometric modeling.

The former assumes that physical objects can be generatecefementary volumetric primitives (e.g.,
blocks, cylinders, tetrahedrons, spheres) plus a set ofdlieal operators (e.g., union, intersection,
difference) for their combination.

Boundary representation (B-Rep) models approach solicetmzgdthrough the aggregation of
all orientable surface faces enclosing an object’s volutweface faces that are connected to each other
by their edges, which in turn, are defined by vertices. Oneptioating factor with B-Rep models is
that not all collections of faces define a valid physical moddis problem can be addressed through
restrictions on face collections; for instance, each edgstielong to exactly two loops, and the or-
dering of edges must be consistent throughout the modelv@itiees are the only real geometric data
of the model since they define, directly or indirectly, theestelements (faces, edges, ...). Mantyla
and Sulonen [11] point out, however, that in order to speedanjpus operations on the model, bound-
ary modelers frequently store other explicit data on thenections between faces, loops, edges and
vertices.

In general terms, no single solid modeling technique is Sapéor all applications [1]. Ev-
idence of this observation can be found in the large numbesobfl modeling data structures (and
variants therein) that have been proposed over the pasdérades — well known examples include
Baumgarts winged-edge data structure [3, 4] Weilers raatigke data structure [13], the Partial Entitiy
data structure [9], as well as various techniques for modgdolyhedral surfaces [6, 8]. Before choosing
a particular technique for a solid modeler, the pros and cbbsth have to be weighted and compared
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with the desired features of the modeler.

When it comes to evaluating integral properties of solidfemnt approaches are available
depending on the type of representation in use. For CSG mdtied done by decomposing the model
into small cells and computing the contribution of each telthe total result. The decomposition is
made by a conversion algorithm and the accuracy of resuftsridkeon the arrangement of cells selected
[10]. Better results for integral properties can be achdewtaen using B-Rep models. Because of the
complete definition of the faces of the model, only the cbuotion of each face has to be evaluated,
rather than evaluating a much larger number of more or lesd sells. Furthermore, since no approx-
imations are made, there is a great improvement in the aogofaresults, which can be considered to
be exact except for round off errors.

14.3 Boundary Representations and Adjacency Relations

Boundary models represent solids by ...

... a set of boundary surface faces, which in turn, are boundkby sets of edges.

The information in the boundary represenation is storedtdsrarchical data structure. It links points
together to form edges, and then groups edges to form thedbamufaces of the solid. The entire
organization of the data structure serves to maintain theldgical connectivity and coherence of these
points; the only true geometric data is the point coordmate

An important concept in boundary representation modelsasdf adjacency relations. Adja-
cency relations are the conceptual links among the diffdesels of the model hierarchy, and between
neighboring elements at the same level. For example, eaghis@djacent to two faces upward in the
hierarchy, to two vertices downward in the hierarchy, anddme number of other edges at the same
level. Nine adjacency relationships for boundary model&heeen identified; they are:

vertex-vertex, vertex-edge, vertex-face, edge-vexeedge-edge, edge-face, face-
vertex, face-edge, and face-face.

Figure 14.3 shows, for example, schematics of vertex-xexntel vertex-edge relationships.

Weiler [13] states ...

. if a topological representation contains enough inforration to recreate all nine of
these adjacency relations without error or ambiguity, it can be considered a sufficient
adjacency topology representation.

In other words, a data representation must provide for theraénation of all of the adjacency relations
in order to be geometrically complete. Answers to this probkre complicated by the fact that solids
can be defined through a variety of topological formalismscivhin turn, means that data structure
implementations need not be unique. Which one is best oftés thown to issues of performance and
ability of the data structure to efficently answer adjacemagries such as:



Chapter 14

VEMLEN-YErisEX VELLAXSdEe

B ey

(2) (0

Figure 14.3. Vertex-vertex and vertex-edge adjacency relationships.
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e What edges are connected to a vertex?

e What vertices are connected to a face?

A good implementation should also have compact storageresgants, and only require a constant
amount of data for each element.

