
Frameworks for Natural Language Processing of Textual Requirements

Andres Arellano
Government of Chile,

Santiago, Chile
Email: andres.arellano@gmail.com

Edward Zontek-Carney
Northrop Grumman Corporation,

Baltimore, MD 21240, USA
Email: Ecarney1@umd.edu

Mark A. Austin
Department of Civil Engineering,

University of Maryland,
College Park, MD 20742, USA

Email: austin@isr.umd.edu

Abstract—Natural language processing is the application of au-
tomated parsing and machine learning techniques to analyze
standard text. Applications of NLP to requirements engineering
include extraction of ontologies from a requirements specification,
and use of NLP to verify the consistency and/or completenessof a
requirements specification. This paper describes a new approach
to the interpretation, organization, and management of textual
requirements through the use of application-specific ontologies
and natural language processing. We also design and exercise a
prototype software tool that implements the new framework on
a simplified model of an aircraft.

Keywords-Systems Engineering; Ontologies; Natural Language
Processing; Requirements; Rule Checking.

I. I NTRODUCTION

Problem Statement. Model-based systems engineering de-
velopment is an approach to systems-level development in
which the focus and primary artifacts of development are
models, as opposed to documents. This paper describes a new
approach to the interpretation, organization, and management
of textual requirements through the use of application-specific
ontologies and natural language processing. It builds upon
our previous work in exploring ways in which model-based
systems engineering might benefit from techniques in natural
language processing [1] [2].

Simplified Model of RequirementsPages of Text

manual
translation

Figure 1. Manual translation of text into high-level textual requirements.

As engineering systems become increasingly complex the
need for automation arises. A key required capability is the
identification and management of requirements during the
early phases of the system design process, when errors are
cheapest and easiest to correct. While engineers are looking
for semi-formal and formal models to work with, the reality
remains that many large-scale projects begin with hundreds
– sometimes thousands – of pages of textual requirements,
which may be inadequate because they are incomplete, under

specified, or perhaps ambiguous. State-of-the art practice(see
Figure 1) involves the manual translation of text into a semi-
formal format (suitable for representation in a requirements
database). This is a slow and error prone process. A second
key problem is one of completeness. For projects defined by
hundreds/thousands of textual requirements, how do we know
a system description is complete and consistent?

Scope and Objectives.Looking ahead, our work is motivated
by a strong need for computer processing tools that will
help requirements engineers overcome and manage these chal-
lenges. During the past twenty years, significant work has been
done to apply natural language processing (NLP) to the domain
of requirements engineering [3] [4] [5]. Applications range
from using NLP to extract ontologies from a requirements
specification, to using NLP to verify the consistency and/or
completion of a requirements specification.

Our near-term research objectives are to use modern lan-
guage processing tools to scan and tag a set of requirements,
and offer support to systems engineers in their task of defining
and maintaining a comprehensive, valid and accurate body of
requirements. The general idea is as follows: Given a set of
textual descriptions of system requirements, we could analyze
them using natural language processing tools, extracting the
objects or properties that are referenced within the require-
ments. Then, we could match these properties against a defined
ontology model corresponding to the domain of this particular
requirement. Such a system would throw alerts in case of
system properties lacking requirements, and requirementsthat
are redundant and/or conflicting.

Figure 2 shows the framework for automated transfor-
mation of text (documents) into textual requirements (semi-
formal models) described in this paper. Briefly, NLP process-
ing techniques are applied to textual requirements to identify
parts of speech – sentences are partitioned into words and
then classified as being parts of speech (e.g., nouns, verbs,
etc.). Then, the analyzed text is compared against semantic
models consisting of domain ontologies and ontologies for
specific applications. System ontologies are matched with
system properties; subsystem ontologies are matched with sub-
system properties, and component ontologies are matched with
component properties. Feedback is necessary when semantic
descriptions of applications do not have complete coverage, as
defined by the domain ontologies.

