
1

csci 210: Data Structures

Trees

Summary

 Topics

• general trees, definitions and properties

• interface and implementation

• tree traversal algorithms

• depth and height

• pre-order traversal

• post-order traversal

• binary trees

• properties

• interface

• implementation

• binary search trees

• definition

• h-n relationship

• search, insert, delete

• performance

 READING:

• GT textbook chapter 7 and 10.1

2

Trees

 So far we have seen linear structures

• linear: before and after relationship

• lists, vectors, arrays, stacks, queues, etc

 Non-linear structure: trees

• probably the most fundamental structure in computing

• hierarchical structure

• Terminology: from family trees (genealogy)

3

Trees

 store elements hierarchically

 the top element: root

 except the root, each element has a parent

 each element has 0 or more children

root

4

Trees

 Definition

• A tree T is a set of nodes storing elements such that the nodes have a parent-child
relationship that satisfies the following

• if T is not empty, T has a special tree called the root that has no parent

• each node v of T different than the root has a unique parent node w; each node with parent w is a child of w

 Recursive definition

• T is either empty

• or consists of a node r (the root) and a possibly empty set of trees whose roots are the
children of r

 Terminology

• siblings: two nodes that have the same parent are called siblings

• internal nodes

• nodes that have children

• external nodes or leaves

• nodes that don’t have children

• ancestors

• descendants
5

Trees
root

internal nodes

leaves

6

Trees

ancestors of u

u

7

Trees

u

descendants of u

8

Application of trees

 Applications of trees

• class hierarchy in Java

• file system

• storing hierarchies in organizations

9

Tree ADT

 Whatever the implementation of a tree is, its interface is the following

• root()

• size()

• isEmpty()

• parent(v)

• children(v)

• isInternal(v)

• isExternal(v)

• isRoot()

10

Tree Implementation

class Tree {

TreeNode root;

//tree ADT methods..

}

class TreeNode<Type> {

Type data;

int size;

TreeNode parent;

TreeNode firstChild;

TreeNode nextSibling;

getParent();

getChild();

getNextSibling();

}
11

 Depth:

• depth(T, v) is the number of ancestors of v, excluding v itself

 Recursive formulation

• if v == root, then depth(v) = 0

• else, depth(v) is 1 + depth (parent(v))

 Compute the depth of a node v in tree T: int depth(T, v)

 Algorithm:

int depth(T,v) {

if T.isRoot(v) return 0

return 1 + depth(T, T.parent(v))

}

 Analysis:

• O(number of ancestors) = O(depth_v)

• in the worst case the path is a linked-list and v is the leaf

• ==> O(n), where n is the number of nodes in the tree

Algorithms on trees: Depth

12

 Height:

• height of a node v in T is the length of the longest path from v to any leaf

 Recursive formulation:

• if v is leaf, then its height is 0

• else height(v) = 1 + maximum height of a child of v

 Definition: the height of a tree is the height of its root

 Compute the height of tree T: int height(T,v)

 Height and depth are “symmetrical”

 Proposition: the height of a tree T is the maximum depth of one of its leaves.

Algorithms on trees: Height

13

Height

 Algorithm:

int height(T,v) {

if T.isExternal(v) return 0;

int h = 0;

for each child w of v in T do

h = max(h, height(T, w))

return h+1;

}

 Analysis:

• total time: the sum of times spent at all nodes in all recursive calls

• the recursion:

• v calls height(w) recursively on all children w of v

• height() will eventually be called on every descendant of v

• overall: height() is called on each node precisely once, because each node has one parent

• aside from recursion

• for each node v: go through all children of v

– O(1 + c_v) where c_v is the number of children of v

• over all nodes: O(n) + SUM (c_v)

– each node is child of only one node, so its processed once as a child

– SUM(c_v) = n - 1

• total: O(n), where n is the number of nodes in the tree
14

Tree traversals

 A traversal is a systematic way to visit all nodes of T.

 pre-order: root, children

• parent comes before children; overall root first

 post-order: children, root

• parent comes after children; overall root last

void preorder(T, v)

visit v

for each child w of v in T do

preorder(w)

void postorder(T, v)

for each child w of v in T do

postorder(w)

visit v

� Analysis: O(n) [same arguments as before]
15

Examples

 Tree associated with a document

 In what order do you read the document?

Pape

r

Title Abstract Ch1 Ch2 Ch3 Refs

1.1 1.2 3.1 3.2

16

Example

 Tree associated with an arithmetical expression

 Write method that evaluates the expression. In what order do you traverse the tree?

+

3 *

-

12 5

+

1 7

17

Binary trees

18

Binary trees

 Definition: A binary tree is a tree such that

• every node has at most 2 children

• each node is labeled as being either a left chilld or a right child

 Recursive definition:

• a binary tree is empty;

• or it consists of

• a node (the root) that stores an element

• a binary tree, called the left subtree of T

• a binary tree, called the right subtree of T
 Binary tree interface

• left(v)

• right(v)

• hasLeft(v)

• hasRight(v)

• + isInternal(v), is External(v), isRoot(v), size(), isEmpty()

19

 In a binary tree

• level 0 has <= 1 node

• level 1 has <= 2 nodes

• level 2 has <= 4 nodes

• ...

