Data Science: Techniques and Tools

Mark A. Austin
University of Maryland

austin@umd.edu
ENCE 688P, Spring Semester 2026

October 30, 2025

Overview

@ Definition of Data Science
© Data Science Techniques
© One-Hot Encoding Techniques

@ Extract-Transform-Load Processes
@ Extract-Transform-Load Processes
@ ETL with Python
o ETL with Apache DataVec

© Data Organization

Quick Review

Data-Driven Infrastructure Development

From an infrastructure standpoint, we seek:

@ Data-driven approaches to measurement of performance in
the building environment and identification of trends and
patterns in behavior.

@ Solutions that account for unique physical, economic, social
and cultural characteristics of individual cities.

Sources of Complication:
@ Multiple domains; multiple types of data and information.
@ Network structures that are spatial and interwoven.
@ Behaviors that are distributed and concurrent.

@ Many interdependencies among coupled urban subsystems.

Getting Started

Definition of Data Science
@0000

Definition of Data Science

Various Sources (Wikipedia, Amazon AWS, IBM, etc):

@ Study of data to extract meaningful insights relevant to an
application domain.

@ End-to-end process of going from messy data to knowledge
and actionable insights.

@ Data science combines domain expertize, programming skills
and knowledge of mathematics and statistics to extract
meaningful insight from noisy, structured and unstructured
data.

@ Data science is the process of using advanced analytics to
extract valuable information from data for decision making,
planning and improvement of operations.

Definition of Data Science

[¢] lele]e}

Core Data Science Activities

Core Activities:

Data Collection: Gathering data from various sources and
formats (e.g., csv, txt, xslx, html, xml).

Data Cleaning: Identifying and correcting errors,
inconsistencies, and missing values in a dataset.

Exploratory Data Analysis: Investigating datasets to
summarize their main characteristics, often with visual
methods.

Feature Engineering: Create new features from existing data
to improve model performance.

Model Building: Developing and training machine learning
and statistical models to make predictions or classify data.

Definition of Data Science
[e]e] Tele]

Core Data Science Activities

@ Model Evaluation: Assessing the performance of a model to
ensure it meets the project goals.

e Data Visualization: Creating charts and graphs to
communicate findings and insights.

@ Deployment: Implement a model so it can be used in a
real-world application.

Challenges:

o Traditional databases are being replaced by cloud computing
(i.e., large-scale distributed computing).

Definition of Data Science
[e]e]e] o]

Data Science Libraries and Frameworks

Python Libraries and Frameworks:

o Pandas: Ideal for data manipulation and analysis, Pandas
allows you to efficiently handle large datasets, perform
complex transformations, and easily load data.

@ PySpark: PySpark handles big data via an interface to
Apache Spark, support for large-scale data processing across
distributed computing environments.

o BeautifulSoup: Used for web scraping. Allows you to extract
data from HTML and XML files.

Definition of Data Science
0000e

Data Science Libraries and Frameworks

Java Libraries and Frameworks:

Data Science

Techniques

(Useful things to know when building examples)

Data Science Techniques
oce

Related Data Science

Topics

One-Hot Encoding Techniques
ETL (Extract-Transform-Load) Processes

Iterative Strategies of Learning

Data Organization: Sample, Batch size, and Epochs

One-Hot Encoding Techniques

One-Hot Encoding

One-Hot Encoding Techniques
0®00000000

One-Hot Encoding

One-Hot Encoding

@ One hot encoding is one method of converting data to prepare
it for an algorithm and get a better prediction.

@ Each categorical value is converted into a new categorical
column and assign a binary value of 1 or 0 to those columns.

@ Each integer value is represented as a binary vector.