14.4 Euler Operators

Euler operators were first introduced by Baumgart for gemgraomplete polyhedral bound-
ary representation of solids [3]. These operators alsoagiyarthat Eulers law is satisfied when ma-
nipulating the topological properties of models. The Edtencare law states that for all solids the
following relationship holds:

F-E+V-L=2B-0G) (14.1)

where the letters stand for faces, edges, vertices, fanes limops, bodies and through holes or “genus”
respectively. Equation 14.1 applies to manifolds; thag¢&gsh edge is shared by exactly two faces, each
edge is connected by exactly two vertices, and for the tbneensional case, at least three edges join
at each vertex. The range of applicability includes solidth wurved faces or edges, and planar graphs
and polygon meshes in general [1, 7]. However, all polyHddes must be bounded by a single loop
of connected vertices. And faces cannot be rings or othertdse holes in them. Equation 14.1 does
not apply to non-manifolds; that is, a solid where an edgeisected to more than two faces.

Example. A Simple Cube.Figure 14.4 shows the elements of cube: 6 faces, 8 verti@esgdes, zero
inner loops, one body, zero holes.

Figure 14.4.Faces, edges, and vertices in a cube.

Checking Euler’s formula: faces - edges + vertices - loops 25+ 8 =2(1 - 0) = 2.



Chapter 14 7

Low-Level Operators. The low-level Euler operators are denoted using desceptimemonic names.
Each letter of the name stands for particular operation deno

M nake
Kill
split
join
vert ex
edge
face
solid
hol e
ring

Note that the equivalent to ring in the half edge data strecisiloop. There are ten Euler operators,
five of which are the inverse of the other five. A short desmipof the operators and a definition of the
respective C functions of some operators as used in the GWiBda ahead:

1. MVFS (make vertex face solid). This is the first operator used wdreating a model. The result
is the initialization of the data structure for a solid witheoface with one vertex, an empty loop
and no edges. This is called a skeletal primitive.

2. KVFS (kill vertex face solid). This is the inverse of the previaerator.

3. MEV (make edge vertex). Creates a new vertex which, along witlewqus one, defines a new
edge.

4. KEV (kill edge vertex): undoes the operation made by a MEV.

5. MEF (make edge face). Creates a new edge defined by two existitigegeand hence defines a
new face. But note that one face is actually two faces witrosjie orientations glued together

6. KEF (kill edge face). inverse of MEF.

7. KEMR (kill edge make ring). Splits one loop in two loops of a sanwefhy erasing an edge. This
way, a hole is created inside the face.

8. MEKR (make edge make ring). Inverse of KEMR. Connects two loopsnie. These last six
operators are called local manipulators since they ardeapph the local topological properties
of boundary models.

9. MEKR (make edge make ring) atcFMRH (kill face make ring hole). While KEMR creates a
hole in one face, this operator “extends” the hole to othee f@and therefore to the whole solid.
However, KFMRH is also capable of creating one shell if the sigument faces belong to two
different shells.

10. MFKRH (make face kill ring hole): This is the inverse of KFMRH. Tkdast two operators are
called global manipulators because they modify the glagadlogical properties of the models.

Now let’s see how sequences of operators can be designeeati® three dimensional solids.
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Figure 14.5.Using Euler operations for the step-by-step assembly of eafiB
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Figure 14.6.Using Euler operations for the step-by-step assembly of eahi
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14.5 Half-Edge Data Structure

Figure 14.7 is a schematic of the key relationships amongi¥h®omponent types — solid, face,
loop, edge, halfedge and vertex — making up the half edgestiateture.

HalfEdge Vertex HaIfEdge
vertex

- - next next - = == ==
Solid
vertex prewous | A
; oop
previous — - loop faceList this.solic
) 1 o o
w = w halfEdge loopList
g ‘;‘E ~—— Loop - Face
]
()
= A face +
s | =
o] %} .
o s previous loop
) - |—
previous
vertex
- . - T - O . .
next Q next

e
(eise ) ((verer ) [ varease]

Figure 14.7. Schematic of relationships in the halfedge data structhiige: Some relationships have
been omitted for clarity.

