
Software Patterns for Traceability of Requirements
to Finite State Machine Behavior:

Department of Civil and Environmental Engineering
The Institute for Systems Research

University of Maryland, College Park, USA

Technical Presentation, INCOSE, Rome, Italy, July 11, 2012

Parastoo Delgoshaei and Mark Austin

Application to Rail Transit System Design and Management

1

Outline

•  Problem Statement

•  Objectives and Scope

•  Prototype Implementation Version I

•  Prototype Implementation Version II

•  Design Patterns

•  Current System Architecture

•  Requirement Workspace

•  Reasoner and Ontology Workspace

•  Engineering Workspace

•  Time and Scheduler

•  Future Work and Potential Benefits

2

Problem Statement

Current Trend :
Increasing demand for engineering applications in which long-term managed
evolution and/or managed sustainability is the primary development objective

Challenges :

–  Understanding for how and why system entities are connected together
–  Formal procedures for assessing the correctness of system operations
–  Estimating system performance
–  Understanding trade spaces involving competing design criteria

Proposed Solution :

–  Mechanisms where requirements are connected to models of engineering
–  Entities with traceability connections through one or more ontology classes

(ontology-enabled traceability). Moreover, to connect these ontology concepts
to the engineering objects behavior modeled with finite state machines.

3

Objective and Scope

Study and Understand

•  Software design patterns (e.g., model-view-controller, mediator, observer,
adapter, composite, visitor)

•  Mixtures of graph visualizations (state machine, ontology)
•  Mixtures of tree visualizations (requirements, rules, constraint)
•  Semantic web technologies (Web Ontology Language, Pellet Reasoner,

Semantic Web Rule Language SWRL)

Implement

 Traceability mechanisms from requirements to elements of finite state
 machine behavior (e.g., actions, states, transitions and guard conditions)
 providing early design analysis, verification, and validation of information
 age engineering systems

4

Here’s What’s New…..

New idea: Ontology-enabled Traceability Mechanisms.

Approach: Requirements are satisfied through implementation of design
concepts. Now traceability pathways are threaded through design concepts.

Key Benefit: Rule checking can be attached to “design concepts” (ontology),
therefore, we have a pathway for early validation.

5

Support for Multiple-Viewpoint Design

Team-based design is a multi-disciplinary activity. We need a model for multiple-
viewpoint design and mechanisms for capturing interactions between design
concerns.

Prototype Implementation: Ontology – Enabled Traceability For
Washington D.C. Metro System

Very simple, UML representation for one ontology. All traceability relationships are
hard-coded. Visualization cuts across stages of system development.

Ontology window

Requirements window

Model of Transportation system

Credit: Cari Wojcik, MS Thesis, 2006. 7

Prototype Implementation: Ontology – Enabled Traceability

(with very basic rule checking)

Key Advantage: Design
rules and procedures
for design rule
checking can be
attached to ontologies.

Design rule checking is triggered by double clicking on a requirement.
Visualization shows the extent of ontologies and engineering entities involved in
the rule checking.

8

Schematic For Version II

9

  Creating workspaces and multiple views for system requirements, design
ontologies, and engineering developments.
  Adding time component and state machine diagram for modeling behavior.

Design Patterns

Definition: A design pattern is simply….

Software Design Patterns: A few examples …

Behavioral Structural System
Command Adapter Model-View-Controller
Interpreter Bridge Session
Mediator Composite Router
Observer … Decorator … Transaction …

A description of a recurring problem
AND

A description of a core solution to that problem stated in
such a way that it can be reused many times.

Motivation: Experienced designers know that instead of returning to first
principles, routine design problems can be best solved by adapting solutions
to designs that have worked well for them in the past.

10

MODEL-VIEW-CONTROLLER (MVC) DESIGN PATTERN

Approach and Benefits

Purpose of Logical Components:

Divide a component or subsystem into
three logical parts – model, view, and
controller – making it easier to modify or
customize each part.

Model: Store the element’s state and
provide a means for changing the state.

View: Representation of the component
or subsystem.

Controller: Map incoming actions to their
impact on the model.

11

Architecture of Current Prototype – A Graph of Communicating
Finite State Machines

12

Requirements Workspace

•  Requirement Model : Captures textual description of a physical and functional
need that the railway system component must be or perform.

•  Requirement View: A graph, tree or table representation of the requirement
model

Scheduler
Requirements

Expected Behavior Train Requirements Expected Behavior

 The metro system will
open at 5 am.