Simple Example (Source: datascience.com):

id color id color_red color_blue color_green

1 1]]
One Hot Encodin
2 | e \—ﬂ> 2 . 1 o

3 green 3 [} ° 1

a blue a [} 1 [}

One-Hot Encoding Techniques
00e0000000

One-Hot Encoding

O©OWO~NOOHE WN -

Example 1: One-Hot Encoding in Python

TestEncoderOl.p
=

Manual one hot encoding with numpy

from numpy import argmax

print ("TestEncoderO1l.py
print ("

define input string

data = ’hello world’
print ("--- Input string: %s" %(data))

define universe of possible input values

alphabet = ’abcdefghijklmnopqrstuvwxyz °’
print ("--- Alphabet of input values: %s" %(alphabet))

define a mapping of chars to integers

char_to_int = dict((c, i) for i, ¢ in enumerate(alphabet))
int_to_char = dict((i, c¢) for i, c in enumerate(alphabet))

integer encode input data

integer_encoded = [char_to_int[char] for char in datal
print ("--- Integer encoded data: %s" %(integer_encoded))

One-Hot Encoding Techniques
0008000000

One-Hot Encoding

Example 1: continued ...

29

30 # one hot encode

31

32 print("--- One hot encode ...")
33

34 onehot_encoded = list()
35 for value in integer_encoded:

36 letter = [0 for _ in range(len(alphabet))]

37 letter [value] = 1

38 onehot_encoded.append(letter)

39 print (onehot_encoded)

40

41 # invert encoding

42

43 print ("--- Invert encoding ...")

44

45 print("--- Encodingl 0] : %s" %(int_to_char [argmax(onehot_encoded[0])]))
46 print("--- Encodingl 1] : %s" %(int_to_char [argmax(onehot_encoded[1])]))
47

48 lines of code deleted

49

50 print ("--- Encoding[8] : %s" %(int_to_char [argmax (onehot_encoded[8]1)]))
51 print ("--- Encodingl 9] : %s" %(int_to_char [argmax (onehot_encoded[91)]))
52 print("--- Encoding[10] : %s" %(int_to_char [argmax(onehot_encoded[10])]))
53

54 print ("

55 print("Finished !! ")

@
g
o

K

[
w

£
o
o
c

w

»
o

I
)
2

o

[e]e]ele] lelelele]e}

One-Hot Encoding

Output:

TestEncoder0Ol.py ...

--- Input string: hello world
--- Alphabet of input values:

abcdefghijklmnopgrstuvwxyz

[7, 4, 11, 11, 14, 26, 22, 14, 17, 11, 3]

--- Integer encoded data:

--- One hot encode ...

. 0, 0,01,

lt, o, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, O, O,

>

0
1

>
3

0
0

>
3

0
0

>
3

, 0,0,0
,0,0,0

0
0

s
s

(o, o, o, o, o, o, 0, 0, 0, 0, 0, 1, 0, 0, 0, O, O,

0, 0, 0, 1
0, 0, 0, 0

[o,
[O’

. 0, 0, 01,
. 0, 0, 0],
. 0, 0, 11,
. 0,0, 0],
. 0, 0, 01,
. 0, 0, 01,

. 0, 0,0,
. 0, 0, 011

o, o, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 1, 0, O,

(o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O,

o, o, 0, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O,

(o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, O,

(o, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O,

o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, O,

(o, o, o, 1, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O,

One-Hot Encoding Techniques
00000e0000

One-Hot Encoding

-
CWONOOUHWN -

NDRNNNRNNN R R e
QU BRWNFHFOOONOOAWN -

Example 2: One-Hot Encoding in Python

TestEncoder02.py: One hot encoding with sklearn

from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
print ("TestEncoder02.py ")
print ("=

Input string of temperature levels

data = [’freeze’, ’cold’, ’warm’, ’cold’, ’hot’, ’burn’,
‘warm’, ’burn’, ’cold’, ’warm’, ’hot’]

values = array(data)

print ("--- Input values: %s" %(values))

integer encode
print ("--- Integer encode ...")

label_encoder = LabelEncoder ()
integer_encoded = label_encoder.fit_transform(values)

One-Hot Encoding Techniques
0000008000

One-Hot Encoding

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Example 2: One-Hot Encoding in Python

print (integer_encoded)

binary encode
print ("--- Binary
onehot_encoder =

integer_encoded =
onehot_encoded =

encode ...")