For convenience, the nodes of the data structure can beipeganto a vertical structure containing six
layers:

I. Solid. As illustrated in Figure 14.8, solids are defined expliclily collections of faces, edges and
vertices. Solid is the root of the data structure. Insideddim structure, a structufol i d has
references to lists of faces, edges and vertices. Lowek dietails (i.e., loops and halfedges) are
accessed indirectly through the Face data structure.

Il. Face. Face represents one planar face delimited by a list of laegud) representing one polygonal
boundary of the face. Each face is defined by exactly one d¢ogr and zero or more inner
loops, representing holes in the face. Each strudtaiee has references to the parent solid (i.e.,

this.solid), and to the lists of loops that define it. It alss heferences to the face equation and to
its outer loop.
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Figure 14.8. UML schematic of the solid data structure.

The face equation is a four dimensional vector: the firstelueefficients store a unitary vector
normal to the face and oriented to the inside of the solidfabeth coefficient is the distance from
the origin to the center of the face projected on the directibthe face vector. In order for the
normal vectors to be consistently oriented to the insiddefsolid, the vertices of all outer loops
have to be arranged in the same direction, in this case cieekwhen faced from the outside.

l1l. Loop. Aloop represents a polygonal boundary of its parent faceild/e vertices of outer loops
are arranged clockwise (as viewed from the outside of thd)sébr inner loops the arrangement
is counter clockwise. As we will soon see, this arrangemémedices plays a central role in the
design of algorithms to compute integral properties of cisjevith holes.

The structurd_oop has references to its parent face, to the list of half edgedfine the loop.

IV. Edge. Surprisingly, edges play a relatively minor role in the rede data structure. As detailed
below, each edge is associated with exactly two half edgéstier information (e.g., start and
end vertices) is obtained indirectly through the half-edgenectivity relationships.

V. HalfEdge. The structuréHal f Edge ties everything together and provides the connectedné&ss in
mation critical to the development of adjacency queriexhHwlf edge is connected to a vertex
(from which it starts), a face on its left side (when lookirgrey the half-edge from the origin), if
there is one, and to exactly one edge. Each half edge alsetessnices to predecessor and suc-
cessor half edges. The latter enables development of loitps\& face. Each edge is associated
with exactly two half edges, each belonging to different, dudjacent, faces. One half edge will
have a positive orientation; the other half edge will havegative orientation.

VI. Vertex. A vertex contains the homogeneous coordinate represemtatia point in a three dimen-
sional space. The structuxéer t ex has pointers to a vertex identifier, to its parent half edge an
to the next and previous vertex in the vertex list.

Implementation of the Half Edge Data Structure. In early implementations of the half edge data
structure (see, for example, references [2, 12, 10])Nbee, Edge, andLoop data structures also
contained references to next and previous items (i.e.,vilezg explicitly coded as doubly linked lists).
While that latter allows for systematic access to every eldnof the data structure, the resulting graph
of data structures is overly complicated in our opinion.
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To simplify the details of implementation, we assume thaheface, edge and vertex object
will have a unique numerical ID. As illustrated in Figure Z4only theHal f edge data structure will
contain direct references to next and previous items in gLB@trieval of adjacency information (e.qg.,
finding the two face objects bounding an edge) is achieveditgir the halfEdges bounding an edge and,
in turn, references to the parent loop and face.
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14.6 Application 1. Assembly/Properties of a Rectangular Block

We begin with definition and engineering analysis of a regigar block having edge lengths
of 3 units, 3 units, and 5 units along the X, y, and z axes rdispdc Three-dimensional views of the
block are shown in Figures 14.9 and 14.10. Two steps are deedeefine the block topology and
geometry:

Step I. Create a Planar Lamina. First we create a rectangular lamina in the x-y plane having f
verticies and four edges. The lamina has one surface commide/o faces (c.f., the two faces of a
piece of paper). This task is completed with five functiorisctd the Euler operators, namely:

Solid sA = new Solid ( "Rectangul ar Bl ock");
sA. mvfs( 1, 1, 1.0, 1.0, 0.0);

sAnmev( 1, 1, 2, 4.0, 1.0, 0.0 );

sAnmev( 1, 2, 3, 4.0, 4.0, 0.0);

sA-mev( 1, 3, 4, 1.0, 4.0, 0.0);

sAnmef( 1, 4, 1, 2);

The operatomf vs and the threerev’s define the four vertices of face 1. The first three edges are
defined by therev’s, along with the end vertex of each edge. Face 1 is then @piplrepresented by
defining the last edge spanning vertices 1 and 4 previousited. Theref function also creates face

2 that, together with face 1, makes up a surface.