The contents of this paper are as follows: Section II



Component Ontologies

Pages of Text

chunking 
grammar grammar

chinking

NLP

Validated Model of Requirements

Property Analysis
and Validation

Domain Ontologies

Feedback

System Properties System Ontology

Subsystem Properties Subsystem Ontologies

Component Properties

Figure 2. Framework for automated transformation of text (documents) into textual requirements (semi-formal models).

explains the role that semantics can play in modern engi-
neering systems design and management. Its second purpose
is to briefly explain state-of-the-art capability in automatic
term recognition and automatic indexing. Section III describes
two aspects of our work: (1) Working with NLTK, and (2)
Chunking and Chinking. The framework for integration of
NLP with ontologies and textual requirements is covered in
Section IV. Two applications are presented in Section V: (1)
Requirements and ontologies for a simple aircraft application,
and (2) A framework for the explicit representation of multiple
ontologies. Sections VI and VII discuss opportunities for future
work and the conclusions of this study.

II. STATE-OF-THE-ART CAPABILITY

Role of Semantics in Engineering Systems Design and
Management. A tenet of our work is that methodologies
for strategic approaches to design will employ semantic de-
scriptions of application domains, and use ontologies and
rule-based reasoning to enable validation of requirements,
automated synthesis of potentially good design solutions,and
communication (or mappings) among multiple disciplines [6]
[7] [8]. A key capability is the identification and management
of requirements during the early phases of the system design
process, where errors are cheapest and easiest to correct. The
systems architecture for state-of-the-art requirements traceabil-
ity and the proposed platform model [9], [10] is shown in
the upper and lower sections of Figure 3. In state-of-the-art
traceability mechanisms design requirements are connected
directly to design solutions (i.e., objects in the engineering
model). Our contention is that an alternative and potentially
better approach is to satisfy a requirement by asking the
basic question: What design concept (or group of design
concepts) should I apply to satisfy a requirement? Design
solutions are the instantiation/implementation of these con-
cepts. The proposed architecture is a platform because it
contains collections of domain-specific ontologies and de-
sign rules that will be reusable across applications. In the
lower half of Figure 3, the textual requirements, ontology,
and engineering models provide distinct views of a design:

(1) Requirements are a statement of “what is required.” (2)
Engineering models are a statement of “how the required
functionality and performance might be achieved,” and (3)
Ontologies are a statement of “concepts justifying a tentative
design solution.” During design, mathematical and logicalrules
are derived from textual requirements which, in turn, are
connected to elements in an engineering model. Evaluation
of requirements can include checks for satisfaction of system
functionality and performance, as well as identification of
conflicts in requirements themselves. A key benefit of our
approach is that design rule checking can be applied at the
earliest stage possible – as long as sufficient data is available
for the evaluation of rules, rule checking can commence;
the textual requirements and engineering models need not be
complete. During the system operation, key questions to be
answered are: What other concepts are involved when a change
occurs in the sensing model? What requirement(s) might be
violated when those concepts are involved in the change? To
understand the inevitable conflicts and opportunities to conduct
trade space studies, it is important to be able to trace back
and understand cause-and-effect relationships between changes
at system-component level, and their effect on stakeholder
requirements. Present-day systems engineering methodologies
and tools, including those associated with SysML [11] are not
designed to handle projects in this way.

Automatic Term Recognition and Automatic Indexing.
Strategies for automatic term recognition and automatic in-
dexing fall into the general area of computational linguistics
[12]. Algorithms for single-term indexing date back to the
1950s, and for indexing two or more words to the 1970s [13].
Modern techniques for multi-word automatic term recognition
are mostly empirical, and employ combinations of linguis-
tic information (e.g., part-of-speech tagging) and statistical
information acquired from the frequency of usage of terms
in candidate documents [14] [15]. The resulting terms can
be useful in more complex tasks such as semantic search,
question-answering, identification of technical terminology,
automated construction of glossaries for a technical domain,
and ontology construction [16] [17] [18].