OneHotEncoder (sparse=False)
integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoder.fit_transform(integer_encoded)

print (onehot_encoded)

print ("--- Invert encoding ...")
print ("--- Encodingl[0] : %s"

%(label_encoder.inverse_transform([argmax(onehot_encoded[0, :1)1)))
print ("--- Encodingl[11 : %s"

%(label_encoder.inverse_transform([argmax(onehot_encoded[1, :1)1)))
print ("--- Encodingl 2] : %s"

%(label_encoder.inverse_transform([argmax(onehot_encoded[2, :1)1)))
print ("--- Encodingl 3] : %s"

%(label_encoder.inverse_transform([argmax(onehot_encoded[3, :1)1)))
print ("

print ("Finished !!

One-Hot Encoding Techniques
0000000800

One-Hot Encoding

Output:

TestEncoder02.py ...

--- Input values: [’freeze’ ’cold’ ’warm’ ’cold’ ’hot’ ’burn’
’warm’ ’burn’ ’cold’ ’warm’ ’hot’]

--- Integer encode ...

[21413040143]

--- Binary encode ...

[[0. 0. 1. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 0. 1.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0.]
[1. 0. 0. 0. 0.]
[0. 0. 0. 0. 1.]
[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 0. 1.]
[0. 0. 0. 1. 0.]]

One-Hot Encoding Techniques
0000000080

One-Hot Encoding

Output: continued ...

--- Invert encoding ...

--- Encoding[0] : [’freeze’]
--- Encoding[1] : [’cold’]
--- Encoding[2] : [’warm’]
--- Encoding[3] : [’cold’]

Finished !!

Source Code: See: python-code.d/encoder/

One-Hot Encoding Techniques
000000000 e

One-Hot Encoding

Advantages

e Computational elements are binary (instead of ordinal) and sit
in an orthogonal vector space.

Disadvantages

@ Some decision tree based methods can work directly with
labeled entries — no need for one-hot encoding.

@ For high cardinality the vector space can quickly blow up,
leading to sparse representations and the curse of
dimensionality.

@ One solution approach: apply one-hot encoding, then reduce
problem space with PCA.

Extract-Transform-Load

Processes

Extract-Transform-Load Processes
[ele}

Extract-Transform-Load Processes

ETL Processes
@ ETL stands for extract, transform, load.

@ Traditional ETL extracts data from excel tables, csv, XML,
JSON files, etc, and transforms it for storage in centralized
databases.

extract
Data Source 1 transform

. load
Engine - Target

—f-]

extract

Data Source 2

@ Emerging ETL extracts data from sensors, mobile Apps, etc,
and transforms it for storage in cloud computing.

Extract-Transform-Load Processes
(o] lo}

Extract-Transform-Load Processes

Benefits of ETL

o Information Clarity. Data is cleaned and joined across
sources before it is saved in a database.

o Information Completeness. A well-defined ETL includes all
of the data sources relevant to decision making operations.

@ Information Quality. ETL processes validate data at
extraction or correct/discard data at transformation.

o Information Velocity. ETL processes can be triggered when
new data arrives.

Challenges of ETL

e Traditional targets (databases) are being replaced by cloud
computing.

Extract-Transform-Load Processes
ooe

ETL Data Transformation Operations

Data Transformation Operations

Read data in a variety or formats (e.g., csv, text).

Find and remove duplicate values.

Remove unnecessary columns; rename columns.

Filter data to keep only specific values (e.g., "MD" or "VA").

Conditionally replace invalid values with new values computed
by an external function.

Convert categorical data into integers and one-hot encodiings.
Extract lower-level detail (e.g., day, hr, min) from string.

Transfer data to dataset with a function/mapping.

Extract-Transform-Load Processes
000000

ETL with Python

Extract-Transform-Load Processes
0®00000

ETL in Pandas

Example 1: ...

Output:

Source Code: See: python-code/pandas/

Extract-Transform-Load Processes
[e]e] lele]e]e]

ETL in Pandas

Example 2: ...

Output:

Extract-Transform-Load Processes
[e]e]e] Jeele]

ETL in Pandas

Example 3: Process min/max daily temperatures in Seattle

Max/Min Daily Temperature (C) in Seattle (Jan 1, 2012 -- Dec 31, 2015)

. |
g (Y
-
£ |
:
10
\
.
2
0r T || T]
.
' |
:
.
.

