
ENCE353 HW4 Solutions                                                                                                                          Spring 2023 

Problem 1: The cantilever beam structure shown in Figure 1 carries a uniform load w (N/m) along its 

entire length. 

 

The beam is fully fixed at point A and the flexural stiffness EI is constant along the beam. The coordinate 

system is positioned at point A. 

[1a] Starting from the differential equation, 

 

and appropriate boundary conditions, show that: 
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[1b] Using the results of question [1a] as a starting point, compute the support reactions at A and B for 

the propped cantilever shown in Figure 2. 
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Using Superposition: 
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Case B: According to the method of moment area: 
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Problem 2: Consider the cantilever shown in Figure 3. 

 

The cantilever has constant section properties, EI, along its entire length (a+b). A vertical load P (kN) is 

applied at point C. 

[2a] Use the method of moment area to show that the vertical deflection of the cantilever at point C is: 

 

 

𝐿 = 𝑎 + 𝑏 ;  𝑀(𝑥) = 𝑃(𝐿 − 𝑥) →
𝑀(𝑥)

𝐸𝐼
=
𝑃(𝐿 − 𝑥)

𝐸𝐼
 

Δ𝐶 = 𝑦(𝐿) = 𝐴𝑟𝑒𝑎 ∗ 𝑥̅𝑐 = (
1

2
∗ 𝐿 ∗

𝑃𝐿

𝐸𝐼
) ∗ (

2

3
𝐿) =

𝑃𝐿3

3𝐸𝐼
=
𝑃(𝑎 + 𝑏)3

3𝐸𝐼
 

[2b] Use the method of moment area to show that the vertical deflection of the cantilever at point B is: 
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Now suppose that a roller support is inserted below point B as follows: 

 

[2c] Show that the vertical support reaction at B is: 

 

Using Superposition: 
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Case B: 
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[2d] Hence, derive a simple expression for the bending moment at A. 

∑𝑀𝐴 = 0 → 𝑀𝐴 + 𝑉𝐵 ∗ 𝑎 − 𝑃 ∗ 𝐿 = 0 →𝑀𝐴 = −
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Finally, let’s replace the roller support below point B with a spring. 

 

[2e] Show that the support reaction, 𝑉𝑏, is now given by the equation: 
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𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑠𝑝𝑟𝑖𝑛𝑔 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝐵:  𝑉𝐵 = 𝑘Δ𝐵𝑡𝑜𝑡𝑎𝑙

= 𝑘 [
𝑃𝑎2

6𝐸𝐼
(2𝑎 + 3𝑏) −

𝑉𝐵𝑎
3

3𝐸𝐼
]       

𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔
→              𝑉𝐵 (

1

𝑘
+
𝑎3

6𝐸𝐼
) =

𝑃𝑎2

6𝐸𝐼
(3𝑏 + 2𝑎) 

[2f] Explain why 𝑉𝑏 for spring support (i.e., equation 6) is always lower than for roller support (i.e., 

equation 5). 

Considering the case of spring support: 
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A roller support can be modeled as a spring with 𝑘 → ∞ , therefore as shown above, 𝑉𝐵 increases as the 

denominator decreases. Thus, 𝑉𝐵 is always larger when there is a roller support compared to the case 

with a spring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem 3: Consider the cantilevered beam structure shown in Figure 6.  

 

Notice that segments A-B and B-C have cross-sectional properties EI and 2EI, respectively. 

[3a] Use the method of moment-area to compute the rotation at point A. 

∑𝑀𝐴 = 0 → 𝑉𝐵 = 2𝑃 (𝑢𝑝𝑤𝑎𝑟𝑑) ,∑𝐹𝑦 = 0 → 𝑉𝐴 = 0 

 

  {
𝐴1 =

1

2
∗ 𝐿 ∗ (−

𝑃𝐿

𝐸𝐼
) = −

𝑃𝐿2

2𝐸𝐼

𝐴2 =
1

2
∗ 𝐿 ∗ (−

𝑃𝐿

2𝐸𝐼
) = −

𝑃𝐿2

4𝐸𝐼

                                                                            {
𝑥̅1𝑐 = 2𝐿 +

𝐿

3
=
7

3
𝐿

𝑥̅2𝑐 = 𝐿 +
2𝐿

3
=
5

3
𝐿
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[3b] Use the method of moment-area to compute the vertical deflection of the beam at point C. 

2Δ𝐵 + Δ𝐶 = 𝐴1𝑥̅1𝑐 + 𝐴2𝑥̅2𝑐 → Δ𝐶 = −
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[3c] Draw the deflected shape of the beam. 

 

 

 

  