Step Il. Translational Sweep.The rectangular block is created by moving face 1 througarsstational
sweep, i.e.,

Face face = sA findFace(1l);
sA sweep( face, 0.0, 0.0, 5.0 );

The functionsweep() sweeps face 1 away from face 2 a distance of 5.0 units in theeetdin. Face
1is retrieved by methotli ndFace() .

Systematic Assembly of the Block Topology and GeometryAt the conclusion of Step | the block
topology and geometry, and details of half-edge and edgexeonnectivity are as follows:

List Solid: "Rectangul ar Bl ock"

Face count = 2
Edge count = 4
Vertex count = 4

Max face ID=2
Max vertex ID = 4

Faces:

Facel d(1):

<QUTER LOOP> :vl+he(1,4) -> v4+he(4,3) -> v3+he(3,2) -> v2+he(2,1) ->
Face Equation = Vector(0.0, 0.0, -1.0)

Facel d(2):

<QUTER LOOP> :v4-he(1,4) -> vl-he(2,1) -> v2-he(3,2) -> v3-he(4,3) ->
Face Equation = Vector(0.0, 0.0, 1.0)
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.00 EulerView

Figure 14.9. Three-dimensional view of the rectangular block examplewyoint is looking along the
Z axis, with negative z values on the horizon.

.00 EulerView

Figure 14.10. Three-dimensional view of the rectangular block example&wyoint is looking along
the x axis, with negative x values on the horizon.
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Generation of Rectangular Lamina
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Figure 14.11.Schematic for systematic generation of a rectangular biSokd oneway arrows denote
a positive half edge. Negative half edges are drawn as dasteday arrows.
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Edges:

Edge(): +ve he -> vertex 2 -ve he -> vertex 1
Edge(): +ve he -> vertex 3 -ve he -> vertex 2
Edge(): +ve he -> vertex 4 -ve he -> vertex 3
Edge(): +ve he -> vertex 1 -ve he -> vertex 4
Verticies:

Vertexld 1: Vertex(1l) has coordinate (1.0, 1.0, 0.0)
Vertexld 2: Vertex(2) has coordinate (4.0, 1.0, 0.0)
Vertexld 3: Vertex(3) has coordinate (4.0, 4.0, 0.0)
Vertexld 4: Vertex(4) has coordinate (1.0, 4.0, 0.0)

Vol ume(" Rect angul ar Bl ock") = 0.0
Sur f aceArea(" Rect angul ar Bl ock") = 18.0

Points to note:

1. Faces 1 and 2 are each defined by a single outer loop. By caowgetite outside perimeter of
each face is defined by a loop of half edges, oriented so thgstarsatic traversal will occur
in a clockwise direction (as viewed from outside the solithward pointing face normals are
computed by applying the right-hand rule to the exterioplobhalf edges.

2. Each edge is associated with one positive half edge and gaive half edge. The top right-hand
schematic of Figure 14.11 shows faces 1 and 2 unfolded, Hegetith the vertices and edges.
The positive and negative half edges are drawn as solid asftedaoneway arrows respectively.

3. The notation:

<QUTER LOOP> :vl+he(1,4) -> v4+he(4,3) ....

indicates that the outer loop for face 1 begins with an edghaned to vertex; and positive
and negative half-edges beginning at verticeandv, respectively. This is followed by an edge
anchored to vertex, with positive and negative half-edges beginning at vestigeandvs, and
so forth. The perimeter of face 2 is also traversed in a clos&wirection, but in this case all of
the participating half edges are negative half edges, ésaitedl by the notationhe(. . .).

