▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Direct Stiffness Method

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Spring Semester 2025

May 5, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview

1 Methods of Structural Analysis

- Force (Flexibility) Method of Analysis
- Displacement (Stiffness) Method of Analysis

2 Direct Stiffness Method

- Two-Step Procedure (Decomposition followed by Assembly)
- Step-by-Step Procedure

3 Examples

- Example 1: Analysis of Three-Bar Truss
- Example 2: Analysis of Five-Bar Truss
- Example 3: Analysis of Six-Bar Truss

Methods of Structural Analysis

Direct Stiffness Method

Examples

Methods of Structural Analysis

Force and Displacement Methods of Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Methods of Structural Analysis

Force Method

- Displacements are proportional to external loads.
- Maintain equilibrium of forces.
- Use superposition and compatibility of displacements to solve problem.

Displacement Method

- Maintain compatibility of displacements.
- Use equilibrium of forces to solve problem.

Force (Flexibility) Method of Analysis

Solution Procedure:

- Convert an indeterminate structure to a determinate one by removing some unknown forces and/or support reactions and replacing them with (assumed) known unit forces.
- Problem solved for redundant forces.
- Coefficients of the unknowns in equations to be solved are flexibility coefficients.
- Additional steps needed to determine displacements and internal forces.

Computational Implementation:

• Can be programmed, but human input is needed to select primary structure and redundant forces.

Displacement (Stiffness) Method of Analysis

Solution Procedure:

- Express local (member) force-displacement relationships in terms of unknown member displacements.
- Coefficients of the unknowns in equations to be solved are stiffness coefficients.
- Use equilibrium of assembled members to find structural-level displacements and internal member forces.

Computational Implementation:

- Easy to program on a computer.
- Lower memory requirments than for force method.

Direct Stiffness Method

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Direct Stiffness Method

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two-Step Procedure

Decomposition: Pathway from structural model to generic elements.

Source: The Direct Stiffness Method, Book Chapter.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Two-Step Procedure

Assembly and Solution: Pathway from generic elements to structural assembly, deflections and member forces.

Source: The Direct Stiffness Method, Book Chapter.

A D N A 目 N A E N A E N A B N A C N

Truss Member Behavior

Definition of Terms:

- R = External joint (structure) forces (and moments).
- r = External joint (structure) displacements (and rotations).
- S = Internal member end forces (and moments).
- v = Internal member end displacements (and rotations).
- a = Geometry transformation matrix.
- A = Cross-section area.
- E = Young's elastic modulus.

Stiffness and Flexibility:

- f = Member flexibility factors.
- k = Member stiffness factors.

Direct Stiffness Method

Examples

Truss Member Behavior

1D Model of Truss Member Behavior:

Flexibility:

$$[v] = [f][S] \longrightarrow [f] = \left[\frac{L}{AE}\right].$$
(1)

Stiffness:

$$[S] = [k] [v] \longrightarrow [k] = \left[\frac{AE}{L}\right].$$
(2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Truss Member Behavior

Connect 1D Model of Truss Behavior to Two Joints:

Truss Member Behavior

Relate Member Displacements to Joint Displacements:

Methods of Structural Analysis

Direct Stiffness Method

Examples

Truss Member Behavior

Similarly:

$$[S_i] = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{bmatrix} = \begin{bmatrix} a^T \end{bmatrix} [S].$$
 (5)

Hence:

$$[S_i] = \begin{bmatrix} a^T \end{bmatrix} [k] [a] [v_i]$$

= [k_i] [v_i]. (6)

Here, $[k_i]$ is the (4×4) member stiffness matrix in terms of the member joint displacements and forces.

