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Networks

* Ubiquitous in real world

~ y

Road Network

World Wide Web Internet-of-Things

* A flexible and general data structure
* Many types of data can be formulated as networks



Network Minina: Link Prediction

Does she know
Richard Gere?




Network Mining: Ranking
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Network Mining: Community Detection
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Information

) SRR retrieval

Machine learning e Data mining

Who tend to work together?

- Q.Mei, D.Cai, D.Zhang, and C.Zhai, Topic Modeling with Hitting Time, WWW 2008



Network Mining: Classification

A * d1 is democratic
N * d2 is republican
* What can we say

— B a3 about d3 and d47?

d4

- Graph from Jerry Zhu'’s tutorial in ICML 07



Network Mining: Resilience
ow robust are networks to random/targeted attacks?




Network Mining: Information Cascades
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Cascade of the “white house bombing rumor - Zhao ot al., WWW 2015



Network Mining: Many Other Tasks

Sampling

Recommendation

Structure analysis (e.g., structural holes)
Evolution

Matching

- Visualization



Traditional Representations of Networks
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Suffer from data sparsity

Suffer from high dimensionality
Does not facilitate computation
Does not represent “semantics”
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Research Question and Challenges

How to effectively and efficiently represent networks?

Challenges:
Large-scale: millions of nodes and billions of edges

Heterogeneous: directed/undirected, and binary/weighted
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Learning Node Representations for Networks

1 @O0 - Node Classification

2@000 s@EED €00 & . N'ode Clus.terlng
. @asp 60300 @UED 5 - Link Prediction

, GOED @ 10 - Recommendation

Node representations

« E.g., Facebook social network -> user representations (features)->

friend recommendation
’ - Word representation

Text representation, e.g., word and document degree
representation, ... document

Deep learning has been attracting increasing \
attention ... node I

o o = network word
A future direction of deep learning is to integrate ~text
unlabeled data ... / \ \

embedding classification

edge

The Skip-gram model is quite effective and efficient ...

Unstructured text Word co-occurrence network
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Extremely Low-dimensional Representations:
2D /3D for Visualizing Networks

High-dimensional Data

Networks

Scatter Plots Network Diagrams

13 Heatmaps



Visualizing Scientific Papers

TOM Screntific
Papers on Oue Slide

Q Computer Science
o Mathematics
Physics
Economics

Biology

Chemistry

Medicine



From Node Representation to Graph
Representation

Node representations are good for
Node classification
Recommendation

Link prediction

How about ---
Information cascades
Community detection

Protein function prediction

We want to learn graph representations
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Outline

Part I: Learning Node Representations of Networks

Related Work: Laplacian Eigenmap, Word2Vec
LINE, DeepWalk, and Node2Vec

Extensions

Part llI: Visualizing Networks and High-Dimensional Data
t-SNE
LargeVis

Pat lll: Learning Representations of Entire Networks
Graph kernels
End-to-end methods

Part [V: Summary, Challenges & Future Work
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Problem Definition: Node Embedding

. Given a network/graph G=(V, E, W), where V is the set of nodes, E
is the set of edges between the nodes, and W is the set of weights
of the edges, the goal of node embedding is to represent each
node i with a vector ii, ER’ , which preserves the structure of
networks.

7
0000 @000 Qo0 9

4 Q000 @009 10

Networks Node representations
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Related Work

- Classical graph embedding algorithms
- MDS, IsoMap, LLE, Laplacian Eigenmap, ---
- Hard to scale up
. Graph factorization (Ahmed et al. 2013)
- Not specifically designed for network representation
- Undirected graphs only
. Neural word embeddings (Bengio et al. 2003)
- Neural language model
- word2vec (skipgram), paragraph vectors, etc.
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Laplacian Eigenmap (Belkin and Niyogi, 2003)

- Intuition: the embeddings of similar nodes should be close to each
other

- Objective: i

O = > E w, (i, —ii,) =tr(U"LU)

(i,j) ek

- Where U =[u,,u,, -,u,], L is the Laplacian matrix L=D-W, and D, =EW,-J-
j

- Optimization by finding the eigenvectors of smallest eigenvalues of
the Laplacian matrix L:
Lu= ADu

- Computationally expensive for finding eigenvectors when networks
are very big

Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.
Neural Computation, 2003.
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Word2VEC (Mikolov et al. 2014)

Goal: represent each word 7 with a vector v, ER‘ by training from a
sequence (W, W, *+-,W;)
Distributional hypothesis (John Rupert Firth): You know a word by

the company it keeps
Skip-gram: learning word representations by predicting the nearby

words

Input projection  output
w(t-2)
| LT

exp ( Uy, Vwy

w(t-1) 211 |/ — _

! p(wo|wr) = o -
' a1/ ;

exp (v "wv,,
w(t) H ‘ Zu)=l p ( w wy )
w(t+1)
w(t+2)

Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality.
NIPS 2014
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Skipgram

- Objective:

T
1
T S: log p(wiyj|wy)

t=1 —c<j<c,j#0

- Where ¢ is the window size
- Direct optimization is computationally expensive due to
the softmax function

- Negative sampling:

k
T T
log O'('UZUO Vw; ) + Z E'wi ~ Py (w) [log U( _’l}:l_.‘f

=1

Vw; ) }

- Where P.(w) is a noisy distribution
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LINE: Large-scale Information Network Embedding
(Tang et al., Most Cited Paper of WWW 2015)

- Arbitrary types of networks

- Directed, undirected, and/or weighted
- Clear objective function

- Preserve the first-order and second-order proximity
- Scalable

- Asynchronous stochastic gradient descent

- Millions of nodes and billions of edges: a coupe of hours on a
single machine

Jian Tang, Meng Qu, Mingzhe Wang, Jun Yan, and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15
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First-order Proximity

- The local pairwise proximity between the nodes

- However, many links between the nodes are not observed
- Not sufficient for preserving the entire network structure

24



Second-order Proximity

“The degree of overlap of fwo people’s friendship networks correlates
with the strength of tes between them --Mark Granovetter

.,

Q.

