Model-Based Systems Engineering \rightarrow Semantics

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 688R, Spring Semester 2023

February 6, 2023

Overview

- Systems Engineering Drivers
- 2 Model-based Systems Engineering
- Ontologies and Ontology-Enabled Computing
- 4 Ontology-Enabled Computing at JPL (2000-2006)
- 5 The Data-Ontology-Rule Footing
- 6 Case Study: Detection and Diagnostic Analysis of Faults in Buildings

Part 1

Systems Engineering Drivers

Need for Model-Based Systems Engineering (MBSE) and Software Development

Systems Engineering Drivers

Systems Engineering Drivers

- Increasing demand for limited resources:
- Rapid changes in technology;
- Fast time-to-market most critical:
- Increasing higher performance requirements;
- Increasing complexity of systems/ products:
- Increasing pressure to lower costs;
- Increased presence of embedded information and automation systems that must work correctly;
- Failures due to lack of systems engineering.

Systems Engineering Drivers

Features of a good design:

- · Works correctly;
- Has a wide range of functionality;
- Has great performance;
- Is economical:
- Is resilient to attack;
- · Easily adaptable to new functionality.

Opportunities for Systems Engineering

- · Enhanced levels of attainable performance;
- · Create new forms of functionality;
- Improved economics and operational efficiency (zero-energy)
- · Improved resiliency and agility ...
- New processes and supply chains for creating systems.

Model-based Systems Engineering

MBSE Concerns

Focus on liaison among disciplines supported by formal methods for systems analysis and design.

MBSE Concerns

Systems are developed by teams of engineers who must be able to understand one-another's work.

Organization-Requirements-Engineering Pipeline:

Core Technical Processes at General Electric:

Use multi-scale approaches to system modeling:

- Semi-Formal Models: View the complete system (efficiency).
- Formal Models: Detailed view of the actual system (accuracy).

Semi-Formal Models:

 Provide efficient representation of ideas (e.g., goals and scenarios) and preliminary/tentative design.

Formal Models:

 Formal Models: To help prevent serious flaws in detailed design and operation, design representations and validation/verification procedures need to be based on formal languages having precise semantics.

Abstraction:

 Eliminate details that are of no importance when evaluating system functionality, system performance, and/or checking that a design satisfies a particular property.

Taxonomy of diagrams in SysML:

Pillars of SysML: Structure, Behavior, Requirements, and Parametric Diagrams.

INCOSE: MBSE Capability 2020-2025

Notice: Use of AI is implied, but not explicitly stated. No mention of data mining. No mention of machine learning.

References

- Abraham J., Semantic Foundations for Formalizing Brain Cancer Profiles, MS Thesis in Systems Engineering, University of Maryland, April 2019.
- Austin M.A., Delgoshaei P. and Nguyen A., Distributed Systems Behavior Modeling with Ontologies, Rules, and Message Passing Mechanisms, Procedia Computer Science, vol. 44, pp. 373–382, 2015.
- Austin M.A., Delgoshaei P., Coelho M. and Heidarinejad M., Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach, Journal of Management in Engineering, ASCE, Volume 36, Issue 4, July, 2020.
- Coelho M., Distributed Behavior Modeling of Urban Systems with Ontologies, Rules and Message Passing Mechanisms, M.S. Thesis (Available on UMD DRUM), M.S. in Civil Systems, April 2017,
- Coelho M., Austin M.A., and Blackburn M.R., Semantic Behavior Modeling and Event-Driven Reasoning for Urban System of Systems, International Journal on Advances in Intelligent Systems, Vol. 10, No 3 and 4, December 2017, pp. 365-382.
- Delgoshaei P. and Austin M.A., Framework for Knowledge-Based Fault Detection and Diagnostics in Multi-Domain Systems: Application to Heating Ventilation and Air Conditioning Systems, International Journal on Advances in Intelligent Systems, Vol. 10, No 3 and 4, December 2017, pp. 393-409.
- Delgoshaei P., Heidarinejad M., and Austin M.A., Combined Ontology-Driven and Machine Learning Approach to Management of Building Energy Consumption, 2018 Building Performance Analysis Conference and SimBuild, Chicago, September 26-28, 2018.
- Gao J., Liu X., Li D., and Havlin S., Recent Progress on the Resilience of Complex Networks, Energies, Vol. 8, 2015, pp. 12187–12210.
- Wagner et al., An Ontology for State Analysis: Formalizing the Mapping to SysML, Proceedings of 2012 IEEE Aerospace Conference, Big Sky, Montana, March, 2012.