Direct Stiffness Method

Examples

Structural Model Assembly

Example 1: Two-Spring Assembly

- * ロ * * 御 * * ミ * ミ * 三 * のへで

Methods of Structural Analysis

Direct Stiffness Method

Examples

Structural Model Assembly

Example 2: Eight-bar Truss

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Structural Model Assembly

Example 2: Eight-bar Truss

- **Global Joint Number**
- Bar Number
- **Bar Direction**
- Structural Degree of Freedom
- Applied Force
 - Local Joint Number
 - Local Degree of Freedom
- **Global Coordinate System**

Element Coordinates in Global Directions

System Equation: {f} = [K]{d}

{d} : displacement vector $= \{ d1 d2 d3 d4 d5 d6 \}^{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step-by-Step Procedure

1. Member Forces in terms of Internal Member Displacements

$$[S] = [k] [v] \tag{7}$$

2. Relate Member Displacements to Joint Displacements.

$$[v] = [a] [r] \tag{8}$$

3. Relate Member Forces to Joint Displacements.

$$[S] = [k] [a] [r]$$
(9)

4. Relate Joint Forces to Member Forces.

$$[R] = \left[a^{T}\right][S]. \tag{10}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Direct Stiffness Method

Examples

Step-by-Step Procedure

5. Assemble Structure (Joint) Stiffness Matrix.

$$[R] = \left[a^{T}\right][k][a][r]$$

= [K][r] (11)

6. Solve Matrix Equations for Joint Displacements, i.e.,

$$[K][r] = [R].$$
(12)

7. Obtain Member Forces from Joint Displacements,

$$[S] = [k] [a] [r]$$
(13)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Methods of Structural Analysis

Direct Stiffness Method

Example 1

Analysis of Three-Bar Truss

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example 1: Analysis of Three-Bar Truss

Geometry and External Loads

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example 1: Analysis of Three-Bar Truss

Boundary Conditions and Global DOF

Example 1: Manual Specification of Three-Bar Truss

Specification: Nodes and Elements

```
Nodes
                                       Elements
                                       Bar2D: e01: Nodes (n1, n2)
Node: n1
Coordinate: (x,y) = (0.00, 0.00)
                                       Length: L = 10.000000
DOF: (x,y) = [False, False]
                                       Young's Modulus: E = 1.000000
Map LDOF-to-GDOF: (x,y) = [0, 0]
                                       Cross Section Area: A = 1.000000
Node: n2
                                       Bar2D: e02: Nodes (n1, n3)
Coordinate: (x,y) = (10.00, 0.00)
                                       Length: L = 10.000000 \dots
DOF: (x,y) = [True, False]
                                       Young's Modulus: E = 1.000000
Map LDOF-to-GDOF: (x,y) = [0, 0]
                                       Cross Section Area: A = 1.000000
Node: n3
                                       Bar2D: e03: Nodes (n2, n3)
Coordinate: (x,y) = (0.00, 10.00)
                                       Length: L = 14.142136
DOF: (x,y) = [True, True]
                                       Young's Modulus: E = 1.000000
Map LDOF-to-GDOF: (x,y) = [0, 0]
                                       Cross Section Area: A = 1.000000
                                          ______
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 1: Analysis of Three-Bar Truss

Boundary Conditions

Node n1: (x,y) pin support: dof free to move --> [False, False] Node n2: (x,y) roller support: dof free to move --> [True, False] Node n3: (x,y) dof free to move --> [True, True]

Nodal Loads

Node Load: n3 ... Loads: [Fx, Fy] = [10.00, 0.00]

Model Compilation:

No nodes = 3 No elements = 3 No node loads = 1

Model Compilation: continued:

```
Node: n1
Coordinates: (x,y) = (1.00, 0.00)
DOF: (x,y) = [ False, False ]
Map: LDOF->GDOF: [0, 0] ...
Node: n2
Coordinates: (x,y) = (2.00, 10.00)
DOF: (x,y) = [ True, False ]
Map: LDOF->GDOF: [1, 0]
Node: n3
Coordinates: (x,y) = (3.00, 0.00)
DOF: (x,y) = [True, True]
Map: LDOF->GDOF: [2, 3]
Element: e01. Element: e02. Element: e03
Node Load: n3
Loads: [ Fx, Fy ] = [ 10.00, 0.00 ]
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 1: Analysis of Three-Bar Truss