“You shall know a word by the company it keeps --JTohn Rupert Firth

- Proximity between the neighborhood structures of the nodes

25



Preserving the First-order Proximity (LINE 1st)

. Distributions: : (defined on the undirected edge i - j)

W..

Empirical distribution of ij

p.(v,,v.)=
first-order proximity: pl( : J) E w
mn

(et U;: Embedding of i
Model distribution of p(v.v.)= exp(u; u;)
first-order proximity: 1INV B ~T —

P / E exp(i, i, )
(m,n)EVxV

- Objective:

01=KL(pl7p1)=_ E Wilegpl(Vi,Vj)

(i,j)€E
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Preserving the Second-order Proximity (LINE 2nd)

. Distributions: (defined on the directed edge i -> j)

w..

Empirical distribution of 1’5 (v. |V.) — Y

. 2\7j i
neighborhood structure: E 1%

kEV
—>'T —

Model distribution of (v 1) = exp(u i uj)

: _ (V. 1v,)= ——
neighborhood structure: Joi E exp(ii .z i)

kEV
- Objective:

O, =EKL(ﬁ2('|Vl.),p2('|Vi))=— E Wi IOgPZ(Vj V)

(i,))EE
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Optimization Tricks

Stochastic gradient descent + Negative Sampling
- Randomly sample an edge and multiple negative edges

- The gradient w.r.t the embedding with edge (i, j)

00, dlog p,(v; 1v,)
— = Wij -
ou, ou,

Problematic when the variances of weights of the edges are large
- The variance of the gradients are large

Solution: edge sampling
- Sample the edges according to their weights and treat the edges as binary

Complexity: O(d*K*|E[)

- Linear to the dimensionality d, the number of negative samples K, and the number of edges
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Discussion

- Embed nodes with few neighbors

- Expand the neighbors by adding higher-order neighbors

. Breadth-first search (BFS)

- Adding only second-order neighbors works well in most cases
- Embed new nodes

- Fix the embeddings of existing nodes

- Optimize the objective w.r.t. the embeddings of new nodes

29



DeepWalk (Perozzi et al. 2014)

- Learning node representations with the technique for
learning word representations, i.e., Skipgram
. Treat random walks on networks as sentences

3

17w exp(id'; ii,)
(v, lv,)= .

; o Y exp(i'; i)

kev

Random walk generation
(generate node contexts
through random search)

Predict the nearby nodes
in the random walks

Bryan Perozzi, Rami Al-Rfou, Steven Skiena. DeepWalk: Online Learning of Social Representations. KDD’14
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DeepWalk (Perozzi et al. 2014)

. Optimization: hierarchical softmax (Morin, Bengio, 2005)
- Assign the nodes to the leaves of a binary tree

- Predict the node => predict a path in the tree
- Make binary decisions along the path

. Complexity from |V| to log(IVI)

3 M| (V2 (U3l |V4] |Us| Vsl [U7] |US

Predict the nearby nodes vl oo
in the random walks

Hierarchical softmax
(v1->v3, v1->u5)

31



Node2Vec (Grover and Leskovec, 2016)

Figure 1: BES and DES search strategies from node u (k = 3).

- Find the node context by a hybrid strategy of
- Breadth-first Sampling (BFS): homophily
. Depth-first Sampling (DFS): structural equivalence

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. KDD’16
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Expand Node Contexts with Biased Random Walk

- Biased random walk with two parameters p and g

- p: controls the probability of revisiting a node in the walk

- g: controls the probability of exploring “outward” nodes

- Find optimal p and q through cross-validation on labeled data

- Optimized through similar objective as LINE with first-order
proximity

33



Comparison between LINE, DeepWalk, and
Node2Vec

Algorithm Neighbor Proximity Optimization Labeled Data
Expansion
LINE BES 1st or 2nd Negative Sampling No
DeepWalk Random e Hierarchical Softmax No
Node2Vec BFS + DFS 1st Negative Sampling Yes

34



Applications

. Node classification (Perozzi et al. 2014, Tang et al. 2015a,
Grover et al. 2015 )

. Node visualization (Tang et al. 2015a)

. Link prediction (Grover et al. 2015)

. Recommendation (Zhao et al. 2016)

. Text representation (Tang et al. 2015a, Tang et al. 2015b)

35



Node Classification

* social network => user representations (features) => classifier

* Community identities as classification labels

% Labeled Nodes

1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10%

| DEEPWALK V324 346|359 36.7| 372 37.7| 381 383 | 385 387

| SpectralClustering || 27.43 | 30.11 | 31.63 | 32.69 | 33.31 | 33.95 | 34.46 | 34.81 | 35.14 | 35.41
Micro-F1(%) TFagfCRster™ ™ 7| 25.75 | 28.53 | 20.14 | 30.31 | 30.85 | 31.53 | 31.75 | 31.76 | 32.19 | 32.84
Modularity 2275 | 2520 | 27.3 | 27.6 | 28.05 | 29.33 | 20.43 | 28.89 | 20.17 | 20.2

wvRN 17.7 | 14.43 | 15.72 | 20.97 | 10.83 | 19.42 | 19.22 | 21.25 | 22.51 | 22.73