4. The rectangular lamina has one surface aggregated fromaeeas fand zero thickness. This is
refected in our computation of lamina surface area and velum
Step Il expands the model from 2 faces to 6 faces, from 4 edgé® edges, and from 4 vertices to 8

vertices:

List Solid: "Rectangul ar Bl ock"

Face count = 6
Edge count = 12
Vertex count = 8
Max face ID =6
Max vertex ID = 8
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Faces:

Facel d(1):

<QUTER LOOP> :v8+he(8,5) -> v5+he(5,6) -> v6+he(6,7) -> v7+he(7,8) ->
Face Equation = Vector(0.0, 0.0, -1.0)

Facel d(2):

<QUTER LOOP> :v4-he(1,4) -> vl-he(2,1) -> v2-he(3,2) -> v3-he(4,3) ->
Face Equation = Vector(0.0, 0.0, 1.0)

Facel d(3):

<QUTER LOOP> :v6-he(5,6) -> v5+he(5,4) -> v4+he(4,3) -> v3-he(6,3) ->
Face Equation = Vector(0.0, -1.0, 0.0)

Facel d(4):

<QUTER LOOP> :v7-he(6,7) -> v6+he(6,3) -> v3+he(3,2) -> v2-he(7,2) ->
Face Equation = Vector(-1.0, 0.0, 0.0)

Facel d(5):

<QUTER LOOP> :v8-he(7,8) -> v7+he(7,2) -> v2+he(2,1) -> vl-he(8,1) ->
Face Equation = Vector(0.0, 1.0, 0.0)

Facel d(6):

<QUTER LOOP> :v5-he(8,5) -> v8+he(8,1) -> vl+he(1l,4) -> v4-he(5,4) ->
Face Equation = Vector(1.0, 0.0, 0.0)

Edges:

Edge(): +ve he -> vertex 2 -ve he -> vertex 1
Edge(): +ve he -> vertex 3 -ve he -> vertex 2
Edge(): +ve he -> vertex 4 -ve he -> vertex 3
Edge(): +ve he -> vertex 1 -ve he -> vertex 4
Edge(): +ve he -> vertex 5 -ve he -> vertex 4
Edge(): +ve he -> vertex 6 -ve he -> vertex 3
Edge(): +ve he -> vertex 5 -ve he -> vertex 6
Edge(): +ve he -> vertex 7 -ve he -> vertex 2
Edge(): +ve he -> vertex 6 -ve he -> vertex 7
Edge(): +ve he -> vertex 8 -ve he -> vertex 1
Edge(): +ve he -> vertex 7 -ve he -> vertex 8
Edge(): +ve he -> vertex 8 -ve he -> vertex 5
Verticies:

Vertexld 1: Vertex(1l) has coordinate (1.0, 1.0, 0.0)
Vertexld 2: Vertex(2) has coordinate (4.0, 1.0, 0.0)
Vertexld 3: Vertex(3) has coordinate (4.0, 4.0, 0.0)
Vertexld 4: Vertex(4) has coordinate (1.0, 4.0, 0.0)
Vertexld 5: Vertex(5) has coordinate (1.0, 4.0, 5.0)
Vertexld 6: Vertex(6) has coordinate (4.0, 4.0, 5.0)
Vertexld 7: Vertex(7) has coordinate (4.0, 1.0, 5.0)
Vertexld 8: Vertex(8) has coordinate (1.0, 1.0, 5.0)

Vol urme( " Rect angul ar Bl ock"™) = 45.0

Sur f aceAr ea(" Rect angul ar Bl ock") 78.0

Engineering Properties. Recall that the product of inertia of a solid is zero if one loé toordinate
axis involved is perpendicular to a plane of symmetry of tbdyb By inspection, it can be seen that the
prism has two planes of symmetry, and therefore the thregupts of inertia are zero. As defined, the
principal axes are parallel to the coordinate axes (see AGHRA.3).
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14.7 Application 2: Properties of a Rectangular Block containing a Hole

We now define a rectangular block containing a hole. See €igjdir12.

e lala) EulerView

Figure 14.12.Rectangular block containing a hole.