Proposed Model for Traceability

Engineering 

Design 
Rule
Checking

Concept
Design

data

Requirements

Visual indicator of requirements status.

query implement

notification
Model

Sensors

Sensors

Physical System

Requirements Engineering 
Model

State−of−the−Art Traceability

Figure 3. Schematics for: (top) state-of-the-art traceability, and (bottom) proposed model for ontology-enabled traceability for systems design and management.

III. N ATURAL LANGUAGE PROCESSING OF
REQUIREMENTS

Working with NLTK. The Natural Language Toolkit (NLTK)
is a mature open source platform for building Python programs
to work with human language data [19].

Figure 4. Information extraction system pipeline architecture.

Figures 2 and 4 show the essential details of a pipeline for
text (documents) to textual requirements (semi-formal models)
transformation. NLTK provides the basic pieces to accomplish
those steps, each one with different options and degrees of
freedom. Starting with an unstructured body of words (i.e.,raw
text), we want to obtain sentences (the first step of abstraction
on top of simple words) and have access to each word
independently (without losing its context or relative positioning
to its sentence). This process is known astokenizationand
it is complicated by the possibility of a single word being
associated with multiple token types. Consider, for example,
the sentence: “These prerequisites are known as (computer)
system requirements and are often used as a guideline as
opposed to an absolute rule.” The abbreviated script of Python
code is as follows:

text = "These prerequisites are known as (computer)
system requirements and are often used as a
guideline as opposed to an absolute rule."

tokens = nltk.word_tokenize(my_string)
print tokens
=>
[’These’, ’prerequisites’, ’are’, ’known’, ’as’,
’(’, ’computer’, ’)’, ’system’, ’requirements’,
’and’, ’are’, ’often’, ’used’, ’as’, ’a’,
’guideline’, ’as’, ’opposed’, ’to’, ’an’,
’absolute’, ’rule’, ’.’]

The result of this script is an array that contains all the
text’s tokens, each token being a word or a punctuation
character. After we have obtained an array with each token
(i.e., word) from the original text, we may want to normalize
these tokens. This means: (1) Converting all letters to lower
case, (2) Making all plural words singular ones, (3) Removing
ing endings from verbs, (4) Making all verbs be in present
tense, and (5) Other similar actions to remove meaningless
differences between words. In NLP jargon, the latter is known
asstemming, in reference to a process that strips off affixes and
leaves you with a stem [20]. NLTK provides us with higher
level stemmersthat incorporate complex rules to deal with the
difficult problem of stemming. The Porter stemmer that uses
the algorithm presented in [21], the Lancaster stemmer, based
on [22], or the built in lemmatizer – Stemming is also known as
lemmatization, referencing the search of thelemmaof which
one is looking an inflected form [20] – found in WordNet.
Wordnet is an open lexical database of English maintained by
Princeton University [23]. The latter is considerably slower
than all the other ones, since it has to look for the potential
stem into its database for each token.

The next step is to identify what role each word plays
on the sentence: a noun, a verb, an adjective, a pronoun,
preposition, conjunction, numeral, article and interjection [24].
This process is known aspart of speech tagging, or simply
POS tagging[25]. On top of POS tagging we can identify
the entities. We can think of theseentitiesas “multiple word
nouns” or objects that are present in the text. NLTK provides



Figure 5. Output from first step on building chunking grammar. Purpose: Simply pick nouns from test sentence.

Figure 6. Output from second step on building chunking grammar. Purpose: Identify noun phrases.

Figure 7. Output from third step on building chunking grammar. Purpose: Form noun phrases.

Figure 8. Output from fourth step on building chunking grammar. Purpose: Identify the adjective preceding the first nounphrase.

Figure 9. Output from the example on chinking. Purpose: Exclude base verbs and adverbs.

an interface for tagging each token in a sentence with supple-
mentary information such as its part of speech. Several taggers
are included, but anoff-the-shelfone is available, based on the
Penn Treebank tagset [26]. The following listing shows how
simple is to perform a basic part of speech tagging.

my_string = "When I work as a senior systems
engineer, I truly enjoy my work."

tokens = nltk.word_tokenize(my_string)
print tokens

tagged_tokens = nltk.pos_tag(tokens)
print tagged_tokens
=>
[(’When’, ’WRB’), (’I’, ’PRP’), (’work’, ’VBP’),
(’as’, ’RB’), (’a’, ’DT’), (’senior’, ’JJ’),
(’systems’, ’NNS’), (’engineer’, ’NN’), (’,’, ’,’),
(’I’, ’PRP’), (’truly’, ’RB’), (’enjoy’, ’VBP’),
(’my’, ’PRP$’), (’work’, ’NN’), (’.’, ’.’)]

