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Ontologies and Ontology-Enabled Computing
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Definition of an Ontology

Definition (Ontology)

An ontology is a set of knowledge terms, including the vocabulary,
the semantic interconnections, and some simple rules of inference
and logic for some particular topic or domain.

Three Goals:

@ Provide a semantic representation of each entity and its
relationships to other entities;

@ Provide constraints and rules that permit reasoning within the
ontology;

@ Describe behavior associated with stated or inferred facts.



Ontologies and Ontology-Enabled Computing
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Framework for Model-Based Design
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The Data-Ontology-Rule Footing

Building Block for Semantic Modeling and
Event-driven Execution of Multi-Domain Systems

MSSE/Ph.D. (Civil Systems) Students

@ Parastoo Delgoshaei (2013-2017);
@ Maria Coelho (2015-present).




Data-Driven Approach

Guiding Principles:
@ One footing for ontologies, rules and data ...
@ Use (but do not extend) foundational level ontologies ...
© Ontologies visit data models to get individuals ...
@ Semantic graph dynamically responds to incoming events ...

© Enhance power of rules with backend functions ...

Preliminary Schematic:
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Synthesis of data-ontology-rule footing Synthesis of event-driven behaviors




Template for Semantic Modeling + Processing of Events

Multi-domain Semantic Modeling

. design flow design flow . .
Domain  _ _ _ _ __ ____ p Ontology classes _ _ _ 2 __ p  Domain-Specific
Rules @ ----------- and properties ------- Data Models / Sources

ity ity il i

I ' 1 ' 1 I

. ! . import ' . visit !
Domain A ! Rules A Ontology A ; Data Source A !
| ' e , |

: NP [N /_/’\ :

| o R

| 7N o N 1

| DN N |

l e N S I

. ' import  visit
Domain & : i Ontoloy B :
! 1
1 ! ! | 1
) | ! , ! |
| import .
import

Executable Processing of Events

Events 1!

Rules Engine Semantic Graph

Revisions to semantic graph




SR e Sttt SssZhenss
Case Study

Detection and Diagnostic
Analysis of Faults in HVAC Equipment

Source: Delgoshaei and Austin, 2017.



Fault Detection in Buildings

Example 1: Buildings that Think! (Work at NIST / UMD, 2017)

Grid ’ Fault detection [ Building MIndoorairlenergy
integration and diagnostics | energy control monitoring

Research Question: How to use Al / Semantics to bring data, context and
algorithms together for decision making?

Legend: data = building geometry; context = occupant behavior; algorithms = reasoning.



Multi-Domain Building Semantics

Framework for Concurrent Data-Driven Development of Domain Models, Ontologies and Rules
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Multi-Domain Rule-based Reasoning

Flowchart for Processing of Faults Fault Detection and Diagnostic Analysis Ontology
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Multi-Domain Rule-based Reasoning

Case Study Problem

Snapshot of Fully Assembled Semantic Graph
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Multi-Domain Semantic
Modeling + Data Mining



Multi-Domain Semantic Modeling + Data Mining

Initial Idea: Ditch semantic modeling — focus on machine learning
instead.

Much Better Idea: Understand how can semantic modeling and
data mining work together as a team?

Al for Enhanced Building Monitoring
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Multi-Domain Semantic Modeling + Data Mining

Multi-domain Semantic Modeling
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Case Study

Energy Consumption of
2,500 Buildings in Chicago



Energy Consumption of Buildings in Chicago

Example 2: Energy Consumption of 2,500 Buildings in Chicago (NIST / UMD / IIT) (2018)

Smart City Digital Twin Architecture Downtown, Chicago, USA
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Research Question: What factors — e.g., age, location, floor area, functionality — are
strong indicators of energy consumption in buildings?



Energy Consumption of Buildings in Chicago

Framework for Integrated Semantics + Data Mining

Urban (Smart City) Data Medels, Ontologies and Rules
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Energy Consumption of Buildings in Chicago

Buildings in Chicago Metropolitan Area

Mining Data For Association Relationships ....