Apr2012 Aug2012 Dec2012 Apr2013 Aug2013 Dec2013 Apr2014 Aug2014 Dec2014 Apr2015 Aug2015 Dec2015
Date

— Max Temp — Min Temp

Extract-Transform-Load Processes
[e]e]e]e] Tele]

ETL in Pandas

Weather Data in CSV format

Daily Weather Measurements: Jan 1, 2012 through Dec. 31, 2015

Date,Precipitation,TempMax,TempMin,Wind,Weather
2012-01-01,0.0,12.8,5.0,4.7,drizzle
2012-01-02,10.9,10.6,2.8,4.5,rain
2012-01-03,0.8,11.7,7.2,2.3,rain

. data removed ...

2015-12-27,8.6,4.4,1.7,2.9,rain
2015-12-28,1.5,5.0,1.7,1.3,rain
2015-12-29,0.0,7.2,0.6,2.6,fog

2015-12-30,0.0,5.6,-1.0,3.4,sun
2015-12-31,0.0,5.6,-2.1,3.5,sun

Extract-Transform-Load Processes
0000000

ETL in Pandas

Solution Procedure:
o Load data.
@ Extract day, month and year from date.

Extract-Transform-Load Processes
000000e

ETL in Pandas

Pandas: Load data

Pandas: Extract day, month and year from date.

ETL with

Apache DataVec

Extract-Transform-Load Processes
[e] leleleleele)

Working with Apache DataVec

Apache DataVec

@ Apache DataVec is an open source Java library for machine
learning ETL.

@ ETL operations transform raw data into usable vector formats
that can be fed to machine learning algorithms.

@ Apache DataVec has builtin transformation tools to convert
and normalize data.

Data Schema

@ A data schema is a high-level blueprint for how a data source
(or database) is organized.

@ Can think of the schama as being a logical model for how a
data model (or database) will be configured.

Extract-Transform-Load Processes
[e]e] lelele]ele)

Working with Apache DataVec

Data Transformation Operations:
@ Read data in a variety or formats (e.g., csv, text, image).
@ Remove unnecessary columns; rename columns.

o Filter data to keep only examples having specific values (e.g.,
"NZ" or "USA").

e Conditionally replace invalid values with new values computed
by an external function.

o Convert categorical data into integers and one-hot encodiings.

e Parsing a data string and extracting lower-level detail (day, hr,
min).

Source Code: See: java-code-ml-dl4j2021/src/datavec/

Extract-Transform-Load Processes
[e]e]e] lelelele)

Working with Apache DataVec

Example 1: Consider the abbreviated data file:

Extract-Transform-Load Processes
[e]e]e]e] lelele)

Working with Apache DataVec

Data Schema:

Extract-Transform-Load Processes
00000800

Working with Apache DataVec

Setup Data Transformation Process:

Extract-Transform-Load Processes
00000080

Working with Apache DataVec

Execute Data Transformation Process:

Extract-Transform-Load Processes
0000000e

Working with Apache DataVec

Transformed Data Format:

Data Organization

Data Organization

A sample is simply a single line of data.

The batch size is a hyperparameter of gradient descent that
controls the number of training samples to work through before
the internal parameters are adjusted to update the model.

.

An epoch is a hyperparameter of gradient descent that represents a
complete pass through the entire training dataset.

v

Data Organization

Epochs and Batches
@ Epochs are comprised of one or more batches.
@ The number of epochs can be large, hundreds or even
thousands.
@ Some learning algorithms require that the batch size and
number of epochs be specified upfront.

Common Batch Sizes in RNN
@ Powers of two ...
e 32, 62, 128.

Epoch vs Batch Size

References

@ Apache DataVec. Library for machine learning ETL (Extract,
Transform, Load) Operations. See:

https://github.com/deeplearning4j/DataVec.

@ Nielsen A., Practical Time Series Analysis: Prediction with
Statistics and Machine Learning, OReilly, 2020.

	Definition of Data Science
	Data Science Techniques
	One-Hot Encoding Techniques
	Extract-Transform-Load Processes
	Extract-Transform-Load Processes
	ETL with Python
	ETL with Apache DataVec

	Data Organization