The first thing to notice from the output is that the tags
are two or three letter codes. Each one represent a lexical
category or part of speech. For instance, WRB stands for
Wh-adverb, including how, where, why, etc. PRP stands for
Personal pronoun; RB for Adverb; JJ for Adjective, VBP for
Present verb tense, and so forth [27]. These categories are
more detailed than presented in [24], but they can all be traced
back to those ten major categories. It is important to note the
possibility of one-to-many relationships between a word and
the possible tags. For our test example, the wordwork is first
classified as a verb, and then at the end of the sentence, is
classified as a noun, as expected. Moreover, we found two
nouns (i.e., objects), so we can affirm that the text is saying
something aboutsystems, an engineerand a work. But we
know more than that. We are not only referring toan engineer,
but to asystems engineer, and not only asystems engineer, but



a senior systems engineer. This is ourentity and we need to
recognizeit from the text. In order to do this, we need to
somehow tag groups of words that represent an entity (e.g.,
sets of nouns that appear in succession:(’systems’, ’NNS’),
(’engineer’, ’NN’)). NLTK offers regular expression processing
support for identifying groups of tokens, specifically noun
phrases, in the text.

Chunking and Chinking. Chunking and chinking are tech-
niques for extracting information from text. Chunking is a
basic technique for segmenting and labeling multi-token se-
quences, including noun-phrase chunks, word-level tokeniza-
tion and part-of-speech tagging. To find the chunk structurefor
a given sentence, a regular expression parser begins with a flat
structure in which no tokens are chunked. The chunking rules
are applied in turn, successively updating the chunk structure.
Once all of the rules have been invoked, the resulting chunk
structure is returned. We can also define patterns for what kinds
of words should be excluded from a chunk. These unchunked
words are known as chinks. In both cases, the rules for the
parser are specified defininggrammars, including patterns,
known aschunking, or excluding patterns, known aschinking.

Figures 5 through 8 illustrate the progressive refinement of
our test sentence by the chunking parser. The purpose of the
first pass is to simply pick the nouns from our test sentence.
This is accomplished with the script:

grammar = "NP: {<NN>}"
chunker = nltk.RegexpParser(grammar)
chunks_tree = chunker.parse(tagged_tokens)

Figure 5 is a graphical representation of the results – NLTK
identifies “engineer” as a noun. But even this seems not to be
correctly done since we are missing the noun systems. The
problem is that our grammar is overly simple and cannot even
handle noun modifiers, such as NNS for the representation of
plural nouns. The second version of our script:

grammar = "NP: {<NN.*>}"
chunker = nltk.RegexpParser(grammar)
chunks_tree = chunker.parse(tagged_tokens)

aims to include different types of nouns. The output is shown
in Figure 6. Now we can see all three nouns properly identified.
Unfortunately, the first two are not forming a single noun
phrase, but two independent phrases. The refined script:

grammar = "NP: {<NN.*>+}"
chunker = nltk.RegexpParser(grammar)
chunks_tree = chunker.parse(tagged_tokens)

take care of this problem by adding a match-one-or-more
operator*. The output is shown in Figure 7. The final script:

grammar = "NP: {<JJ.*>*<NN.*>+}"
chunker = nltk.RegexpParser(grammar)
chunks_tree = chunker.parse(tagged_tokens)

advances the parsing process a few steps further. We already
know that we want to consider any kind of adjectives, so
we add the match-one-or-more operator* after the adjective
codeJJ. And we use* to permit other words to be present
between the adjective and the noun(s). Figure 8 shows the

output for this last step. We have identified two entities,senior
systems engineerand work, and that is precisely what we
want. Incremental development of the chunking grammar is
complete.

