
Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Abstract Classes and Interfaces

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Fall Semester 2020

October 12, 2020

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Overview

1 Quick Review

2 Framework for Component-based Design

3 Abstract Classes

4 Working with Interfaces

5 Farm Worker Source Code

6 Five Applications
Two Factories making Widgets
Parsing and Evaluation of Functions with JEval
Using Interfaces in Spreadsheets
Horstmann’s Simple Graph Editor
Architecture for Block Interconnect System

Part 2

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Reiew: Objects and Classes

Working with Objects and Classes:

Collections of objects share similar traits (e.g., data, structure,
behavior).

Collections of objects will form relationships with other
collections of objects.

Definition of a Class

A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object

An object is an instance of a class.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Quick Review: Objects and Classes

Key Design Tasks

Identify objects and their attributes and functions,

Establish relationships among the objects,

Establish the interfaces for each object,

Implement and test the individual objects,

Assemble and test the system.

Implicit Assumptions ! Connection to Data Mining

Manual synthesis of the object model is realistic for systems
that have a modest number of elements and relationships.

As the dimensionality of the problem increases some form of
automation will be needed to discover elements and
relationships.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with Interfaces

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Motivation

Interfaces are the mechanism by which components describe
what they do, but not how they do it.

Interface abstractions are appropriate for collections of objects
that provide common functionality, but are otherwise
unrelated.

Implementation

An interface defines a set of methods without providing an
implementation for them.

An interface does not have a constructor – therefore, it
cannot be instantiated as a concrete object.

Any concrete class the implements the interface must provide
implementations for all of the methods listed in the interface.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Example 1. Software Interface for Farm Workers

Working

Person

Farmer

implements

implements

Animal

Dog

WorkingHorse

Horse

extends

extends extends

extends

FarmWorkers

*

uses1

implements

WorkingDog

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Example 1. Software Interface for Farm Workers

Workers is simply an abstract class that defines an interface, i.e.,

public interface Working {
public abstract void hours ();

}

In Java, the interface is implemented by using the keyword
implements in the class declaration, e.g.,

public class Farmer implements Working {

This declaration sets up a contract that guarantees the Farmer
class will provide a concrete implementation for the method
hours().

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Important Point. Instead of writing code that looks like:

Farmer mac = new Farmer (...);
WorkingDog max = new WorkingDog (...);
WorkingHorse silver = new WorkingHorse (...);

We can treat this group of objects as a set of Working entities, i.e.,

Working mac = new Farmer (...);
Working max = new WorkingDog (...);
Working silver = new WorkingHorse (...);

Methods and algorithms can be defined in terms of all Working
entities, independent of the lower-level details of implementation.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Motivation and Benefits

In Java, an interface represents what a class can do, but not how it
will do it, which is the actual implementation.

Two key benefits:

Information hiding. As long as the objects conform to the
interface specification, then there is no need for the clients to
know the exact type of the objects they use.

Improved flexibity. System behavior can be changed by
swapping the object used with another implementing the same
interface.

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Programming to an Interface

Combining Abstract Classes and Interfaces

method3()

B
¡¡ Interface ¿¿

method3()
method2()
method1()

method3()
method2()
method1()

A
¡¡ abstract ¿¿

implements

DC E
method1()
method2()
method3()

method1()
method2()

Now we can write:

Creating objects of type C,D and E. Executing methods ...
===================================== =====================
B c1 = new C (...); c1.method1();
B d1 = new D (...); d1.method2();
B e1 = new E (...); e1.method3();
===================================== =====================

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Farm Worker Source Code

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Animal.java
1 public class Animal {
2 String name;
3

4 public Animal(String name) { this.name = name; }
5 public String toString () { return this.name; }
6 }

Source Code: Dog.java
1 public class Dog extends Animal {
2 public Dog(String name) { this.name = name; }
3

4 public String toString (){
5 return "*** In Dog: " + this.name;
6 }
7 }

Source Code: Horse.java
1 public class Horse extends Animal {
2 public Horse(String name) { this.name = name; }
3