Majority 16.34 | 16.31 | 16.34 | 16.46 | 16.65 | 16.44 | 16.38 | 16.62 | 16.67 | 16.71

Table: Results on Flickr Network (Perozzi et al. 2014)

DeepWalk > Laplacian Eigenmap
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Node Classification

* social network => user representations (features) => classifier
* Community identities as classification labels
[ Metric | Algorithm [ 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% |
GF 25.43 26.16 26.60 26.91 27.32 27.61 27.88 28.13 28.30 28.51
(24.97) | (26.48) (27.25) (27.87) (28.31) (28.68) (29.01) (29.21) (29.36) (29.63)
DeepWalk 39.68 41.78 42.78 43.55 43.96 44.31 44.61 44.89 45.06 45.23
DeepWalk(256dim) 39.94 42.17 43.19 44.05 44.47 44.84 45.17 45.43 45.65 45.81
Micro-F1 LINE(1st) 35.43 38.08 39.33 40.21 40.77 41.24 41.53 41.89 42.07 42.21
o (36.47) | (38.87) (40.01) (40.85) (41.33) (41.73) (42.05) (42.34) (42.57) (42.73)
LINE(2nd) 32.08 36.70 38.93 40.26 41.08 41.79 42.28 42.70 43.04 43.34
(36.78) | (40.37) (42.10) (43.25) (43.90) (44.44) (44.83) (45.18) (45.50) (45.67)
LINE(1st+2nd) 39.01% 41.89 43.14 44.04 44.62 45.06 45.34 45.69%* 45.91%* 46.08%*
: (40.20) | (42.70) | (43.94%%) | (44.71%*) | (45.19%%) | (45.55%%) | (45.87*%) | (46.15%%) | (46.33*%*) | (46.43%*)

Table: Results on Youtube Network(Tang et al. 2015a)

LINE(1st + 2nd ) SLINE(27d )> DeepWalk > LINE(1st )
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Node Visualization (Tang et al. 2015a3)

authors from three different research

Coauthor network

”

(13

® Computer vision

”

(43

® "Machine learning

”

ining

® “Data m

(c) LINE(2nd )

(b) DeepWalk
38
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Link Prediction (Grover and Leskovec, 2016)

Op Algorithm Dataset

Facebook | PPI arXiv
Common Neighbors | 0.8100 0.7142 | 0.8153
Jaccard’s Coefficient | 0.8880 0.7018 | 0.8067
Adamic-Adar 0.8289 0.7126 | 0.8315
Pref. Attachment 0.7137 0.6670 | 0.6996
Spectral Clustering 0.5960 0.6588 | 0.5812

(a) | DeepWalk 0.7238 0.6923 | 0.7066
LINE 0.7029 0.6330 | 0.6516
node2vec 0.7266 0.7543 | 0.7221
Spectral Clustering 0.6192 0.4920 | 0.5740

(b) | DeepWalk 0.9680 0.7441 | 0.9340
LINE 0.9490 0.7249 | 0.8902
node2vec 0.9680 0.7719 | 0.9366

Table: Results of Link Prediction

Node Embeddings (LINE, DeepWalk, node2vec)
> Jaccard’s Coefficient > Adamic-Adar
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Unsupervised Text Representation
(Tang et al. 2015a)

e (Construct text networks from unstructured text

degree
document
. node \
Text representation, e.g., word and document = network word
tation, ...
representation ~text ~ Word co-occurrence network
Deep learning has been attracting increasing d
attention ... edge
A future direction of deep learning is to integrate embedding classification
unlabeled data ...
The Skip-gram model is quite effective and efficient ...
Information networks encode the relationships
h j
between the data objects text doc_1
information doc_2
Unstructured text network doc_3 Word-document network
word doc_4
classification

40



Word Analogy

words, 1B edges)

with data size

*  Only the weights of edges change

Algorithm

GF

SkipGram

LINE(1 s)

LINE(2nd )

Semantic(%) Syntactic(%)

61.38 44.08
69.14 57.94
58.08 49.42
73.79 59.72

LINE(274) > LINE(15Y)
LINE(2) > SkipGram

41

Entire Wikipedia articles => word co-occurrence network (~2M

Size of word co-occurrence networks does not grow linearly

Overall
51.93
63.02
53.35

66.10



Text Classification (on Long Documents)

Word co-occurrence network (w-w) , word-document network (w-d) to
learn the word embedding

Document embedding as average of word embeddings in the document

Accuracy 81
80

79
78

77
76
75
74
73

SkipGram ParagraphVEC LINE(w-w) LINE(w-d)

LINE(w-w) > SkipGram LINE(w-d) > ParagraphVEC

LINE(w-d) > LINE(w-w)
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Text Classification (on Short Documents)

Word co-occurrence network (w-w) , word-document network (w-d) to
learn the word embedding

Document embedding as average of word embeddings in the document

Accuracy 76
74
72
70
68

66

64

62 ‘

SkipGram ParagraphVEC LINE(w-w) LINE(w-d)

LINE(w-w) > SkipGram LINE(w-d) > ParagraphVEC

LINE(w-w) > LINE(w-d)
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Extensions

Other variants

Multi-view networks

Networks with node attributes
Heterogeneous networks

Task-specific network embedding
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Other Variants

Leverage global structural information (Cao et al. 2015)
Non-linear methods based on autoencoders (Wang et al. 2016)
Directed network embedding (Ou et al. 2016)

Signed network embedding (Wang et al. 2017)

* Shaosheng Cao, Wei Lu, and Qiongkai Xu. GraRep: Learning graph representations with global structural information.
CIKM’ 2015.