Chinking is the complementary process of removing tokens
from a chunk. The script:

grammar = r"""
NP: {<.*>+}

}<VB.*>{
}<RB.*>{

"""
chunker = nltk.RegexpParser(grammar)
chunks_tree = chunker.parse(tagged_tokens)

says chunk everything (i.e.,NP: {<.*>+}, and then remove
base verbs (i.e.,VB) and adverbs (i.e.,RB) from the chunk.
When this script is executed on our test sentence the result is
three noun phrase (i.e.,NP) trees, as shown along the bottom
of Figure 9.

IV. SYSTEMS INTEGRATION

Integration of NLP with Ontologies and Textual Require-
ments. In order to provide a platform for the integration of
natural language processing, ontologies and systems require-
ments, and to give form to our project, we builtTextReq Vali-
dation, a web based software that serves as a proof of concept
for our objectives. The software stores ontology models in a
relational database (i.e., tables), as well as a system withits
requirements. It can do a basic analysis on these requirements
and match them against the model’s properties, showing which
ones are covered and which ones are not.

The software has two main components: The web appli-
cation that provides the user interfaces, handles the business
logic, and manages the storage of models and systems. This
component was built using Ruby on Rails (RoR), a frame-
work to create web applications following the Model View
Controller pattern [28]. The views and layouts are supported
by the front-end framework Bootstrap [29]; these scripts are
written using Python.

Figure 10 is collage of elements in the system architec-
ture and application models and controllers. The model-view-
controller software architecture for TextReq is shown in the top
left-hand schematic. The interface between the web application
and the Python scripts is handled through streams of data
at a system level. The content of the streams uses a simple
key/valuedata structure, properly documented. The right-hand
schematic is a UML diagram of the application models. The
modelscorresponding to the MVC architecture of the web
application, reveal the simple design used to represent an
Ontology and a System. The first one consists of a Model
– named after an Ontology Model, and not because it is a
MVC model – that has many Entities. The Entities, in turn,
have many Properties. The latter is even simpler, consisting of
only a Systemthat has manySystem Requirements. Most of
the business logic resides in the models; notice, in particular,
system-level interpretation of results from the natural language
processing. And finally, the bottom left schematic is a col-
lection of UML diagrams for the application controllers. Due
to TextReq’s simplicity, its controllers and views are mostly



Figure 10. System architecture collage. Top left: Softwarearchitecture for TextReq validation. Bottom left: UML diagram of application controllers.
Right-hand side: UML diagram of application models.

Figure 11. Relationship among aircraft and transportationontology models, and an aircraft entity model. Top left: Simplified ontology model for an aircraft.
Bottom left: Detailed view of the Transportation ontology model. Bottom right: Detailed view for the entity Aircraft.



boilerplate. We have one controller for each part of the model
of the application plus an overall “application controller.” Each
model’s controller implements the methods required to handle
the client’s requests, following a REST (representational, state,
transfer) architecture.

The source code for both the web application and the
Python scripts are openly hosted in GitHub, in the repository
https://github.com/aarellano/textrv.

V. CASE STUDY PROBLEMS

We now demonstrate the capabilities of the proposed
methodology by working through two case study problems.

Case Study 1: Simple Aircraft Application. We have
exercised our ideas in a prototype application, step-by-step
development of a simplified aircraft ontology model and a
couple of associated textual requirements. The software system
requires two inputs: (1) An ontology model that defines what
we are designing, and (2) A system defined by its requirements.
It is worth noting that while the ontology model and system
requirements are unrealistically simple, and deal with only a
handful of properties, a key benefit is that we can visualize
them easily.

The upper left-hand side of Figure 11 shows the aircraft
model we are going to use. We manage a flattened (i.e., tabular)
version of a simplified aircraft ontology. This simple ontology
suggests usage of a hierarchical model structure, with aircraft
properties also being represented by their own specialized
ontology models. For instance, an ontology model for the
Wings, which in turn could have more nested models, along
with leaf properties likelength. Second, it makes sense to
include a property in the model even if its value is not set.
Naturally, this lacks valuable information, but it does give us
the knowledge that that particular property is part of the model,
so we can check for its presence.