4 public String toString () {
5 return "*** In Horse: " + this.name;
6 }
7 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: WorkingDog.java
1 public class WorkingDog extends Dog implements Working {
2 public WorkingDog(String name) {
3 this.name = name;
4 }
5

6 public void hours () {
7 System.out.println ("*** Working dog hours -- working weekends !!");
8 }
9 }

Source Code: WorkingHorse.java
1 public class WorkingHorse extends Horse implements Working {
2 public WorkingHorse(String name) {
3 this.name = name;
4 }
5

6 public void hours () {
7 System.out.println ("*** Working horse hours -- also working weekends !!");
8 }
9 }

Source Code: Working.java (Interface)
1 public interface Working {
2 public abstract void hours ();
3 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Person.java
1 /*

2 * ===

3 * Person.java. Create person objects and compute their age ...

4 *

5 * Written By: Mark Austin December 2006

6 * ===

7 */

8

9 import java.util.Calendar;
10 import java.util.Date;
11 import java.util.GregorianCalendar;
12

13 public class Person {
14 protected String sName;
15 protected Date birthdate;
16

17 // ==

18 // Set/get name of a person

19 // ==

20

21 public void setName(String sName) {
22 this.sName = sName;
23 }
24

25 public String getName () {
26 return sName;
27 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Person.java (continued)
28

29 // ==

30 // Compute age of a person ...

31 // ==

32

33 public int getAge () {
34 ... details removed ...
35 }
36

37 public void setBirthDate(Date aBirthDate) {
38 this.birthdate = aBirthDate;
39 }
40

41 public void setBirthDate(int iYear , int iMonth , int iDay) {
42 Calendar cal = Calendar.getInstance ();
43 cal.set(iYear , iMonth , iDay);
44 this.birthdate = cal.getTime ();
45 }
46

47 public Date getBirthDate () {
48 return birthdate;
49 }
50

51 // ==

52 // Create a String description of a persons cridentials

53 // ==

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: Person.java (continued)
54

55 public String toString () {
56 String s = "Name: " + getName () + "\n";
57 s += " Age: " + getAge () + "\n";
58 return s;
59 }
60 }

Source Code: Farmer.java
1 public class Farmer extends Person implements Working {
2 public Farmer () {
3 super ();
4 }
5

6 public Farmer(String name) {
7 super ();
8 this.sName = name;
9 }

10

11 public String toString () {
12 return "*** In Farmer: " + this.sName;
13 }
14

15 public void hours () {
16 System.out.println ("*** Working farmer -- working 7 days a week!!");
17 }
18 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Source Code: FarmerWorkers.java (Test Program)
1 public class FarmWorkers {
2 public static void main (String args[]) {
3

4 // Create objects for farmers

5

6 Working mac = new Farmer("Old MacDonald");
7 System.out.println(mac.toString ());
8 mac.hours ();
9

10 // Create objects for working farm animals ..

11

12 Working max = new WorkingDog("Max");
13 System.out.println(max.toString ());
14 max.hours ();
15

16 Working silver = new WorkingHorse("Silver");
17 System.out.println(silver.toString ());
18 silver.hours ();
19 }
20 }

Quick Review Framework for Component-based Design Abstract Classes Working with Interfaces Farm Worker Source Code Five Applications

Working with System Interfaces

Test Program Output:

*** In Farmer: Old MacDonald
*** Working farmer -- working 7 days a week!!
*** In Dog: Max
*** Working dog hours -- working weekends!!
*** In Horse: Silver
*** Working horse hours -- also working weekends!!

You might wonder:

Can I use this approach to call methods that are within a
participating class (e.g., WorkingHorse), but not defined in the
interface?

No! You can only call methods defined in the interface.

	Quick Review
	Framework for Component-based Design
	Abstract Classes
	Working with Interfaces
	Farm Worker Source Code
	Five Applications
	Two Factories making Widgets
	Parsing and Evaluation of Functions with JEval
	Using Interfaces in Spreadsheets
	Horstmann's Simple Graph Editor
	Architecture for Block Interconnect System