* Mingdong Ou, Peng Cui, Jian Pei, Wenwu Zhu. Asymmetric transitivity preserving graph embedding. KDD, 2016.

* Daixing Wang, Peng Cui, Wenwu Zhu. Structural deep network embedding. KDD, 2016.

* Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, Huan Liu. Signhed network embedding in social media. SDM
2017.
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Extensions

Other variants

Multi-view networks

Networks with node attributes
Heterogeneous networks

Task-specific network embedding
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Multi-view Network Embedding ( Qu and Tang et
al. 2017)

Multiple types of relationships between nodes exist in real-world
networks

E.g., following, retweeting relationships between users in Twitter
Each type of relationship => a view of the network
Multiple types of relationships => multi-view networks

Infer robust node representations with multiple views

Complementary information in different views

View 1 View 2 View 3

Figure: Networks with multiple views

Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, and Jiawei Han. Learning Distributed Node Representations
for Networks with Multiple Views. To appear in CIKM 2017.
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A Co-Regqularization Approach

Each node has a robust representation and multiple view-specific
representations

Preserve the structure of different views through view-specific
representations

Promote the collaboration of different views to vote for robust
representations

Regularize the view-specific representations

i Multi-view \'ietir-speciﬁc Node i Voting Weights i
| Network Representations | of Views Labeled Data .
: & ................. :Lj (XX X)) i -. - o i
: TYTIT) | Robust Node i
: : ! Representations |
| . | | |
: .7. :'bvvv‘v : - - :
: o, : Regulanization :



A Co-Regqularization Approach

Objective

Multi-view

Network

Ocollab = Z Ok + 1R,

2 View-specific objective
Z W ) log p (v;103).

% Regularization objective
2

:robust embedding of node i

(i,j)€Ek
VI K
k1 k
R = E E i [1X; —xXill3,
i=1 k=1
View-specific Node Voting Weights
Representations of Views Labeled Data
YYXIT) Robust Node
Representations

929999

Regulanzation

50

Xij

k
Xj

k
Ai

:view-specific node embedding

of node i
:weights of views of node i



Learning the Weights of the Views via Neural
Attention

* According to the regularization term:

V]

K K
_ k |1k 112 k_k
R=p > Ml -xill}, W x;= ) akxk.
k:l k=1

i=1

* Learning the weights with supervised data, e.g., node classification

Oattn = Z L(Xi,yi),

V;ES

* Define the attention weight of views for each node:

exp(z}{xlc) Xic : concatenation of view-specific
, embeddings of node i

A =
i vK T ,C
Zk'zl exp(zklxl )

Zz : embedding of view k
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Results of Multi-label Node Classification

Category Algorithm DBLP Flickr PPI
Macro-F1 Micro-F1 | Macro-F1 Micro-F1 | Macro-F1 Micro-F1
. . : LINE 70.29 70.77 34.49 54.99 20.69 2470 |
Single View | :
. nodezvec | 7152 7222 | 3443 5482 | 2120 2504 |
node2vec-merge 72.05 72.62 29.15 52.08 21.00 24.60
node2vec-concat 70.98 71.34 32.21 53.67 21.12 25.28
CMSC - - - - 8.97 13.10
Multi View MultiNMF 51.26 59.97 18.16 51.18 5.19 9.84
MultiSPPMI 54.34 55.65 32.56 53.80 20.21 23.34
. MVE-NoCollab 71.85 72.40 28.03 54.62 18.23 22.40 |
____MVE-NoAttn_ | __"7336_ _____ 73.77_ | _ 3241 " T5418 1 22.247 " 2541
O MVE | 7451 7485 | 3474 5895 | 2339 2696 |

MVE > MVE-NoAttn > LINE/node2vec

i

Without learning the
weights of views

52
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Single best view




Extensions

Other variants

Multi-view networks

Networks with node attributes
Heterogeneous networks

Task-specific network embedding
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Networks with Node Attributes (Yang et al.
2015, N.Kipf et al. 2016, Liao et al. 2017)

Networks with text information (Yang et al. 2015)

Networks with attributes (Liao et al. 2017)
Gender, location, text, ---

Variational graph autoencoders (N.Kipf et al. 2016)

Encode the node with neighborhood structures and attributes

Decode the neighborhood structures

* Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Y. Chang. Network representation learning with rich text

information. IJCAl 2015.