The step-by-step procedure for usingTextReq Validation
begins with input of the ontology model, then its entities, and
finally the properties for each entity. The next step is to create
a system model and link it to the ontology. We propose a
one-to-one association relationship between the system and an
ontology, with more complex relationships handled throughhi-
erarchical structures in ontologies. This assumption simplifies
development because when we are creating a system we only
need to refer to one ontology model and one entity.

The system design is specified throughtextual system
requirements. To enter them we need a system, a title and
a description. For example, Figure 12 shows all the system
Requirements for the systemUMDBus 787. Notice that each
requirement has a title and a description, and it belongs to a
specific system. The prototype software has views (details not
provided here) to highlight connectivity relationships between
the requirements, system model (in this case, a simplified
model of a UMDBus 787), and various aircraft ontology
models.

Figure 13 is a detailed view of the System UMDBus 787.
Besides the usual actions to Edit or Delete a resource, it is
important to notice that this view has theAnalyzeandValidate
actions whose purpose is to trigger the information extraction

process described in Section III. The output from these actions
is shown in Figures 14 and 15, respectively. The analysis
and validation actions match the system’s properties taken
from its ontology model against information provided in the
requirements. In this case study example, the main point to
note is that the Aircraft ontology has the property slides (see
Figures 11 and 13), but slides is not specified in the textual
requirements (see Figure 12). As a result,slides shows up
as an unverified property in Figure 15.

Case Study 2: Framework for Explicit Representation of
Multiple Ontologies. In case study 1, a one-to-one associ-
ation relationship between the system and an ontology was
employed, with more complex relationships handled through
hierarchical structures in ontologies. These simplifyingas-
sumptions are suitable when we simply want to show that such
a simple system setup can work. However, as the number of
design requirements and system heterogeneity (i.e., multiple
disciplines, multiple physics) increases, the only tractable
pathway forward is to make the ontology representations ex-
plicit, and to model cause-and-effect dependency relationships
among domains in design solutions (i.e., having mixtures
of hierarchy and network system structures). While each of
the participating disciplines may have a preference toward
operating their domain as independently as possible from
the other disciplines, achieving target levels of performance
and correctness of functionality nearly always requires that
disciplines coordinate activities at key points in the system
operation. These characteristics are found in a wide range of
modern aircraft systems, and they make design a lot more
difficult than it used to be.

To see how such an implementation might proceed, Figure
16 illustrates systems validation for requirements covering
system-level aircraft specification and detailed wheel system
specification. Requirements would be organized into system
level requirements (for the main aircraft system) and subsystem
level requirements (for the wheels, power systems, and so
forth). Full satisfaction of the high-level wheel requirements
specification is dependent on lower-level details (e.g., diameter,
width, material) being provided for the wheel

VI. D ISCUSSION

We have yet to fully test the limits of NLP as applied to
requirements engineering. The two case studies presented here
demonstrate a framework for using NLP in conjunction with
domain ontologies in order to verify requirements coverage.
There may be other applications of NLP. A framework for
verifying requirements coverage while maintaining consistency
by using “requirements templates” has been proposed [30]. For
this paradigm, all requirements describing a specific capability
must be structured according to a predetermined set of tem-
plates. Coverage can then be verified by mapping instances of
templates in a set of decomposed requirements to an original
list of required capabilities. Figure 17 shows a workflow that
combines the requirements template framework with our own.
Since the requirements follow templates, it is straightforward
for NLP to extract high-level information. Capabilities can
then be flowed down for decomposition of each systems
requirements. An even further extension of this idea is to use
NLP while writing requirements in real time. If an ontology



Figure 12. Panel showing all the requirements for the systemUMDBus 787.

Figure 13. Detailed view for the SystemUMDBus 787.



Figure 14. Basic stats from the text, and a list of the entities recognized in it.