• level i has <= 2^i nodes

 Proposition: Let T be a binary tree with n nodes and height h. Then

• h+1 <= n <= 2 h+1 -1

• lg(n+1) - 1 <= h <= n-1

Properties of binary trees

d=0

d=1

d=2

d=3

20

Binary tree implementation

 use a linked-list structure; each node points to its left and right children ; the tree

class stores the root node and the size of the tree

 implement the following functions:

• left(v)

• right(v)

• hasLeft(v)

• hasRight(v)

• isInternal(v)

• is External(v)

• isRoot(v)

• size()

• isEmpty()

• also

• insertLeft(v,e)

• insertRight(v,e)

• remove(e)

• addRoot(e)

data

left right

parentBTreeNode:

21

Binary tree operations

 insertLeft(v,e):

• create and return a new node w storing element e, add w as the left child of v

• an error occurs if v already has a left child

 insertRight(v,e)

 remove(v):

• remove node v, replace it with its child, if any, and return the element stored at v

• an error occurs if v has 2 children

 addRoot(e):

• create and return a new node r storing element e and make r the root of the tree;

• an error occurs if the tree is not empty

 attach(v,T1, T2):

• attach T1 and T2 respectively as the left and right subtrees of the external node v

• an error occurs if v is not external

22

Performance

 all O(1)

• left(v)

• right(v)

• hasLeft(v)

• hasRight(v)

• isInternal(v)

• is External(v)

• isRoot(v)

• size()

• isEmpty()

• addRoot(e)

• insertLeft(v,e)

• insertRight(v,e)

• remove(e)

23

Binary tree traversals

 Binary tree computations often involve traversals

• pre-order: root left right

• post-order: left right root

 additional traversal for binary trees

• in-order: left root right

• visit the nodes from left to right

 Exercise:

• write methods to implement each traversal on binary trees

24

Application: Tree drawing

 Come up with a solution to “draw” a binary tree in the following way. Essentially, we

need to assign coordinate x and y to each node.

• node v in the tree

• x(v) = ?

• y(v) = ?

0 1 2 3

0

1

2

3

4
4 5 6 7

25

Application: Tree drawing

 We can use an in-order traversal and assign coordinate x and y of each node in the

following way:

• x(v) is the number of nodes visited before v in the in-order traversal of v

• y(v) is the depth of v

0 1 2 3

0

1

2

3

4
4 5 6 7

26

Binary tree searching

 write search(v, k)

• search for element k in the subtree rooted at v

• return the node that contains k

• return null if not found

 performance

• ?

27

Binary Search Trees (BST)

 Motivation:

• want a structure that can search fast

• arrays: search fast, updates slow

• linked lists: search slow, updates fast

 Intuition:

• tree combines the advantages of arrays and linked lists

 Definition:

• a BST is a binary tree with the following “search” property

– for any node v allows to search efficientlyv

T1 T2

k

all nodes in T1<= k all node in T2 > k 28

BST

 Example

v

T1 T2

k

<= k > k

29

Sorting a BST

 Print the elements in the BST in sorted order

30

Sorting a BST

 Print the elements in the BST in sorted order.

 in-order traversal: left -node-right

 Analysis: O(n)

//print the elements in tree of v in order

sort(BSTNode v)

if (v == null) return;

sort(v.left());

print v.getData();

sort(v.right());

31

Searching in a BST

32

Searching in a BST

//return the node w such that w.getData() == k or null if such a node

//does not exist

BSTNode search (v, k) {

if (v == null) return null;

if (v.getData() == k) return v;

if (k < v.getData()) return search(v.left(), k);

else return search(v.right(), k)

}

 Analysis:

• search traverses (only) a path down from the root

• does NOT traverse the entire tree

• O(depth of result node) = O(h), where h is the height of the tree
33

Inserting in a BST

 insert 25

34

Inserting in a BST

 insert 25

• There is only one place where 25 can go

 //create and insert node with key k in the right place

 void insert (v, k) {

//this can only happen if inserting in an empty tree

if (v == null) return new BSTNode(k);

if (k <= v.getData()) {

 if (v.left() == null) {

//insert node as left child of v

u = new BSTNode(k);

v.setLeft(u);

} else {

 return insert(v.left(), k);

}

} else //if (v.getData() > k) {

...

}

}

25

35

Inserting in a BST

 Analysis:

• similar with searching

• traverses a path from the root to the inserted node

• O(depth of inserted node)

• this is O(h), where h is the height of the tree

36

Deleting in a BST

 delete 87

 delete 21

 delete 90

 case 1: delete a leaf x

• if x is left of its parent, set parent(x).left = null

• else set parent(x).right = null

 case 2: delete a node with one child

• link parent(x) to the child of x

 case 2: delete a node with 2 children

• ?? 37

Deleting in a BST

 delete 90

 copy in u 94 and delete 94

• the left-most child of right(x)

 or

 copy in u 87 and delete 87

• the right-most child of left(x)

u

node has <=1 child

node has <=1 child

38

Deleting in a BST

 Analysis:

• traverses a path from the root to the deleted node

• and sometimes from the deleted node to its left-most child

• this is O(h), where h is the height of the tree

39

BST performance

 Because of search property, all operations follow one root-leaf path

• insert: O(h)

• delete: O(h)

• search: O(h)

 We know that in a tree of n nodes

• h >= lg (n+1) - 1

• h <= n-1

 So in the worst case h is O(n)

• BST insert, search, delete: O(n)

• just like linked lists/arrays

40

BST performance

 worst-case scenario

• start with an empty tree

• insert 1

• insert 2

• insert 3

• insert 4

• ...

• insert n

 it is possible to maintain that the height of the tree is Theta(lg n) at all times

• by adding additional constraints

• perform rotations during insert and delete to maintain these constraints

 Balanced BSTs: h is Theta(lg n)

• Red-Black trees

• AVL trees

• 2-3-4 trees

• B-trees

 to find out more.... take csci231 (Algorithms)
41