Since this volume only has one plane of symmetry (i.e.,.Xhe Y plane), the POIg,. and/,. must
be zero and one of the principal axis must be perpendiculdretd Y plane.

Source Code

Here is the source code for creating and printing an emptydialo solid containing a hole.

/] Test Problem2: Create and print an enpty "floorslab" solid containing hole ...

double dr = 4.0; double dx = 20.0; double dy = 10.0;
/] Define the floorslab exterior ....

Solid sB = new Solid ( "Floorslab" );

sB.m/fs( 1, 1, 0.0, 0.0, 0.0 );
sB.nev( 1, 1, 2, dx, 0.0, 0.0);
sB.nev( 1, 2, 3, dx, dy, 0.0);
sB.mev( 1, 3, 4, 0.0, dy, 0.0);
sB.nmef( 1, 4, 1, 2);

/] Create a hole in the slab ...

sB.nmev( 1, 1, 5, dr, dr, 0.0);
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sB.mev( 1, 5, 6, dr, dy-dr, 0.0);
sB.mev( 1, 6, 7, dx-2+dr, dy-dr, 0.0);
sB.nev( 1, 7, 8, dx-2xdr, dr, 0.0);
sB.mef( 5, 8 1, 3);
/1l Kill edge nake ring .....
sB.kenr( 1, 5, 1);
/1 Kill face make ring hole .....
sB.kfmrh( 2, 3);

/1 Sweep face into a solid

Face faces
sB. sweep( faces

sB. findFace(1);
0.0, 0.0, 1.0 );

"),

" + sB.getVolune() );

Systemout.println("");

Systemout.printin("Flat floor slab exterior with offset hole");
System out.println("

Systemout.printlin( sB);

Systemout.println( "Volunme(\"" + sB.solidNanme + "\") =
Systemout.println( "SurfaceArea(\"" + sB.solidNane + "\") =

Output

Flat floor slab exterior with offset hole

List Solid: "Floorslab"
Face count = 10
Edge count = 24
Vertex count = 16
Max face ID =10

Max vertex ID = 16

" + sB.getSurfaceArea() );

Faces:

Facel d(1):

<QUTER LOOP> :v12+he(12,9) -> v9+he(9, 10) -> v10+he(10,11) -> vil+he(11, 12) ->

<I NNER LOOP> :v16+he(16, 13) -> v13+he(13,14) -> vl14+he(14,15) -> v15+he(15, 16) ->
Face Equation = Vector(0.0, 0.0, -1.0)

Facel d(2):

<QUTER LOOP> :v4-he(1,4) -> vil-he(2,1) -> v2-he(3,2) -> v3-he(4,3) ->

<I NNER LOOP> :v8-he(5,8) -> v5-he(6,5) -> v6-he(7,6) -> v7-he(8,7) ->

Face Equation
Facel d(3):
<QUTER LOOP>
Face Equation
Facel d(4):
<QUTER LOOP>
Face Equation
Facel d(5):
<QUTER LOOP>

= Vector (0.0, 0.0, 1.0)

:v10- he(9, 10)
= Vector (1.0,

-> v9+he(9, 1)
0.0, 0.0)

-> vl+he(1, 4)

:v11- he(10,11)
= Vector (0.0,

-> v10+he( 10, 4)
-1.0, 0.0)

-> v4+he(4, 3)

:v12-he(11,12) -> vll+he(11,3) -> v3+he(3,2)

-> v3-he(11, 3)

-> v2-he(12, 2)

-> v4-he(10, 4)

->

->

->
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Face Equation = Vector(-1.0, 0.0, 0.0)

Facel d(6):

<QUTER LOOP> :v9-he(12,9) -> v12+he(12,2) -> v2+he(2,1) -> vl-he(9,1) ->
Face Equation = Vector(0.0, 1.0, 0.0)

Facel d(7):

<OUTER LOOP> :v14-he(13,14) -> v13+he(13,5) -> vb5+he(5,8) -> v8-he(14,8) ->
Face Equation = Vector(0.0, -1.0, 0.0)

Facel d(8):