Figure 15. This is the final output from the application workflow. It shows what properties are verified (i.e., are present in the system requirements) and which
ones are not.



defines

−− Verified Properties engines

−− Unverified Properties

capacity

length wings

−− Verified Properties

−− Unverified Properties

Aircraft System Validation

Wheel System Validation

wheels

material diameter width

cost

automatic
update

Figure 16. Systems validation for requirements covering system-level aircraft specification and detailed wheel system specification.

Figure 17. Framework for NLP of textual requirements with templates.



of requirements templates exists, perhaps application-specific
NLP could be incorporated into a tool that helps construct and
validate requirements as they are written. Some engineers will
complain that they are being forced to comply to prescribed
standards for writing requirements. Perhaps they will have
difficulty in expressing their intent? Our view is that: (1)
writing requirements in a manner to satisfy template formats
is not much different than being asked to spell check your
writing, and (2) the existence of such templates may drasti-
cally increase the opportunity for automated transformation of
textual requirements into semi-formal models (see Figure 1).

VII. C ONCLUSIONS ANDFUTURE WORK

When a system is prescribed by a large number of (non
formal) textual requirements, the combination of previously
defined ontology models and natural language processing tech-
niques can play an important role in validating and verifying
a system design. Future work will include formal analysis
on the attributes of each property coupled with use of NLP
to extract ontology information from a set of requirements.
Rigorous automatic domain ontology extraction requires a
deep understanding of input text, and so it is fair to say
that these techniques are still relatively immature. As noted
in Section VI, a second opportunity is the use of NLP tech-
niques in conjunction with a repository of acceptable “template
sentence structures” for writing requirements [30]. Finally,
there is a strong need for techniques that use the different
levels of detail in the requirements specification, and bring
ontology models from different domains to validate that the
requirements belongs to the supposed domain. This challenge
belongs to the NLP area ofclassification.

VIII. A CKNOWLEDGMENTS

Financial support to the first author was received from the
Fulbright Foundation.

REFERENCES

[1] A. Arellano, E. Carney, and M.A. Austin, “Natural Language Processing
of Textual Requirements,” The Tenth International Conference on
Systems (ICONS 2015), Barcelona, Spain, April 19–24, 2015,pp. 93–
97.

[2] M.A. Austin and J. Baras, “An Introduction to Information-Centric
Systems Engineering,” Tutorial F06, INCOSE, Toulouse, France, June,
2004.

[3] V. Ambriola and V. Gervasi, “Processing Natural Language Require-
ments,” Proceedings 12th IEEE International Conference Automated
Software Engineering, IEEE Computer Society, 1997, pp. 36–45.

[4] C. Rolland and C. Proix, “A Natural Language Approach forRe-
quirements Engineering,” Advanced Information Systems Engineering,
Springer, 1992, pp. 257–277.

[5] K. Ryan, “The Role of Natural Language in Requirements Engineering,”
Proceedings of the IEEE International Symposium on Requirements
Engineering, IEEE Comput. Soc. Press, 1993, pp. 240–242.

[6] M.A. Austin, V. Mayank, and N. Shmunis, “PaladinRM: Graph-Based
Visualization of Requirements Organized for Team-Based Design,”
Systems Engineering: The Journal of the International Council on
Systems Engineering, Vol. 9, No. 2, May, 2006, pp. 129–145.

[7] M.A. Austin, V. Mayank, and N. Shmunis, “Ontology-BasedValidation
of Connectivity Relationships in a Home Theater System,” 21st
International Journal of Intelligent Systems, Vol. 21, No.10, October,
2006, pp. 1111–1125.

[8] N. Nassar and M.A. Austin, “Model-Based Systems Engineering Design
and Trade-Off Analysis with RDF Graphs,” 11th Annual Conference
on Systems Engineering Research (CSER 2013), Georgia Institute of
Technology, Atlanta, GA, March 19–22, 2013.