* Thomas N.Kipf and Max Welling. Variational Graph Auto-encoders. NIPS Workshop 2016.
* Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Attributed Social Network Embedding. arXiv, 2017.
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Extensions

Other variants

Multi-view networks

Networks with node attributes
Heterogeneous networks

Task-specific network embedding
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Heterogeneous Network Embedding via Deep
Architectures (Chang et al. 2015)

Heterogeneous networks of images and text
Make the embeddings of linked objects close to each other

image-image, image-text, text-text

[ prediction layer ] g .O
ERTTRTTRTTTR T8 O LR\ e
[ Li beddi ] ¢=> [ L'] be[!d ] <=> [ Li beddi ]
R e R e REe e
[ ConvNet ]:o[ ConvNet ] RS FC layer = FC layer = FC layer

ﬁ u Nonlinear ﬁ 0 ﬁ 0 Nonlinear ﬁ a i

: embedings : : embeddings : :
f J @ 4 O § J b

[ ConvNet : :

Pairwise nodes from :
networks : (

Heterogeneous Networks

Siyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, Thomas S. Huang. Heterogeneous network embedding via Deep Architectures. KDD'15
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Heterogeneous Star Network Embedding (Chen
et al. 2017)

Heterogeneous Star Networks @

Paper, keywords, authors, venues

Aims to embed the center objects @

paper
Author scores 0 00000 O OO o0 O
Def‘-se

Paper embedding 000000 ‘

Node type

embedding o000 OO o000 OO ".’......
o] (o o) (@ o) (o)
o ° o ¢} e} °

Node embedding : : eee : : ese : :
o ° o} ¢} o} °
) e ° e ° L®)

Keywords References Venue

Ting Chen and Yizhou Sun, "Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification. WSDM’17.
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Extensions

Other variants

Multi-view networks

Networks with node attributes
Heterogeneous networks

Task-specific network embedding
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null

null
null

label
label

label

Semi-supervised Text Representation
(Tang et al. 2015b)
Heterogeneous text network
Word-word, word-document, and word-label networks

Different levels of word co-occurrences: local context-level, document-
level, label-level

Learning word embeddings through jointly training the
heterogeneous networks

Document embeddings as the average of word embeddings

. text
Text representation, e.g., word and document degree text doc_1
representation, ... document . . informatio
Deep learning has been attracting increasing ... information doc_2

node I network network

A future direction of deep learning is to integrate ... = network word etwo doc_3

/ ~text ~ word doc 4 word
The Skip-gram model is quite effective and efficient ... edge
Information networks encode the relationships . Y . e ; ifi i

P embedding classification classification classificatio
document
Word co-occurrence Word-document Word-label
Unstructured text
network network network

bel 1
label 2
abel_3

Jian Tang, Meng Qu, and Qiaozhu Mei. PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks. KDD’15.
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Results on Text Classification of Long
Documents

|| 20neusgrow wikipedia | ___wDB____

Type Algorithm Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
Unsupervised LINE(G_wd) 79.73 78.40 80.14 80.13 89.14 89.14
CNN 80.15 79.43 79.25 79.32 89.00 89.00
PTE(G_wl) 82.70 81.97 79.00 79.02 85.98 85.98

Predictive PTE(G_ww+G_wl) 83.90 83.11 81.65 81.62 89.14 89.14
embedding  preG 4.6 W)  84.39 8364 8229 8227 8976  84.76

PTE(joint) 84.20 83.39 82.51 82.49 89.80 89.80

PTE > CNN
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Results on Text Classification of Short
Documents

|| 20neusgrow wikipedia | ___wDB____

Type Algorithm Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
Unsupervised LINE(G_ww) 74.22 70.12 71.13 71.12 73.84 73.84
CNN 76.16 73.08 72.71 72.69 75.97 75.96
PTE(G_wl) 76.45 72.74 73.44 73.42 73.92 73.91
Predictive PTE(G_ww+G_wl)  76.80 73.28 72.93 72.92 74.93 74.92
embedding PTE(G wd+G_wl)  77.46 74.03 73.13 73.11 75.61 75.61
PTE(joint) 77.15 73.61 73.58 73.57 75.21 75.21

PTE = CNN
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Semi-supervised Classification with Graph
Convolutional Networks (Kipf et al. 2017)

Task: Given a graph G = (V, E), and the features of nodes x € R™? ,
and the labels of a subset of nodes are given.

Learning the node representations through graph convolutional
networks

Combining node representations (self-link) and representations of

neighbors
Thomas N.Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. ICLR'17.
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Multi-layer Graph Convolution Neural Networks

Hidden layer Hidden layer

Input

'. ° .. ° Output
o L R | ey p || e i Fina[ Ob.eCti\leI
. . | % . | _’ . J
® e o() v e a(:)

F
—_ 17(0) ° o — 7q)
X=H A, A Z=H L=—>") Y;InZ;
\ o« ® o« ® lenyzl

HOD — 4 ( AH(’)W(”>

« Starting from the node features H" =X
* Define the propagation rule

Add the self-links
A :'f)—%AD—%, Normalize the matrix

HY =4 (AH“)W(”) Nonlinear propagation



Experimental Results (Kipf & ICLR 2017)

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP[32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 H&.1

ICA 18] bY.1 (0.1 3.9 25.1
Planetoid™® [29] 64.7(26s)  75.7.(13s)  77.2(25s)  61.9(1835s)._

GCN (thispaper) 70.3(7s) 81.5(4s) 79.0(38s) 66.0 (485)§

GOCN (rand. splits) 67.9+£0.5 80.1+0.5 789+0.7 584+1.7

GCN > Label Propagation
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Outline

Part I: Learning Node Representations of Networks

Related Work: Laplacian Eigenmap, Word2Vec
LINE, DeepWalk, and Node2Vec

Extensions

Part ll: Visualizing Networks and High-Dimensional Data
t-SNE
LargeVis

Pat lll: Learning Representations of Entire Networks
Graph kernels
End-to-end methods

Part [V: Summary, Challenges & Future Work
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Extremely Low-dimensional Representations:
2D /3D for Visualizing Networks

K-Nearest Neighbor Graph (KNN-G) Graph Layout
Construction

High-dimensional Data Networks 2D/3D Layout

‘ ’»‘ ) BRI AR
Scatter Plots Network Diagrams
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t-SNE (Maarten and Hinton, 2008, 2014 )

- State-of-the-art algorithms for high-dimensional data visualization
- Deployed in Tensorbord for visualizing the representations learned
by deep neural networks.

