
Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Java Tutorial: Working with Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Fall Semester 2020

October 10, 2020

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Overview

1 Working with Objects

2 Encapsulation and Data Hiding

3 Relationships Among Classes

4 Association Relationships

5 Inheritance Mechanisms

6 Composition of Object Models

7 Applications

Part 1

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

Motivating Ideas

Simplify the way we view the real world,

Provide mechanisms for assembly of complex systems.

Provide mechanisms for handling systems that are subject to
change.

Organizational and E�ciency Mechanisms

Interface

In
cr

ea
si

n
g

 s
p

ec
ia

li
za

ti
o

n

Input from
surrounding environment

General
concepts

Network of Communicating Objects Problem Domain Concepts organized
into a Class Hierarchy.

Messages

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Object-based Software

Basic Assumptions

Everything is an object.

New kinds of objects can be created by making a package
containing other existing objects.

Objects have relationships for other types of objects.

Objects have type.

Object communicate via message passing – all objects of the
same type can receive and send the same kinds of messages.

Objects can have executable behavior.

Objects can be design to respond to occurrences and events.

Systems will be created through a composition (assembly) of
objects.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

Working with Objects and Classes:

Collections of objects share similar traits (e.g., data, structure,
behavior).

Collections of objects will form relationships with other
collections of objects.

Definition of a Class

A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object

An object is an instance of a class.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

Key Design Tasks

Identify objects and their attributes and functions,

Establish relationships among the objects,

Establish the interfaces for each object,

Implement and test the individual objects,

Assemble and test the system.

Implicit Assumptions ! Connection to Data Mining

Manual synthesis of the object model is realistic for systems
that have a modest number of elements and relationships.

As the dimensionality of the problem increases some form of
automation will be needed to discover elements and
relationships.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 1. Working with Points

A Very Simple Class in Java
1 public class Point {

2 int x, y;

3
4 public Point (int x, int y) {

5 this.x = x; this.y = y;

6 }

7 }

Creating an Object
8 Point first = new Point (1, 2);

9 Point second = new Point (2, 5);

Accessing and Printing the attributes on an Object
10 System.out.printf(" first point (x,y) = (%2d, %2d)\n", first.x, first.y);

11 System.out.printf("second point (x,y) = (%2d, %2d)\n", second.x, second.y);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

A circle can be described by the (x,y) position of its center and
by its radius.

y

(x, y)

radius

x

There are numerous things we can do with circles:

Compute their circumference, perimeter or area,

Check if a point is inside a circle.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

1 /*

2 * ==

3 * Circle (): Basic implementation of a circle program.

4 *

5 * Written by: Mark Austin February , 2019

6 * ==

7 */

8
9 import java.lang.Math .*;

10
11 public class Circle {

12 public double dX , dY , dRadius;

13
14 // Constructor

15
16 public Circle () {}

17
18 public Circle(double dX , double dY , double dRadius) {

19 this.dX = dX;

20 this.dY = dY;

21 this.dRadius = dRadius;

22 }

23
24 // Compute the circle area

25
26 public double Area() {

27 return Math.PI*dRadius*dRadius;

28 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

29
30 // Copy circle parameters to a string format ...

31
32 public String toString () {

33 return "(x,y) = (" + dX + "," + dY + "): Radius = " + dRadius;

34 }

35
36 // --

37 // Exercise methods in class Circle ...

38 // --

39
40 public static void main(String [] args) {

41
42 System.out.println("Exercise methods in class Circle");

43 System.out.println("================================");

44
45 Circle cA = new Circle ();

46 cA.dX = 1.0; cA.dY = 2.0; cA.dRadius = 3.0;

47
48 Circle cB = new Circle(1.0, 2.0, 2.0);

49
50 System.out.printf("Circle cA : %s\n", cA.toString ());

51 System.out.printf("Circle cA : Area = %5.2f\n", cA.Area());

52 System.out.printf("Circle cB : %s\n", cB);

53 System.out.printf("Circle cB : Area = %5.2f\n", cB.Area());

54 }

55 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

Script of Program Input and Output

Exercise methods in class Circle

================================

Circle cA : (x,y) = (1.0,2.0): Radius = 3.0

Circle cA : Area = 28.27

Circle cB : (x,y) = (1.0,2.0): Radius = 2.0

Circle cB : Area = 12.57

Points to note:

Objects are created with constructor methods. The line:
public Circle () {}

is the default constructor. It creates circle objects with all of
the circle attribute values initialized to zero.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Working with Circles

More points to note:

The next three statements use the dot notation (.) to
manually initialize the (x,y) coordinates of the circle center
and its radius.

A second constructor method:
public Circle(double dX, double dY, double dRadius) {

}

creates a circle object and initializes the circle attribute values
in one line.

Statements of the form this.dX = dX take the value of dX
passed to the contructor method and assign it to the attribute
dX associated with this object.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Accessing Object Data and Object Methods

Now that we have created an object, we can use its data fields.
The dot operator (.) is used to access the di↵erent public variables
of an object.

Example 1

Circle cA = new Circle();

cA.dX = 1.0;

cA.dY = 2.0;

cA.dRadius = 3.0;

To access the methods of an object, we use the same syntax as
accessing the data of the object, i.e., the dot operator (.).

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Accessing Object Methods

Example 2

Circle cA = new Circle();

cA.dRadius = 2.5;

double dArea = cA.getArea();

Notice that we did not write dArea = getArea(cA);

Example 3

Let a, b, c, and d be complex numbers. To compute a*b + c*d we
write

a = new Complex(1,1); .. etc ..