LocalDOF-to-GlobalDOF Mapping:

Matrix:	Destination	Array
---------	-------------	-------

row/col	1	2	3	4
1	0.00000e+00	0.00000e+00	1.00000e+00	0.00000e+00
2	0.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00
3	1.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00

Key Points:

- Element 1 dofs map to gdof 1.
- Element 2 dofs map to gdofs 2 and 3.
- Element 3 dofs map to gdofs 1, 2, and 3.

Element Stiffness Matrices: Bar 1

```
Bar 1 stiffness (local coordinates):
```

Matrix: Element Stiffness (local coordinates) row/col 1 2 1 1.00000e-01 -1.00000e-01 2 -1.00000e-01 1.00000e-01

```
Bar 1 stiffness (joint coordinates):
```

```
Matrix: Element Stiffness (joint coordinates)
row/col
                                 2
                                              3
                                                            4
   1
          1.00000e-01
                       0.0000e+00 -1.00000e-01
                                                 -0.0000e+00
   2
          0.0000e+00
                       0.00000e+00 -0.00000e+00
                                                 -0.00000e+00
   3
         -1.00000e-01
                       0.00000e+00
                                     1.00000e-01
                                                  0.00000e+00
   4
         -0.00000e+00 -0.00000e+00
                                     0.0000e+00
                                                  0.00000e+00
```

Element Stiffness Matrices: Bar 2

```
Bar 2 stiffness (local coordinates):
```

Matrix: Element Stiffness (local coordinates) row/col 1 2 1 1.00000e-01 -1.00000e-01 2 -1.00000e-01 1.00000e-01

```
Bar 2 stiffness (joint coordinates):
```

```
Matrix: Element Stiffness (joint coordinates)
row/col
                                 2
                                              3
                                                           4
   1
          0.0000e+00
                       0.0000e+00 -0.0000e+00
                                                 -0.0000e+00
   2
          0.00000e+00 1.00000e-01 -0.00000e+00
                                                 -1.00000e-01
   3
         -0.00000e+00
                       0.00000e+00
                                    0.00000e+00
                                                 0.00000e+00
   4
         -0.00000e+00 -1.00000e-01
                                    0.0000e+00
                                                 1.00000e-01
```

Element Stiffness Matrices: Bar 3

```
Bar 3 stiffness (local coordinates):
```

Matrix: Element Stiffness (local coordinates) row/col 1 2 1 7.07107e-02 -7.07107e-02 2 -7.07107e-02 7.07107e-02

```
Bar 3 stiffness (joint coordinates):
```

```
        Matrix:
        Element
        Stiffness
        (joint coordinates)

        row/col
        1
        2
        3
        4

        1
        3.53553e-02
        -3.53553e-02
        3.53553e-02
        3.53553e-02

        2
        -3.53553e-02
        3.53553e-02
        3.53553e-02
        -3.53553e-02

        3
        -3.53553e-02
        -3.53553e-02
        3.53553e-02
        -3.53553e-02

        4
        3.53553e-02
        -3.53553e-02
        -3.53553e-02
        3.53553e-02
```

Destination Array:

Matrix:	Destination Arra	ау		
row/col	1	2	3	4
1	0.00000e+00	0.00000e+00	1.00000e+00	0.00000e+00
2	0.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00
3	1.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00

Step-by-Step Assembly of Global Stiffness Matrix:

```
for ielmt in range( len( self.elements ) ): # <-- Loop over elements.
for ij in range ( len( destination[0] ) ): # <-- Add element-level
for ik in range ( len( destination[0] ) ): # components to
dmap1 = destination[ielmt][ij]; # global stiffness.
dmap2 = destination[ielmt][ik];
if( dmap1 > 0 and dmap2 > 0):
stiffness[ int(dmap1)-1 ][ int(dmap2)-1 ] += ke[ij][ik];
```