Trains will start running on
engineering view when clock
shows 5 am.

Trains park at the end
of the line when not in
use

Train state chart will be in “Park”
state

The metro system will
close at 2 am.

Trains will stop running and will
be parked when clock shows

Trains need not to stop
at every station

Train state chart can be in “stop” or
“go”
in super state “At the Station”

Trains will be dispatched
every 10 minute

Train leaves station at the end of
the line every 10 minute

Train listen to the
scheduler for dispatch
time

Train state chart will be in “listen to
scheduler” sub state

Train creates its own
timetable

Train state chart will be in “Create
timetable” state

Minimum time to go is 1
minute

The guard condition, [t >1 min], from
“Stop” to “Go” state will be satisfied

13

Requirements to Ontology Traceability

Challenge: Use adapter, observer, composite and model-view-controller
patterns to synchronize visualizations in response to user inputs/actions and
internal system state change.

Rules are attached to design concepts

14

Ontology and Reasoner Workspace

Reasoner :
•  Pellet reasoner takes action

following a change in the
ontology model.

•  Pellet reasoner supports
Semantic Web Rule Language
(SWRL), ensuring the rules are
satisfied through internal state
changes of the system.

•  The reasoner decision may
involve removing/adding new
instances.

•  hasParking.query(CollegePark,
cpParking) true

15

Ontology :
Metro Ontology is created with OWL using Protégé framework.
Ontology instances, objects are added or modified through Jena framework.

Sample SWRL repository

Engineering Workspace

Structural Aspect :

•  Engineering objects with associated attributes: status, coordinates,
geometry, size

 Implementation : Engineering maps, Design artifacts
 Examples: Metro Station, Metro line, Track, Train

Behavioral Aspect :

 Implementation : Statechart diagram
 Examples: Train, Scheduler

16

Engineering Workspace

17

Plan View (structural and behavioral view) versus Statechart View (behavioral view)

The train statechart transitions between states as the train moves along the track

Ontology to Engineering Traceability

18

Challenge: To synchronize visualizations in the ontology domain with visualizations
in the engineering workspace.

Requirements-to Statechart Traceability

19

Guard Statement
The transition from idle to active is conditional on
“ [t == 5 am.]” evaluation results.

Expected Behavior

•  The scheduler statechart will transition from idle
to active at 5:00 am.
•  The statechart of at least one train will transition
to the “At Station” state.

 Requirement level (textual representation)
The metro system will start working at 5 am.

 Rule level (SWRL)
scheduler(?s)^ hasTime(?s,?t) ^ swrlb:greaterThan(?t,5) ^ train(?tr)
^ isAvailable(?tr,true)=>sendTrain(?s,?tr)

Requirements-to Statechart Traceability (2)

Requirement level (textual representation) => The distance between two trains
is not allowed to be less than 2 meters.

Rule level (SWRL) => train(?t1) ^ train(?t2) ^ hasLocation(?t1, ….

State Transition => The train’s statechart will transition to “stop” state.

Expected Behavior

•  The train in the danger zone will stop moving in the plan view. It starts

moving when the safe distance rule is no longer violated.

20

Summary and Conclusion

•  Phase II of this research provides a framework for enhanced traceability
mechanisms.

•  Requirements are translated to the rules attached to ontology classes

•  The reasoner performs rule checking in response to changes in the system.

•  Requirements are traced to elements of finite state machine behavior (e.g.,
actions, states, transitions and guard conditions)

•  Ontology classes are connected to the set of requirements they need to
satisfy, and statecharts are connected to engineering objects (e.g., trains).

•  The traceability thread between requirements, ontology and statechart
components results in better verification procedures and improved
awareness of system operations.

21

FUTURE WORK AND POTENTIAL BENEFITS

1  Applying visitor and composite design patterns to integrate all views across the
workspaces into a single unified framework.

2  Enhance package to support simulation (performance assessment) and trade

studies.

3  Use composite design patterns for targeted/hierarchical visualization of workspace
content.

Proposed Work (2012 and beyond):

Benefits

•  Fewer design/management errors due to superior representation of traceability
relationships.

•  Support for scalability and multiple viewpoint system architecture.
•  Built-in support for design rule checking at the earliest possible moment (Semantic

Web).
•  Formal verification procedures and improved awareness of system operations.

22

THE END!

23

Questions?