[9] P. Delgoshaei, M.A. Austin, and D. A. Veronica, “A Semantic Platform
Infrastructure for Requirements Traceability and System Assessment,”
The Ninth International Conference on Systems (ICONS2014), Nice,
France, February 23–27, 2014, pp. 215–219.

[10] P. Delgoshaei, M.A. Austin, and A. Pertzborn, “A Semantic Framework
for Modeling and Simulation of Cyber-Physical Systems,” International
Journal On Advances in Systems and Measurements, Vol. 7, No.3-4,
December, 2014, pp. 223–238.

[11] S. Fridenthal, A. Moore, and R. Steiner,A Practical Guide to SysML.
MK-OMG, 2008.

[12] K. Kageura and B. Umino, “Methods of Automatic Term Recognition:
A Review,” Terminology, Vol. 3, No. 2, 1996, pp. 259-289.

[13] L.L. Earl, “Experiments in Automatic Extracting and Indexing,”
Information Storage and Retrieval, Vol. 6, No. 6, 1970, pp. 273–288.

[14] S. Ananiadou, “A Methodology for Automatic Term Recognition,” Pro-
ceedings of 15th International Conference on Computational Linguistics
(COLING94), 1994, pp. 1034-1038.

[15] K Frantzi, S. Ananiadou, and H. Mima, “Automatic Recognition
of Multi-Word Terms: The C-Value/NC-Value Method,” International
Journal on Digital Libraries, Vol. 3, No. 2., 2000, pp. 115-130.

[16] D. Fedorenko, N. Astrakhantsev, and D. Turdakov, “Automatic Recog-
nition of Domain-Specific Terms: An Experimental Evaluation,” Pro-
ceedings of SYRCoDIS 2013, 2013, pp. 15-23.

[17] A. Judea, H. Schutze, and S. Bruegmann, “Unsupervised Training
Set Generation for Automatic Acquisition of Technical Terminology
in Patents,” Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, Dublin,
Ireland: Dublin City University and Association for Computational
Linguistics, 2014, pp. 290-300.

[18] L. Kozakov, Y. Park, T. Fin, et al., “Glossary Extraction and Utilization
in the Information Search and Delivery System for IBM Technical
Support,” IBM Systems Journal, Vol. 43, No. 3, 2004, pp. 546-563.

[19] NLTK Project, “Natural Language Toolkit NLTK 3.0 Documentation,”
See http://www.nltk.org/ (Accessed: December 1, 2015).

[20] C. Manning and H. Schuetze, “Foundations of Statistical Natural
Language Processing,” The MIT Press, 2012.

[21] M.F. Porter, “An Algorithm for Suffix Stripping,” Program: Electronic
Library and Information Systems, MCB UP Ltd, Vol. 14, No. 3, 1980,
pp. 130–137.

[22] C.D. Paice, “Another Stemmer,” ACM SIGIR Forum, ACM,
See: http://dl.acm.org/citation.cfm?id=101306.101310, Vol. 24, No. 3,
November, 1990, pp. 56–61.

[23] Princeton University, “About WordNet - WordNet - AboutWordNet,”
See https://wordnet.princeton.edu/ (Accessed: December1, 2015).

[24] M. Haspelmath, “Word Classes and Parts of Speech,” See
http://philpapers.org/rec/HASWCA, (Accessed: December1, 2015).

[25] S. Bird, E. Klein, and E. Loper, “Natural Language Processing with
Python,” O’Reilly Media, Inc., 2009.

[26] University of Pennsylvania, Penn Treebank Project, See
http://www.cis.upenn.edu/ treebank/ (Accessed, December 1, 2015).

[27] B. Santorini, “Part-of-Speech Tagging Guidelines forthe Penn
Treebank Project (3rd Revision),” Technical Reports (CIS),
http://repository.upenn.edu/cisreports/570, 1990.

[28] Ruby on Rails. See http://rubyonrails.org/ (Accessed, December 1,
2015).

[29] Bootstrap. See http://getbootstrap.com/2.3.2/ (Accessed, December 1,
2015).

[30] E. Hull, K. Jackson and J. Dick, Requirements Engineering, Springer,
2002.