Rules and Associations for Zoning of Residential Buildings

Association 1: Site EUI (KBtu/sq ft)="(-inf-56.55]"
==> Building Type=Multifamily Housing <conf:(0.84)>

Association Community Area=NEAR NORTH SIDE
==> Building Type=Multifamily Housing <conf:(0.8)>

Association 3: Gross Floor Area - Buildings (sq ft)='([150354-513214)"
Building Type=Multifamily Housing <conf:(0.83)>

hssociation 4: Year Built='(1999.5-inf)’
Primary Property Type-Multifamily Housing <conf:(0.85)>

Rule 1:Building(?x), hasPloorAreaRatio(?x,?a), greaterThan(?a,6.6)
isType(?x,2t), equal(?t, multi-family") —> hasSubCat(?t, RM6.5"

Rule 2:Building(7x) hasAge(?x,?a)

Mining Data for Classification Hierarchies + Rules

Expes .
eui <= 171.5  <-- first breakpoint
| zip = 60616
| | age <= 102: MULTIFAMILY HOUSING (59.0)
| | age> 102
| | | eui <= 118.2: MULTIPAMILY HOUSING (5.0)
| | | eui> 118.2: OPPICE (3.0/1.0)
eui > 171.5
| zip = 60616
| | eui <= 269.2: MULTIPAMILY HOUSING (11.0/1.0)
| | eui> 269.2: COLLEGE/UNIVERSITY (3.0/2.0)

Number of Leaves: 138
size of the tree: 153

Correctly Classified Instances 1443
Incorrectly Classified Instances 345

> 80.7047%
> 19.2953%

Experiment B

zip = 60616  <-- first breakpoint
| age <= 86
| | age<=s3
| | | area <= 115066: NEAR SOUTH SIDE (13.0/6.0)
| | | area> 115066
I | age <= 12: NEAR SOUTH SIDE (5.0)
o1 age > 12
| eui <= 130.2: DOUGLAS (3.0)
[ eui > 130.2: NEAR SOUTH SIDE (8.0/2.0)
| | age > 53: DOUGLAS (18.0/2.0)
| age > 86: NEAR SOUTH SIDE (7.0/2.0)
Number of Leaves: 82
size of the tree: 102
Correctly Classified Instances 1399 --> 76.2438%
--> 21.7562%

Incorrectly Classified Instances 389

Software. WEKA (Waikato Environment for
Knowledge Analysis).

greaterThan(?a,20) => isType(?x, "multi-family")




Vision for Future Capability

Future Vision: Digital Twins + Virtual and Augmented Reality
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Case Study

Semantics + Data Mining for
Precision Medicine



Semantics + Data Mining for Precision Medicine

Example 3: Semantic Foundations for Precision Medicine (NCI / UMD) (2017-2019)

Digital Twin Architecture for Personalized Medicine Patient Sensing System
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Evaluation PATIENT OPERATING SYSTEM
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actions
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Patient diagnosis
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Physician actions s
it sources of data

]
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rules governing treatment and diagnosis

Long-Term Objective: Digital Twin Architecture for Improved Management of
Symptoms and Treatment of Brain Cancer Patients.



Semantics + Data Mining for Precision Medicine

Pathway from Preclinical Studies and Pharmacology to Patient Diagnosis and Treatment

Preclinical Studies ——— Pharmacology —— Patient Diagnosis —— Patient Treatment

Dependency Relationships among Preclinical Models, Patient Diagnosis and Patient Treatment
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Semantics + Data Mining for Precision Medicine

DNA
Problem Complexity —Gene— ~ Gene—

Human Genome: 19,000-20,000 individual genes
Patient data extracted from Cancer Genome Atlas
+ 1,019 Patients

* Each patient described by 44,000 units of data assembled from
11,000 gene attributes from 4 sequencing method.
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