Example 1: Analysis of Three-Bar Truss

Step 1: Add Elmt 1 to Global Stiffness Matrix

Matrix:	Global Stiffness	Matrix (incre	mental)
row/col	1	2	3
1	1.00000e-01	0.00000e+00	0.00000e+00
2	0.00000e+00	0.00000e+00	0.00000e+00
3	0.00000e+00	0.00000e+00	0.00000e+00

Step 2: Add Elmt 2 to Global Stiffness Matrix

Matrix:	Global Stiffness	Matrix (incre	mental)
row/col	1	2	3
1	1.00000e-01	0.00000e+00	0.00000e+00
2	0.00000e+00	0.00000e+00	0.00000e+00
3	0.00000e+00	0.00000e+00	1.00000e-01

Example 1: Analysis of Three-Bar Truss

Step 3: Add Elmt 3 to Global Stiffness Matrix

Matrix:	Global Stiffnes	s Matrix (incr	emental)
row/col	1	2	3
1	1.35355e-01	-3.53553e-02	3.53553e-02
2	-3.53553e-02	3.53553e-02	-3.53553e-02
3	3.53553e-02	-3.53553e-02	1.35355e-01

Global Stiffness Matrix

Matrix:	GlobalStiffness	: stiff01	
row/col	1	2	3
1	1.35355e-01	-3.53553e-02	3.53553e-02
2	-3.53553e-02	3.53553e-02	-3.53553e-02
3	3.53553e-02	-3.53553e-02	1.35355e-01

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 1: Analysis of Three-Bar Truss

Assembly of External Load Vector:

Matrix: Load Vector: eload01 row/col 1 1 0.00000e+00 2 1.00000e+01 3 0.00000e+00

Solution of Global Displacements:

Matrix: Displacement Vector (displ01) row/col 1 1 1.00000e+02 2 4.82843e+02 3 1.00000e+02

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 1: Analysis of Three-Bar Truss

Elmt 1: Joint Displacements and Forces:

Matrix:	Elmt (joint disp	lacements [r]):	Matrix:	Elmt	(joint	forces):
row/col	1		row/col			1
1	0.00000e+00		1	-1.	00000e+	+01
2	0.00000e+00		2	0.	00000e+	+00
3	1.00000e+02		3	1.	00000e+	+01
4	0.00000e+00		4	0.	00000e+	+00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 1: Analysis of Three-Bar Truss

Elmt 1: Member Displacements and Forces:

```
Matrix: Geometry transformation ([a]):
row/col
                                                 3
                     1
                                   2
                                                                4
           1.00000e+00 0.00000e+00
                                       0.00000e+00
                                                     0.00000e+00
   1
           0.00000e+00 0.00000e+00 1.00000e+00
                                                     0.00000e+00
   2
Matrix: Member displacements ([v] = [a][r]):
row/col
   1
          0.00000e+00
           1.00000e+02
   2
Matrix: Member forces ([S] = [k][v]):
row/col
          -1.00000e+01
   1
   2
           1.00000e+01
--- Axial force = 10.000000 (T) ...
```

Example 1: Analysis of Three-Bar Truss

Elmt 2: Joint Displacements and Forces:

Matrix: row/col	Elmt (joint displacements	[r]):	10.0
1	0.00000e+00		Joint n3 \rightarrow \bigcirc 0.0
2	0.00000e+00		
3	4.82843e+02		
4	1.00000e+02		
Matrix: row/col	Elmt (joint forces): 1		
1	0.00000e+00		
2	-1.00000e+01		
3	0.00000e+00		Loint n1 \bigcirc 0.0
4	1.00000e+01		
			10.0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 1: Analysis of Three-Bar Truss

