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csci 210:  Data Structures

Trees



Summary

 Topics

• general trees, definitions and properties

• interface and implementation

• tree traversal algorithms

• depth and height

• pre-order traversal

• post-order traversal

• binary trees 

• properties 

• interface  

• implementation

• binary search trees

• definition 

• h-n relationship

• search, insert, delete 

• performance

 READING:

• GT textbook chapter 7 and 10.1
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Trees

 So far we have seen linear structures

• linear:  before and after relationship

• lists, vectors, arrays, stacks, queues, etc

 Non-linear structure:  trees

• probably the most fundamental structure in computing

• hierarchical structure

• Terminology: from family trees (genealogy)
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Trees

 store elements hierarchically

 the top element: root 

 except the root, each element has a parent 

 each element has 0 or more children 

root
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Trees

 Definition

• A tree T is a set of nodes storing elements such that the nodes have a parent-child 
relationship that satisfies the following 

• if T is not empty, T has a special tree called the root that has no parent

• each node v of T different than the root  has a unique parent node w;  each node with parent w is a child of w

 Recursive definition 

• T is either empty

• or consists of a node r (the root) and a possibly empty set of trees whose roots are the 
children of r

 Terminology

• siblings: two nodes that have the same parent are called siblings

• internal nodes

• nodes that have children

• external nodes or leaves

• nodes that don’t have children

• ancestors

• descendants
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Trees
root

internal nodes

leaves
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Trees

ancestors of u

u

7



Trees

u

descendants of u
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Application of trees

 Applications  of trees

• class hierarchy in Java

• file system

• storing hierarchies in organizations
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Tree ADT

 Whatever the implementation of a tree is, its interface is the following 

• root()

• size()

• isEmpty()

• parent(v)

• children(v)

• isInternal(v)

• isExternal(v)

• isRoot()

10



Tree Implementation 

class Tree {

TreeNode root; 

//tree ADT methods..

}

class TreeNode<Type> {

Type data; 

int size; 

TreeNode parent; 

TreeNode firstChild; 

TreeNode nextSibling; 

getParent();

getChild(); 

getNextSibling();

}
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 Depth: 

• depth(T, v) is the number of ancestors of v, excluding v itself  

 Recursive formulation 

• if v == root, then depth(v) = 0

• else, depth(v) is 1 + depth (parent(v))

 Compute the depth of a node v in tree T:    int depth(T, v)

 Algorithm: 

int depth(T,v) {

if T.isRoot(v) return 0

return 1 + depth(T, T.parent(v))

}

 Analysis: 

• O(number of ancestors)  = O(depth_v)

• in the worst case the path is a linked-list and v is the leaf

• ==> O(n), where n is the number of nodes in the tree

Algorithms on trees: Depth
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 Height:

• height of a node v in T  is the length of the longest path from v to any leaf

 Recursive formulation: 

• if v is leaf,  then its height is 0

• else height(v) = 1 + maximum height of a child  of v

 Definition: the height of a tree is the height of its root

 Compute the height of tree T: int height(T,v)

 Height and depth are “symmetrical”

 Proposition:  the height of a tree T is the maximum depth of one of its  leaves. 

Algorithms on trees: Height
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Height

 Algorithm: 

int height(T,v) {

if T.isExternal(v) return 0; 

int h = 0; 

for each child w of v in T do 

h = max(h, height(T, w))

return h+1; 

}

 Analysis:  

• total time: the sum of times spent at all nodes in all recursive calls

• the recursion:

• v calls height(w) recursively on all children w of v

• height() will eventually be called on every descendant of v 

• overall:  height() is called on each node precisely once,  because each node has one parent

• aside from recursion 

• for each node v:   go through all children of v

– O(1 + c_v)   where c_v is the number of children of v

• over all nodes:  O(n) + SUM (c_v)

– each node is child of only one node, so its processed once as a child 

– SUM(c_v)  = n - 1

• total:  O(n), where n is the number of nodes in the tree
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Tree traversals

 A traversal is a systematic way to visit all nodes of T. 

 pre-order:     root,  children 

• parent comes before children;  overall root first 

 post-order:   children, root

• parent comes after children; overall root last

void preorder(T, v)

visit v

for each child w of v in T do 

preorder(w)

void postorder(T, v)

for each child w of v in T do 

postorder(w)

visit v

� Analysis:  O(n)   [same arguments as before]
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Examples

 Tree associated with a document

 In what order do you read the document?

Pape

r

Title Abstract Ch1 Ch2 Ch3 Refs

1.1 1.2 3.1 3.2
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Example

 Tree associated with an arithmetical expression

 Write method that evaluates the expression. In what order do you traverse the tree?

+

3 *

-

12 5

+

1 7

17



Binary trees
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Binary trees

 Definition:  A binary tree is a tree such that 

• every node has at most 2 children 

• each node is labeled as being either a left chilld or a right child 

 Recursive definition: 

• a binary tree is empty; 

• or it consists of 

• a node (the root) that stores an element

• a binary tree, called the left subtree of T

• a binary tree, called the right subtree of T
 Binary tree interface

• left(v) 

• right(v)

• hasLeft(v)

• hasRight(v)

• +  isInternal(v), is External(v), isRoot(v), size(), isEmpty()
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 In a binary tree 

• level 0 has <=  1 node

• level 1 has <=  2 nodes

• level 2 has <=  4 nodes

• ...

