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Opportunities for Machine Learning

Machine Learning Opportunities:
@ Predicting system response and performance.

@ Interpreting data and formulating models to predict
component and subsystem-level properties.

@ Information retrieval from images and text.

@ Recognizing patterns in streams of sensed data.

Economic Considerations:

@ Urban infrastructure is permanent/semi-permanent and very
expensive to build and maintain.

@ Prioritize improvements to efficiency by identifying and
removing bottlenecks in performance.

@ Use AI-ML for design of actions that enhance
behavior/system performance.



Small Scale: Traffic Intersection at UMD

Goal. How to traverse a traffic intersection safely and without
causing an accident?
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Required Capability. Observe, evaluate, reason, take actions.

Challenges. Multiple types of data, event-driven behavior,
dynamic, time critical. Too much traffic congestion.



Self-Driving Cars

Goal. Improve performance by removing bottlenecks — no human
driver; no traffic lights.

Remark: 95% of the requirements
are for the system software.

Source: ISR visitor from GM

Research.

Remark: Tesla will produce self-
driving cars by 2016.

Source: Elon Musk.

Stop signs and traffic lights are replaced by mechanisms
for vehicle-to-vehicle communication (Adapted from http:citylab.com).




Google Self-Driving Car

Essentially: A network of sensors and computers on wheels.

The self- drwmg car's Sensors

Just ke a person has five
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Today: Modern automobiles — 100 million lines of code.
Tomorrow: Self-driving automobiles — 300 million lines of code.



Navigating a Busy Traffic Intersection

Step-by-Step Procedure:

How the car sees the world
- This computerized image is what Google
researchers monitoring sensor data see
as they ride in the vehicle.

Other vehicle

How the car operates Fss

© Any object the vehicle's B
sensors spot is interpreted
by software to determine if
it's a pedestrian, cyclist,
vehicle or something else.

@ Using what it's learned Pedestrian
from previous driving, the "
software makes [ Cyelist
predictions about what [TTTT] Objects that warrant caution

objects will do next. A K ind
T A crosswalk, indicating

the car needs to stop
1= Atraffic signal, warning of
="/ upcoming railroad tracks

© The software analyzes the
information to decide
whether it is safe to
accelerate, turn or hit the
rakes. Path where Google’s car
intends to go

Source: Google
Graphic: Tribune News Service

Identify various kinds of objects (e.g., vehicles, crosswalk).
Predict what objects will do next.
Conduct safety assessment.

Take action.




Google DeepMind (2018-2020)

Teach Self-Driving Cars to Navigate a City without a Map

Test Cities: London, Paris, New York.



Research at PEER



ML Research at PEER

PEER Hub ImageNet (2018): Classification of Structural
Engineering images:

NN B

Fig la Pixel Level Samples
Fig 1b Object level Samples Fig lc Structure Level Samples

Source:
https://apps.peer.berkeley.edu/phichallenge /detection-tasks/



ML Research at PEER

Future Work: Create pathway from image classification to
decision making:
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Research at UMD



Large Scale: Management of City Operations

Smart City Digital Twin Architecture

Downtown, Chicago, USA
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Required Capability. Modeling and Control of Urban Processes.

Challenges. Distributed system behavior/control. Decision
making covers a wide range of temporal and spatial scales.



Large Scale: Management of City Operations

Case Study A (2019): Mine publically available data to
understand Energy Consumption in 2,500 Buildings in Chicago.
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Large Scale: Management of City Operations

Case Study B (2020): Can we teach a machine to understand
the structure and behavior of water supply networks?

Digital Twin (Cyber) Urban Water Supply Network (Physical)
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Reference: Coelho M., et al., Teaching Machines to Understand
Urban Networks, ICONS 2020.




References

Austin M.A., Delgoshaei P., Coelho M. and Heidarinejad M. ,
Architecting Smart City Digital Twins: Combined Semantic Model
and Machine Learning Approach, Journal of Management in
Engineering, ASCE, Volume 36, Issue 4, July, 2020.

Coelho M., and Austin M.A. | Teaching Machines to Understand
Urban Networks, The Fifteenth International Conference on Systems
(ICONS 2020), Lisbon, Portugal, February 23-27, 2020, pp. 37-42.

Bhiksha R., Introduction to Neural Networks, Lisbon Machine
Learning School, June, 2018.

Lu T., Fundamental Limitations of Semi-Supervised Learning, MS
Thesis in Mathematics in Computer Science, University of Waterloo,
Canada, 2009.

Van Engelen J.E., and Hoos H.H., A Survey on Semi-Supervised
Learning, Machine Learning, Vol. 109, 2020, pp. 373-440.



	Quick Review
	Artificial Intelligence and Machine Learning
	Machine Learning Capabilities
	Taxonomy of Machine Learning Problems
	Types of Machine Learning Systems
	Urban Applications
	Recent Research at PEER and UMD