Elmt 2: Member Displacements and Forces:

```
Matrix: Geometry transformation ([a]):
row/col
                                                 3
                                   2
                                                               4
          0.00000e+00 1.00000e+00
                                       0.00000e+00
                                                     0.00000e+00
   1
           0.00000e+00 0.00000e+00
                                       0.00000e+00
                                                     1.00000e+00
   2
Matrix: Member displacements ([v] = [a][r]):
row/col
   1
          0.00000e+00
           1.00000e+02
   2
Matrix: Member forces ([S] = [k][v]):
row/col
          -1.00000e+01
   1
   2
           1.00000e+01
--- Axial force = 10.000000 (T) ...
```

(日) (四) (日) (日) (日)

Example 1: Analysis of Three-Bar Truss

Elmt 3: Joint Displacements and Forces:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 1: Analysis of Three-Bar Truss

Elmt 3: Member Displacements and Forces:

```
Matrix: Geometry transformation ([a]):
row/col
                                                 3
                     1
                                   2
                                                               4
          -7.07107e-01 7.07107e-01 0.00000e+00
                                                     0.00000e+00
   1
          0.00000e+00 0.00000e+00 -7.07107e-01
                                                     7.07107e-01
   2
Matrix: Member displacements ([v] = [a][r]):
row/col
   1
          -7.07107e+01
          -2.70711e+02
   2
Matrix: Member forces ([S] = [k][v]):
row/col
   1
          1.41421e+01
   2
          -1.41421e+01
--- Axial force = -14.142136 (C) ...
```

Summary of Member Forces and Reactions

Methods of Structural Analysis

Direct Stiffness Method

Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example 2

Analysis of Five-Bar Truss

Example 2: Analysis of Five-Bar Truss

Geometry and External Loads

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Example 2: Analysis of Five-Bar Truss

Boundary Conditions and Global DOF

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example 2: Analysis of Five-Bar Truss

Preliminary Observations:

- Node n2 is a roller oriented horizontally thus, we expect that the bar element connecting nodes n1 and n2 will be a zero-force member.
- Taking moments about A indicates that the reaction force at B will be 20 acting upwards.
- Summing forces in the vertical direction for the whole structure – the reaction force at A will be 10 acting downwards.
- Support A will also have a horizontal reaction force acting right-to-left.

Direct Stiffness Method

Examples

Example 2: Analysis of Five-Bar Truss

Specification: Nodes and Elements

Nodes

```
Node: n1, (x,y) = ( 0.00, 0.00 )
DOF: (x,y) = [ False, False ]
Map LDOF-to-GDOF: (x,y) = [0, 0]
```

Node: n2, (x,y) = (10.00, 0.00) DOF: (x,y) = [True, False] kk Map LDOF-to-GDOF: (x,y) = [1, 0]

```
Node: n3, (x,y) = ( 0.00, 10.00 )
DOF: (x,y) = [ True, True ]
Map LDOF-to-GDOF: (x,y) = [2, 3]
```

```
Node: n4, (x,y) = ( 10.00, 10.00 )
DOF: (x,y) = [ True, True ]
Map LDOF-to-GDOF: (x,y) = [4, 5]
```

```
Elements (E = A = 1.0)
Bar2D: e01: Nodes (n1, n2)
Length L = 10.00000
Bar2D: e02: Nodes (n1, n3)
Length L = 10.00000
Bar2D: e03: Nodes (n2, n4)
Length L = 10.0000
Bar2D: e04: Nodes (n3, n4)
Length L = 10.0000
Bar2D: e05: Nodes (n1, n4)
Length L = 14.142136
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 2: Analysis of Five-Bar Truss

Boundary Conditions

Node n1: (x,y) pin support: dof free to move --> [False, False] Node n2: (x,y) roller support: dof free to move --> [True, False] Node n3: (x,y) dof free to move --> [True, True] Node n4: (x,y) dof free to move --> [True, True]

Nodal Loads

Node Load: n3 Loads: [Fx, Fy] = [10.00, 0.00] Node Load: n4 Loads: [Fx, Fy] = [0.00, -10.00]

Model Compilation:

No nodes = 4 No elements = 5 No node loads = 2

Example 2: Analysis of Five-Bar Truss

Model Compilation: Continued ...