<QUTER LOOP> :v15-he(14,15) -> v14+he(14,8) -> v8+he(8,7) -> v7-he(15,7) ->
Face Equation = Vector(1.0, 0.0, 0.0)

Facel d(9):

<QUTER LOOP> :v16-he(15,16) -> v15+he(15,7) -> v7+he(7,6) -> v6-he(16,6) ->
Face Equation = Vector(0.0, 1.0, 0.0)

Facel d( 10):

<QUTER LOOP> :v13-he(16,13) -> v16+he(16,6) -> v6+he(6,5) -> vb-he(13,5) ->
Face Equation = Vector(-1.0, 0.0, 0.0)

Edges:

Edge(): +ve he -> vertex 2 -ve he -> vertex 1
Edge(): +ve he -> vertex 3 -ve he -> vertex 2
Edge(): +ve he -> vertex 4 -ve he -> vertex 3
Edge(): +ve he -> vertex 1 -ve he -> vertex 4
Edge(): +ve he -> vertex 6 -ve he -> vertex 5
Edge(): +ve he -> vertex 7 -ve he -> vertex 6
Edge(): +ve he -> vertex 8 -ve he -> vertex 7
Edge(): +ve he -> vertex 5 -ve he -> vertex 8
Edge(): +ve he -> vertex 9 -ve he -> vertex 1
Edge(): +ve he -> vertex 10 -ve he -> vertex 4
Edge(): +ve he -> vertex 9 -ve he -> vertex 10
Edge(): +ve he -> vertex 11 -ve he -> vertex 3
Edge(): +ve he -> vertex 10 -ve he -> vertex 11
Edge(): +ve he -> vertex 12 -ve he -> vertex 2
Edge(): +ve he -> vertex 11 -ve he -> vertex 12
Edge(): +ve he -> vertex 12 -ve he -> vertex 9
Edge(): +ve he -> vertex 13 -ve he -> vertex 5
Edge(): +ve he -> vertex 14 -ve he -> vertex 8
Edge(): +ve he -> vertex 13 -ve he -> vertex 14
Edge(): +ve he -> vertex 15 -ve he -> vertex 7
Edge(): +ve he -> vertex 14 -ve he -> vertex 15
Edge(): +ve he -> vertex 16 -ve he -> vertex 6
Edge(): +ve he -> vertex 15 -ve he -> vertex 16
Edge(): +ve he -> vertex 16 -ve he -> vertex 13
Verticies:

Vertexld 1: Vertex(1l) has coordinate (0.0, 0.0, 0.0)
Vertexld 2: Vertex(2) has coordinate (20.0, 0.0, 0.0)
Vertexld 3: Vertex(3) has coordinate (20.0, 10.0, 0.0)
Vertexld 4: Vertex(4) has coordinate (0.0, 10.0, 0.0)
Vertexld 5: Vertex(5) has coordinate (4.0, 4.0, 0.0)
Vertexld 6: Vertex(6) has coordinate (4.0, 6.0, 0.0)
Vertexld 7: Vertex(7) has coordinate (12.0, 6.0, 0.0)
Vertexld 8: Vertex(8) has coordinate (12.0, 4.0, 0.0)
Vertexld 9: Vertex(9) has coordinate (0.0, 0.0, 1.0)

Vertexld 10: Vertex(10) has coordinate (0.0, 10.0, 1.0)
Vertexld 11: Vertex(1ll) has coordinate (20.0, 10.0, 1.0)
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Vertexld 12:
Vertexld 13:
Vertexld 14:
Vertexld 15:
Vertexld 16:

Vertex(12)
Vertex(13)
Vert ex(14)
Ver t ex(15)
Ver t ex(16)

has
has
has
has
has

coordinate (20.0, 0.0, 1.0)
coordinate (4.0, 4.0, 1.0)
coordinate (12.0, 4.0, 1.0)
coordinate (12.0, 6.0, 1.0)
coordinate (4.0, 6.0, 1.0)

Vol une("Fl oor sl ab") = 184. 00000000000006
SurfaceArea("Fl oorsl ab") = 448.0
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