DATA el ) B ronts 000

Locally Linear Embedding AT -

Visualizations of MNIST Data TensorBoard Visualizations by t-SNE

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR, 2008.
L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. JMLR, 2014.
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Constructing the K-nearest Neighbor Graph

Finding the nearest neighbors for all the data points
Vantage-point tree

Calculating the weights of the edges between the data points

exp(—d(xix;)%/207) o v t neiahb
pjli = EkeNi exp(—d(xi,xk)Q/Qa;.z)’ if S M ./\/; : nears{s ngj;gi ors
0, otherwise
Pjli * Pilj
e .
Pis ON

Complexity: O(NlogN) w.r.t. the humber of data points N
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K-nearest Neighbor Graph Visualization

Similarity between two data points / and j in low-dimensional
space is defined as:

(1+ [ly: —y;lI*)
> k(L t llye —will®)~

y; : low-dimensional representations
(coordinates) of node i

qi; =
Gii = 0

Objective: minimize the similarities defined in the high-dimensional
spaces and low-dimensional spaces

C(€) = KL(P||Q) = ) pijlog i_

); j
— 1i 7
1] y

The complexity: O(NLogN) (Maarten, 2014).
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Limitations of t-SNE

. K-NNG construction: complexity grows O(NlogN) to the number of
data poitns N

. Graph layout: complexity is O(NlogN)

- Very sensitive parameters
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LargeVis (Tang et al., Best Paper Nomination
at WWW 2016)

Efficient approximation of K-NNG construction
- 30 times faster than t-SNE (3 million data points)
- Better time-accuracy tradeoff

- Efficient probabilistic model for graph layout
- O(NlogN) -> O(N)
. 7 times faster than t-SNE (3 million data points)
- Better visualization layouts
- Stable parameters across different data sets

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16
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Random Projection Trees

* Partition the whole space into different regions with multiple
hyperplanes

/
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Random Projection Trees
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Random Projection Trees
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Random Projection Trees
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Random Projection Trees

/6




K-NNG Construction

- Search nearest neighbors through traversing trees
- Only data points in the leaf are considered as nearest neighbors

- Multiple trees are usually used to improve the accuracy
- e.g., hundreds
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Reduce the Number of Trees

- Construct a less accurate K-NNG with a few trees

lteratively refine the K-NNG through “neighbor exploring”

- “A neighbor of my neighbor is also likely to be my neighbor”

- Second-order neighbors are also treated as candidates of first-order
neighbors
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It Works!

<%’[-SNE

o
O —
ol —— LargeVis
o —&— RP-Tree
. . . NN-Descent
X axis: accuracy of K-NNG 5T || vpTies
Y axis: running time (minutes) =
tSNE: 16 hours (95% accuracy) ¢©
LargeVis: 25 minutes 23 . oton
. s anagm projection trees
- >30 times faster than t-SNE g . x
8 /
x/ /A/AO
o A——b— % OYCD LargeVis
00 02 04 06 08 10

Accuracy
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Learning the Layout of KNN Graph

- Preserve the similarities of the nodes in 2D/3D space
- Represent each node with a 2D/3D vector
- Keep similar data close while dissimilar data far apart

- Probability of observing a binary edge between nodes (i,j):

1
I+1ly, =y, |

- Likelihood of observing a weighted edge between nodes (i,j):

p(eij = Wij) = p(elj = I)WU
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A Probabilistic Model for Graph Layout

- Objective:
O= T[] ple;=wy) ] A-ple; =w,)y
(i,j))EE (i,j)EE
y: an unified weight assigned to negative edge

- Randomly sample some negative edges
- Optimized through asynchronous stochastic gradient descent
- Time complexity: linear to the number of data points
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It Works Too!

Time complexity

- t-SNE: O(NlogN)

- LargeVis: O(N)

On 3 million data points
- t-SNE: 45 hours

- LargeVis: 5.6 hours

- Seven times faster

50

40

Running time (hours)

10

0
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30

20

Percentage of data

t-SNE
—o— LargeVis <::
—A— t-SNE
/A /o/o{::I LargeVis
02 04 06 08 1.0



Visualization Quality

LargeVis  t-SNE (optimal parameters)

Metric: classification accuracy with KNN L// ]
on 2D space L

0.35

Configuration: o / —o— LargeVis
. A —&— t-SNE (default)
LargeVis with default parameters _ o t-SNE (optimal)
. . NE
t-SNE with default and optimal parameters § o EINE
(tuned per data set) 2q. U
o

LargeVis = t-SNE with optimal parameters /%q@/

LargeVis >> t-SNE with default parameters .
t-SNE (default parameters)

0.20

Parameters of LargeVis are very stable

10 20 30 40 50
Number of neighbors in KNN
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10M Scientific Papers on One Slide
Y Y

o —
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10M Scientific Papers on One Slide