Complex sum = a.Mult(b).Add(c.Mult(d));

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and
Data Hiding

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Definition of Aggregation

Aggregation is the grouping of components into a package.

Aggregation does not imply that the components are hidden
or inaccessible. It merely implies that the components are part
of a whole.

Definition of Encapsulation

Encapsulation is a much stronger form of organization.

Encapsulation forces users of a system to deal with it as an
abstraction (e.g., a black box) with well-defined interfaces
that define what the entity is, what it does, and how it should
be used.

The only way to access an object’s state is to send it a
message that causes one of the object’s internal methods to
execute.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Encapsulation – User’s view of AbstractionDesigner’s view of Aggregation

Unstructured Components Aggregation

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Principle of Information Hiding

The principle of information hiding states that information which is
likely to change (e.g., over the lifetime of a software/systems
package) should be hidden inside a module.

Application. Process for Implementation of Information Hiding.

Processes and data

Private processes

hiding
Information

and data

and data.
Access to public processesAll data and processes

are public.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Graphical Representation of a Class

The object wrapping protects the object code from unintended
access by other code.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

In object-oriented terminology, and particularly in Java,

The wrapper object is usually called a class, the functions
inside the class are called private methods,

The data inside the class are private variables.

Public methods are the interface functions for the outside
world to access your private methods.

Implementation. The keyword private in:

public class Point {

private int x, y;

....

}

restricts to scope of x and y to lie inside the boundary of Point
objects.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Encapsulation and Data Hiding

Access to a point’s coordinates is controlled through the public
methods:

public int getX() {

return x;

}

public void setX(int x) {

this.x = x;

}

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

Revised circle program where data and circle properties can only be
accessed through an interface.

1 /*

2 * ==

3 * Circle (): Implementation of the Circle class where data and circle

4 * properties can only be accessed through an interface.

5 *

6 * Written by: Mark Austin February , 2019

7 * ==

8 */

9
10 import java.lang.Math .*;

11
12 public class Circle {

13 protected double dX, dY, dRadius;

14
15 // Constructor

16
17 public Circle () {}

18
19 public Circle(double dX , double dY , double dRadius) {

20 this.dX = dX;

21 this.dY = dY;

22 this.dRadius = dRadius;

23 }

24
25 // Compute the circle area

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

26
27 private double Area() {

28 return Math.PI*dRadius*dRadius;

29 }

30
31 // Create public interface for variables and area computation

32
33 public void setX (double dX) {

34 this.dX = dX;

35 }

36
37 public double getX () {

38 return dX;

39 }

40
41 ... details for setY() and getY() removed ...

42
43 public void setRadius (double dRadius) {

44 this.dRadius = dRadius;

45 }

46
47 public double getRadius () {

48 return dRadius;

49 }

50
51 public double getArea () {

52 return Area ();

53 }

54
55 // Copy circle parameters to a string format ...

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

56
57 public String toString () {

58 return "(x,y) = (" + dX + "," + dY + "): Radius = " + dRadius;

59 }

60
61 // --

62 // Exercise methods in class Circle ...

63 // --

64
65 public static void main(String [] args) {

66
67 System.out.println("Exercise methods in class Circle");

68 System.out.println("================================");

69
70 Circle cA = new Circle ();

71 cA.setX (1.0);

72 cA.setY (2.0);

73 cA.setRadius (3.0);

74
75 Circle cB = new Circle(1.0, 2.0, 2.0);

76
77 System.out.printf("Circle cA : %s\n", cA.toString ());

78 System.out.printf("Circle cA : Area = %5.2f\n", cA.getArea ());

79
80 System.out.printf("Circle cB : %s\n", cB);

81 System.out.printf("Circle cB : Area = %5.2f\n", cB.getArea ());

82 }

83 }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 2. Revised Circle Program

Points to note:

Use of the keyword protected in:
protected double dX, dY, dRadius;

restricts access of dX, dY and dRadius to methods within
Circle and any subclass of Circle.

The methods getX() and setX(), etc, create a public
interface for Circle.

By convention, the toString() method creates and returns a
string description of the objects contents. And it can be called
in two ways as demonstrated at the bottom of main(). The
fragment of code cA.toString() will return a string which will
be matched against the %s format specification. However, cB
also calls toString() and is shorthand for cB.toString().

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships

Among Classes

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

Motivation

Classes and objects by themselves are not enough to describe
the structure of a system.

We also need to express relationships among classes.

Object-oriented software packages are assembled from
collections of classes and class-hierarchies that are related in
three fundamental ways.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

1. Use: Class A uses Class B (method call).

Call Method

CLASS A CLASS B

Class A uses Class B if a method in A calls a method in an object of
type B.

Example

double dAngle = Math.sin (Math.PI / 3.0);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

2. Containment (Has a): Class A contains a reference to Class
B.

CLASS BCLASS A

Clearly, containment is a special case of use (i.e., see Item 1.).

Example

public class LineSegment {

private Point start, end;

.......

}

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

3. Inheritance (Is a): In everyday life, we think of inheritance as
something that is received from a predecessor or past generation.
Here, Class B inherits the data and methods (extends) from Class
A.

CLASS A CLASS B

Extends

Examples of Java Code

public class ColoredCircle extends Circle { }

public class GraphicalView extends JFrame { }

	Working with Objects
	Encapsulation and Data Hiding
	Relationships Among Classes
	Association Relationships
	Inheritance Mechanisms
	Composition of Object Models
	Applications