• level i  has <=  2^i nodes

 Proposition: Let T be a binary tree with n nodes and height h.  Then 

• h+1  <=   n   <=   2 h+1 -1

• lg(n+1)  - 1   <=   h   <=   n-1

Properties of binary trees

d=0

d=1

d=2

d=3
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Binary tree implementation

 use a linked-list structure; each node points to its left and right children ; the tree  

class stores the root node  and the size of the tree

 implement the following functions: 

• left(v) 

• right(v)

• hasLeft(v)

• hasRight(v)

• isInternal(v)

• is External(v) 

• isRoot(v)

• size()

• isEmpty()

• also 

• insertLeft(v,e)

• insertRight(v,e)

• remove(e)

• addRoot(e) 

data

left right

parentBTreeNode:
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Binary tree operations

 insertLeft(v,e): 

• create and return a new node w storing element e, add w as the left child of v

• an error occurs if v already has a left child

 insertRight(v,e)

 remove(v): 

• remove node v, replace it with its child, if any,  and return the element stored at v

•  an error occurs if v has 2 children 

 addRoot(e): 

• create and return a new node r  storing element e and make r the root of the tree; 

• an error occurs if the tree is not empty

 attach(v,T1, T2): 

• attach T1 and T2 respectively as the left and right subtrees of the external node v

• an error occurs if v is not external

22



Performance

 all  O(1) 

• left(v) 

• right(v)

• hasLeft(v)

• hasRight(v)

• isInternal(v)

• is External(v) 

• isRoot(v)

• size()

• isEmpty()

• addRoot(e) 

• insertLeft(v,e)

• insertRight(v,e)

• remove(e)
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Binary tree traversals

 Binary tree computations often involve traversals

• pre-order:     root left right

• post-order:   left right root

 additional traversal for binary trees

• in-order:       left root right

• visit the nodes from left to right

 Exercise: 

• write methods to implement each traversal on binary trees

24



Application: Tree drawing 

 Come up with a solution to “draw” a binary tree  in the following way. Essentially,  we 

need to assign coordinate x and y to each node.

• node v in the tree

• x(v)  = ? 

• y(v)  = ? 

0 1 2 3

0

1

2

3

4
4 5 6 7
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Application: Tree drawing 

 We can use an in-order traversal and assign coordinate x and y of each node in the 

following way: 

• x(v) is the number of nodes visited before v in the in-order traversal of v

• y(v) is the depth of v

0 1 2 3

0

1

2

3

4
4 5 6 7
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Binary tree searching

 write search(v, k)

• search for element k in the subtree rooted at v 

• return the node that contains k 

• return null if not found

 performance

• ?
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Binary Search Trees (BST)

 Motivation: 

• want a structure that can search fast 

• arrays: search fast, updates slow 

• linked lists: search slow, updates fast  

 Intuition: 

• tree combines the advantages of arrays and linked lists

 Definition: 

• a BST is a binary tree with the following “search” property

– for any node v allows to search efficientlyv

T1 T2

k

all nodes in T1<= k all node in T2 > k 28



BST

 Example

v

T1 T2

k

<= k > k
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Sorting a BST

 Print the elements in the BST in sorted order
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Sorting a BST

 Print the elements in the BST in sorted order.

 in-order traversal:  left -node-right

 Analysis: O(n)

//print the elements in tree of v in order

sort(BSTNode v)

if  (v == null) return; 

sort(v.left());

print v.getData(); 

sort(v.right());  
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Searching in a BST
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Searching in a BST

//return the node w such that w.getData() == k or null if such a node 

//does not exist

BSTNode search (v, k)   {

if (v == null) return null; 

if (v.getData() == k) return v;

if (k < v.getData()) return search(v.left(), k);

else return search(v.right(), k)

}

 Analysis: 

• search traverses (only) a path down from the root 

• does NOT traverse the entire tree

• O(depth of result node) = O(h), where h is the height of the tree
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Inserting in a BST

 insert 25
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Inserting in a BST

 insert 25

• There is only one place where 25 can go

 //create and insert node with key k in the right place 

 void insert (v, k)   {

//this can only happen if inserting in an empty tree

if (v == null) return new BSTNode(k); 

if (k <= v.getData()) {

 if (v.left() == null) { 

//insert node as left child of v

u = new BSTNode(k); 

v.setLeft(u); 

} else {

    return insert(v.left(), k);

}

} else //if (v.getData() > k) {

...

}

}

25
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Inserting in a BST

 Analysis: 

• similar with searching 

• traverses a path from the root to the inserted node

• O(depth of inserted node) 

• this is O(h), where h is the height of the tree
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Deleting in a BST

 delete 87

 delete 21

 delete 90

 case 1:  delete a leaf x

• if x is left of its parent, set parent(x).left  = null

• else set parent(x).right  = null

 case 2: delete a node with one child 

• link parent(x) to the child of x 

 case 2: delete a node with 2 children

• ?? 37



Deleting in a BST

 delete 90

 copy in u 94 and delete 94 

• the left-most child of right(x)

 or

 copy in u 87 and delete 87

• the right-most child of left(x) 

u

node has <=1  child

node has <=1  child
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Deleting in a BST

 Analysis: 

• traverses a path from the root to the deleted node

• and sometimes from the deleted node to its left-most child 

• this is O(h), where h is the height of the tree
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BST performance

 Because of search property, all operations follow one root-leaf path 

• insert:    O(h)

• delete:   O(h)

• search:  O(h)

 We know that  in a tree of n nodes 

• h >= lg (n+1) - 1  

• h <= n-1

 So in the worst case h is O(n)

• BST insert, search, delete: O(n)

• just like linked lists/arrays
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BST performance

 worst-case scenario

• start with an empty tree

• insert 1

• insert 2

• insert 3

• insert 4

• ...

• insert n

 it is possible to maintain that the height of the tree is Theta(lg n) at all times

• by adding additional constraints 

• perform rotations during insert and delete to maintain these constraints

 Balanced BSTs:  h is Theta(lg n) 

• Red-Black trees

• AVL trees

• 2-3-4 trees

• B-trees

 to find out more.... take csci231 (Algorithms)
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