-
-

Q Computer Science
° Mathematics
Physics
Economics
Biology
Chemistry

Medicine
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Computer Science Mathematics
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Computer Science vs. Mathematics

System Analysis

Signal Processing
Av\
Statistical Modeling / o

~_——— Optimization

-t

-

Pattern Recognition

Computer Science S
Mathematics
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Computer Science vs. Physics

System Analysis

Control Systems

System Reliability

Optical Systems

Computer Science S
Physics
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S " Wikipedia Articles

- (color: semantic cluster)




community)

A\




i

 ‘Computer Science
- Authors
" (color: community




Summary

LargeVis: a new technique for visualizing networks and
high-dimensional data

A better tool than t-SNE.
>/ times faster than t-SNE on three million data points
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Impact

Our release:

LINE: https://github.com/tangjianpku/LINE
(C++) (271 stars, released since 2015.3)
LargeVis : https://github.com/Iferry007/LargeVis
(C++&Python) (289 stars, released since 2016.7)

Other tools based on our implementation:

R version in CRAN: https://github.com/elbamos/largeVis

LargeVis Tutorial: https://ilorince.github.io/viz-tutorial/

Interactive Visualization: https://github.com/NLeSC/DiVE
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Outline

Part I: Learning Node Representations of Networks

Laplacian Eigenmap
Word2Vec
LINE, DeepWalk, and Node2Vec

Part llI: Visualizing Networks and High-Dimensional Data
t-SNE
LargeVis

Pat lll: Learning Representations of Entire Networks
Graph kernels
End-to-end methods

Part [V: Summary, Challenges & Future Work
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Beyond node representations

Node representations are good for
Node classification
Recommendation

Link prediction

How about ---

Information cascades

Community detection

Protein function prediction

We want to learn graph representations
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Road map

Non end-to-end method

Graph kernels
Manually designed kernel matrix

Kernel matrix is later used for down-stream tasks

End-to-end methods
Matrix-based
Sequence-based

Graphical model based
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Road map

Non end-to-end method

Graph kernels
Manually designed kernel matrix

Kernel matrix is later used for down-stream tasks

End-to-end methods
Matrix-based
Sequence-based

Graphical model based
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Kernels

Quantify similarity of two objects
KX, X) = ($(X),»(X))
®(-) maps objects to embedding space
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Graph kernels

Intuition
Design graph substructures
Compare them to find similarity K(G, G')
Embedding of a graph is its similarity to all other graphs

Many graph kernels
Shortest Path Kernel [Borgwardt+ '05]

Graphlet Kernel [Shervashidze+ '09]
Weisfeiler-Lehman Kernel [Shervashidze+ '11]
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Graphlet kernel

Count #graphlets

F1 F2 F3 F4 F5 F6
7 I—O o—0 O0—O O O
(@) (@) o—O0 O O O O
F7 F8 F9 F10

F1l1

Graphlets of size 4

v, = (#F,, #F,, ---, #F,,) defines feature vector
#F. is the number of graphlet F; in G

Isomorphic graphs have identical graphlet distribution.
Graphlet kernel K(G, G') = v;Tvg
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Example of graphlet kernel

« 0 T iwe axe oxe oxe .
|

v = (1, 3, 6, O)
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Road map

Non end-to-end method

Graph kernels
Manually designed kernel matrix

Kernel matrix is later used for down-stream tasks

End-to-end methods
Matrix-based
Sequence-based

Graphical model based
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Matrix-based methods

Represent graphs as matrices
Similar to images
Convolutional neural networks (CNNs) can be applied
A simple way -- affinity matrix
Sensitive to node order permutations
Isomorphic graphs can be mapped to different matrices

Problem: how to find a good intermediate matrix?
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PATCHY-SAN [Niepert+ '16]

Node selection
@ @ @ @ (w=4 nodes)

FRSEY

Neighborhood assembly (at least k=4 nodes)

6% T ol

Neighborhood normalization (exactly k=4 nodes)
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PATCHY-SAN [Niepert+ '16]

Normalized neighborhood

(4) @
0 0'9 | I |
e :
Nodes
1 2 3 4 123 4
ay ay
Attributes a2 82 e
a, a

Apply CNNs
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DeepGraph [Li+ '17a]

Heat Kernel Sighature (HKS)
Proposed in computer vision [Sun+, '09]
Represent the surface of 3D objects
Model the amount of heat flow on nodes overtime

Simulated on the snhapshot of a graph

107



Heat kernel

There is a unit amount of heat on each node
Heat starts to flow at time t = O

h,(i,j) is the amount of heat flow

Among node i and j after time t

Through all edges between i and
Calculate h(i,j)

f(t, i, j, eigenvalue, eigenvector of g(adjacency matrix))
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HKS Graph Descriptor

Heat kernel sighature (HKS) H
H; . = hy(i,i)
i-th node, t-th sampled time point

HKS Graph descriptor S
Independent of #nodes

Compute histograms for each column H_,
Sy ¢ -- #nodes in k-th bin at time t
Row -- heat density dynamics over diffusion steps

Column -- static heat density patterns at t
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Visualizing the graph descriptor

Convolutional architecture
_~—" can be applied

e e — .=
Friendship network Author's Collaboration
from Facebook network from ACL
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Pipeline

Low-level

representation of

"------~"“--.

raph descriptor

network

HKS G

_—

Graph structure

convolution layers over bins
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High-level
representation
of network

/'