```
Node: n1
Coordinates: (x,y) = (0.00, 0.00)
DOF: (x,y) = [ False, False ]
Map: LDOF->GDOF: [0, 0]
Node: n2
Coordinates: (x,y) = (10.00,
                               0.00)
DOF: (x,y) = [ True, False ]
Map: LDOF->GDOF: [1, 0]
Node: n3
Coordinates: (x, y) = (0.00, 10.00)
DOF: (x,y) = [True, True]
Map: LDOF->GDOF: [2, 3]
Node: n4
Coordinates: (x,y) = (10.00, 10.00)
DOF: (x,y) = [True, True]
Map: LDOF->GDOF: [4, 5]
```

Element: e01, Element: e02, Element: e03, Element: e04, Element: e05

Example 2: Analysis of Five-Bar Truss

Model Compilation: Continued ...

Node Load: n3 ... Loads: [Fx, Fy] = [10.00, 0.00] Node Load: n4 ... Loads: [Fx, Fy] = [0.00, -10.00]

Destination Array

Matrix:	Destination Arra	ау		
row/col	1	2	3	4
1	0.00000e+00	0.00000e+00	1.00000e+00	0.00000e+00
2	0.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00
3	1.00000e+00	0.00000e+00	4.00000e+00	5.00000e+00
4	2.00000e+00	3.00000e+00	4.00000e+00	5.00000e+00
5	0.00000e+00	0.00000e+00	4.00000e+00	5.00000e+00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 2: Analysis of Five-Bar Truss

Global Stiffness Matrix

Matrix, ClobalStiffnees, stiff01

Hattir.	dioparperiiness.	BUILIOI			
row/col	1	2	3	4	5
1	1.00000e-01	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00
2	0.00000e+00	1.00000e-01	0.00000e+00	-1.00000e-01	0.00000e+00
3	0.00000e+00	0.00000e+00	1.00000e-01	0.00000e+00	0.00000e+00
4	0.00000e+00	-1.00000e-01	0.00000e+00	1.35355e-01	3.53553e-02
5	0.00000e+00	0.00000e+00	0.00000e+00	3.53553e-02	1.35355e-01

External Load Vector

Matrix:	Load	Vector:	eload0
row/col			1
1	0	.00000e+	00
2	1.	.00000e+	01
3	0	.00000e+	00
4	0	.00000e+	00
5	-1	.00000e+	01

Example 2: Analysis of Five-Bar Truss

Global Displacement Vector

Matrix:	Displacement	Vector	(displ01)
row/col		1	
1	0.0000e+0	00	
2	5.82843e+0	02	
3	0.0000e+0	00	
4	4.82843e+0	02	
5	-2.00000e+0	02	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 2: Analysis of Five-Bar Truss

Element-Level Displacements and Member Forces

Elmt 1: Connects nodes n1 and n2

```
      Matrix:
      Member displ ([v] = [a][r]):
      Matrix:
      Member forces ([S] = [k][v]):