Multi-column, multi-resolution
convolutional neural network
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Road map

Non end-to-end method

Graph kernels
Manually designed kernel matrix

Kernel matrix is later used for down-stream tasks

End-to-end methods
Matrix-based
Sequence-based

Graphical model based
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Current node embedding methods

DeepWalk [Perozzi+ '14] and node2vec [Grover+ '16]
Sample random walk sequences
Sequence < sentence
Node < word
Word2vec can be used [Mikolov+ '13]

DeepWalk, LINE [Tang+ '15] and node2vec
Obtain graph embedding

Average node embeddings

Lead to significant loss of information
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DeepCas [Li+ '17b]

Inspired by DeepWalk [Perozzi+ '14]

Make an analogy
Node <~ word
Sampled random path <

We can adapt deep

learning methods

developed for text

sentence

/'

How to assemble by
end-to-end learning?

Graph <& document

A set of graphs < document collection
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Pipeline of DeepCas

le= T nodes—-»]

K ®
sequence@*@:@*@

R i R

T nodes

®
+ @-0-0-0

Sample through
T random walks

s \
Q.
R \‘
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From sequence to graph representation

Random walk has a terminating probability
Decides the expected #sequences
Learn it by examining
Represent the graph well = good prediction
Intuition
We sample enough sequences
Partition the sequences into "mini-batches”
Read in more until enough — stop random walk
Implement the intuition

A geometric distribution of attentions over mini-batches
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Assemble sequences to a document (graph)

1st mini-batch

2nd mini-batch

\ attention
Peo 1T :::5:::5:::?;:/ =
K sequences | (1-Pgeo)Pgeo| / 2H
(1'pgeo)2pgeo 3 //>“
/ NN M 1
Assume attention A ...}\T\ Multinomial
Z?Sif%)euigi.trlc T nodes distribution

/

We learn p,q, to
learn the actual #seq
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Road map

Non end-to-end method

Graph kernels
Manually designed kernel matrix

Kernel matrix is later used for down-stream tasks

End-to-end methods
Matrix-based
Sequence-based

Graphical model based
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Structure2vec [Dai+ '16]

Construct graphical models for graphs

Graph label

D Represent a A hidden
graph as a - variable
graphical model p- A variable
> B @\ for node
attribute
P

- @ ¢

A Markov random field p({H}.{X ) ec| [@(H,X) | | w(H,.H))
$: node potentials = (b

Y: edge potentials
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Embedding latent variable models

. Standard maximum likelihood estimation is difficult

. Embed the posterior marginal p(H. | {x.}) to u.

- u; = Jud(h)p(h{x;})dh,
. ¢(h) is a feature map to be learned

- u; is an embedding vector for node i
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Embedding latent variable models

Standard maximum likelihood estimation is difficult
Embed the posterior marginal p(H. | {x}) to u,

u. can be computed by approximate inference
Parameterize it as a neural network
O; = 0 (Wyx+WoZ; e G+W3aZ ;)
{W,, W,, W3} are parameters
N(i) are neighbors of i

G is an activation function
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Discriminative training

We have embedding vectors {u.}

S (Wyx+WoZ; oy G+ W3 X pX;)
Represent a graph by . i
Minimize the empirical square loss

(y - 670 (Z; @;))?
y is the graph label

0 is a parameter
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Conclusion

Learning Representations of Entire Networks
End-to-end methods usually work better
When there are particular tasks at hand

No general consensus on which methods consistently work better
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Outline

Part I: Learning Node Representations of Networks

Laplacian Eigenmap
Word2Vec
LINE, DeepWalk, and Node2Vec

Part llI: Visualizing Networks and High-Dimensional Data
t-SNE
LargeVis

Pat lll: Learning Representations of Entire Networks
Graph kernels
End-to-end methods

Part [V: Summary, Challenges & Future Work
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Summary

Network representation is a new methodology for analyzing
and mining networks

State-of-the-art approaches for node representation learning
LINE, DeepWalk, and Node2Vec

Moving towards to task-specific node representations (e.g., PTE and
GraphConv)

Visualizing large-scale networks and high-dimensional data
LargeVis
Sales up to tens of millions of nodes or data points

Learning representations of network substructures

DeepCas, Stru2Vec
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Challenges & Future Work

Scalability

How to scale up to networks with billions of nodes
Hierarchical representations

How to learn hierarchical representations of networks
Dynamic
Heterogeneous networks

Multiple types of nodes, multiple types of edges

Learning isomorphism-invariance representations of entire
networks
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Optimization

The gradient w.r.t. the embedding yi
oC
dyz

=4 (pij — 44, Z(yi — ¥;).
J71
Z is the partition function:

Z =3 u(l+ lye—yil?)™

The complexity w.r.t. the number of data points N is O(N"2)

Too expensive!
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Barnes-Hut Approximation

Rewriting the gradient as:

oC
_ oy : . 2 . .
v, 4 E PijGii Z(yi — ¥ji) — E :QijZ(yz — ;)
Yi — —
JF#1 1 JF1 1
Attractive forces Repulsive forces
Complexity: linear to the number of edges Complexity: O(N"2)

Constructing a quadtree of the nodes according to the current
low-dimensional representations

m From O(N"2) to O(NLogN)!
Tyi—vearl? "

A B C D E F G H |

Sum of node i and nodes in a cell:—q?jZ(yz' — Yj)

_Ncell(]zcellz(}’i — Yeell)
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