      row/col
      1
      row/col
      1

      1
      0.00000e+00
      1
      0.00000e+00

      2
      0.00000e+00
      2
      0.00000e+00
```

---> Axial force = 0.000000 (T) ...

Elmt 2: Connects nodes n1 and n3

 Matrix:
 Member displ ([v] = [a][r]):
 Matrix:
 Member forces ([S] = [k][v]):

 row/col
 1
 row/col
 1

 1
 0.00000e+00
 1
 0.00000e+00

 2
 0.00000e+00
 2
 0.00000e+00

---> Axial force = 0.000000 (T) ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 2: Analysis of Five-Bar Truss

Elmt 3: Connects nodes n2 and n4

Matrix:	Member displ ([v] = [a][r]):	Matrix:	Member forces ([S] = [k][v]):
row/col	1	row/col	1	
1	0.00000e+00	1	2.00000e+01	
2	-2.00000e+02	2	-2.00000e+01	

---> Axial force = -20.000000 (C) ...

Elmt 4: Connects nodes n3 and n4

Matrix:	Member displ ([v] = [a][r]):	Matrix:	Member forces ([S] =	[k][v]):
row/col	1	row/col	1	
1	5.82843e+02	1	1.00000e+01	
2	4.82843e+02	2	-1.00000e+01	

```
---> Axial force = -10.000000 (C) ...
```

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Example 2: Analysis of Five-Bar Truss

Elmt 5: Connects nodes n1 and n4

Matrix:	Member displ ([v] = [a][r]):	Matrix: M	Member forces ([S] =	[k][v]):
row/col	1	row/col	1	
1	0.00000e+00	1	-1.41421e+01	
2	2.00000e+02	2	1.41421e+01	

---> Axial force = 14.142136 (T) ...

Example 2: Analysis of Five-Bar Truss

Summary of Member Forces and Support Reactions

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Methods of Structural Analysis

Direct Stiffness Method

Examples

Example 3

Analysis of Six-Bar Truss

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Example 3: Analysis of Six-Bar Truss

Geometry and External Loads

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example 3: Analysis of Six-Bar Truss

Boundary Conditions and Global DOF

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Direct Stiffness Method

Examples

Example 3: Analysis of Six-Bar Truss

Specification: Nodes and Elements

Nodes

```
Node: n1, (x,y) = ( 0.00, 0.00 )
DOF: (x,y) = [ False, False ]
Map LDOF-to-GDOF: (x,y) = [0, 0]
```

```
Node: n2, (x,y) = ( 10.00, 0.00 )
DOF: (x,y) = [ True, False ] kk
Map LDOF-to-GDOF: (x,y) = [1, 0]
```

```
Node: n3, (x,y) = ( 0.00, 10.00 )
DOF: (x,y) = [ True, True ]
Map LDOF-to-GDOF: (x,y) = [2, 3]
```

```
Node: n4, (x,y) = ( 10.00, 10.00 )
DOF: (x,y) = [ True, True ]
Map LDOF-to-GDOF: (x,y) = [4, 5]
```

```
Elements (E = A = 1.0)
Bar2D: e01: Nodes (n1, n2)
Length L = 10.00000
Bar2D: e02: Nodes (n1, n3)
Length L = 10.00000
Bar2D: e03: Nodes (n2, n4)
Length L = 10.0000
Bar2D: e04: Nodes (n3, n4)
Length L = 10.0000
Bar2D: e05: Nodes (n1, n4)
Length L = 14.142136
Bar2D: e06: Nodes (n2, n3)
Length L = 14.142136
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 3: Analysis of Six-Bar Truss

Boundary Conditions

Node n1: (x,y) pin support: dof free to move --> [False, False] Node n2: (x,y) roller support: dof free to move --> [True, False] Node n3: (x,y) dof free to move --> [True, True] Node n4: (x,y) dof free to move --> [True, True]

Nodal Loads

Node Load: n3 Loads: [Fx, Fy] = [10.00, 0.00] Node Load: n4 Loads: [Fx, Fy] = [0.00, -10.00]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 3: Analysis of Six-Bar Truss

Destination Array

Matrix: Destination Array

row/col	1	2	3	4
1	0.00000e+00	0.00000e+00	1.00000e+00	0.00000e+00
2	0.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00
3	1.00000e+00	0.00000e+00	4.00000e+00	5.00000e+00
4	2.00000e+00	3.00000e+00	4.00000e+00	5.00000e+00
5	0.00000e+00	0.00000e+00	4.00000e+00	5.00000e+00
6	1.00000e+00	0.00000e+00	2.00000e+00	3.00000e+00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 3: Analysis of Six-Bar Truss

Global Stiffness Matrix

Matrix:	GlobalStiffness	: stiff01			
row/col	1	2	3	4	5
1	1.35355e-01	-3.53553e-02	3.53553e-02	0.00000e+00	0.00000e+00
2	-3.53553e-02	1.35355e-01	-3.53553e-02	-1.00000e-01	0.00000e+00
3	3.53553e-02	-3.53553e-02	1.35355e-01	0.00000e+00	0.00000e+00
4	0.00000e+00	-1.00000e-01	0.00000e+00	1.35355e-01	3.53553e-02
5	0.00000e+00	0.00000e+00	0.00000e+00	3.53553e-02	1.35355e-01

External Load Vector

Matrix:	Load	Vector:	eload01
row/col			1
1	0	.00000e+	00
2	1	.00000e+	01
3	0	.00000e+	00
4	0	.00000e+	00
5	-1	.00000e+	01

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example 3: Analysis of Six-Bar Truss

Global Displacements

Matrix:	Displacement	Vector	(displ01)
row/col		1	
1	6.03553e+0	01	
2	2.91421e+0	02	
3	6.03553e+0	01	
4	2.51777e+0	02	
5	-1.39645e+0	02	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 3: Analysis of Six-Bar Truss

Element-Level Displacements and Member Forces

Elmt 1: Connects nodes n1 and n2

```
      Matrix:
      Member displ ([v] = [a][r]):
      Matrix:
      Member forces:
      ([S] = [k][v]):

      row/col
      1
      row/col
      1

      1
      0.00000e+00
      1
      -6.03553e+00

      2
      6.03553e+01
      2
      6.03553e+00
```

---> Axial force = 6.035534 (T) ...

Elmt 2: Connects nodes n1 and n3

 Matrix:
 Member displ ([v] = [a][r]):
 Matrix:
 Member forces:
 ([S] = [k][v]):

 row/col
 1
 row/col
 1

 1
 0.00000e+00
 1
 -6.03553e+00

 2
 6.03553e+01
 2
 6.03553e+00

---> Axial force = 6.03 (T) ...

Example 3: Analysis of Six-Bar Truss

Elmt 3: Connects nodes n2 and n4

Matrix:	Member displ ([v] = [a][r]):	Matrix:	Member forces:	([S]	=	[k][v]):
row/col	1	row/col	1			
1	0.00000e+00	1	1.39645e+01			
2	-1.39645e+02	2	-1.39645e+01			

```
---> Axial force = -13.96 (C) ...
```

Elmt 4: Connects nodes n3 and n4

 Matrix:
 Member displ ([v] = [a][r]):
 Matrix:
 Member forces:
 ([S] = [k][v]):

 row/col
 1
 row/col
 1

 1
 2.91421e+02
 1
 3.96447e+00

 2
 2.51777e+02
 2
 -3.96447e+00

---> Axial force = -3.96 (C) ...

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

Example 3: Analysis of Six-Bar Truss

Elmt 5: Connects nodes n1 and n4

Matrix:	Member displ ([v] = [a][r]):	Matrix:	Member forces:	([S]	=	[k][v]):
row/col	1	row/col	1			
1	0.00000e+00	1	-5.60660e+00			
2	7.92893e+01	2	5.60660e+00			

```
---> Axial force = 5.60 (T) ...
```

Elmt 6: Connects nodes n2 and n3

```
      Matrix:
      Member displ ([v] = [a][r]):
      Matrix:
      Member forces:
      ([S] = [k][v]):

      row/col
      1
      row/col
      1

      1
      -4.26777e+01
      1
      8.53553e+00

      2
      -1.63388e+02
      2
      -8.53553e+00
```

```
---> Axial force = -8.53 (C) ...
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example 3: Analysis of Six-Bar Truss

Summary of Member Forces and Support Reactions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