ENCE 353 Introduction to Structural Analysis, Spring Semester, 2025

Solutions to Homework 1

Question 1: 20 points.

Consider the combined multi-span beam/truss structure shown in Figure 1.
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Figure 1: Front elevation view of multi-span beam structure.

The cantilever is fully-fixed to the wall at Point A. Points B, D, E and H are hinges. Horizontal and vertical
point loads 3P (kN) and P (kIN) are applied to the truss as shown in Figure 1.

Part [1a]. Compute the degree of indeterminacy for the articulated beam structure (A-B-C-D-E-F-G-H).
Sol’n: Here f= 6 and r = 3. Hence, ¢ = f - 3 - r = 0. It’s statically determinate.
Part [1b]. Identify the zero-force members in the truss structure.

Sol’n: See red dots on Figure 1.



Part [1c]. Compute the distribution of forces throughout the truss structure. Draw a diagram summarizing

your results.

Sol’n: Remove zero-force members from the truss, then consider equilibrium at node K. This give:
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Figure 2: Forces acting on truss structure

Part [1d]. Compute the vertical reaction forces at nodes F and G.

Sol’n: Isolate substructures D-E and E-F-G-H, and consider equilibrium.
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Taking moments about E for the right-most substructure:

> Mp=0,  FL+G(2L)=(4P)3L) — F+2G=12P.

szo, F+G+2P=4P —» F+2G=12P

From equations 1 and 2, G = 10P and F = -8P.
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Part [1e]. Draw and label diagrams showing how the bending moment and axial force vary along the



beam, nodes A through H. Clearly indicate on your bending moment diagram, regions that are in ten-
sion/compression.

Sol’n: The beam is in tension for nodes A — E.
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Question 2: 10 points.

Classifiy each of the structures in Figure 3 as statically determinate, statically indeterminate, stable or un-
stable. For those structures that are indeterminate, specify the degree of indeterminancy.
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Figure 3: Assortment of statically determinate and indeterminate frame structures.



Question 3: 10 points.

Consider the crane tower structure shown in Figure 4.
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Figure 4: Elevation view of a simple crane tower.

A single point load P (kN) is applied at node I as shown in the figure.
Part [3a]. Compute the support reactions at A and B.

Sol’n: First, take moments about A (for the whole structure):
> My =0-— Ry, =—PEkN.

Look at equilibrium in vertical direction (for the whole structure):
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> V=0 Ray + Ryy = PkN — Ry = 2P kN. )
Finally, consider equilibrium in horizontal direction:
> H=0-— Ree =0kN. (5)

Part [3b]. Identify all of the zero-force members. If you wish, you can simply copy and annotate Figure 4.
Sol’n: Ten zero-force members (see red circles on Figure 4).

Part [3c]. Using the method of joints (or otherwise) compute the distribution of tension and compression
forces throughout the crane structure. Draw and label a diagram showing the distribution of forces in the
simplified crane tower structure.

Sol’n: There are 11 joints, therefore 22 equations of equilibrium to consider. Note, however, that joints E,
F, and K, only connect to zero-force elements. So, we will only look at equilibrium for the eight remaining
joints:

At Joint A:
> H=0 Ru+Fs=0— Fs=0kN. (6)
Y V=0, Roy+F=0-—F=-2PkN(C). (7)

At Joint B:
Y H=0, F8+\}§F9:0—>F9—OkN. (8)
Y v=o, F2+\2F9+Rby:0—>FngN(T). )

At Joint C:
Y H=o, iF9+F10+iF11:0—>FH:OkN. (10)

V2 V2



1 1
Y V=0, Fi-F+-—-F-—=F;=0.— F=-2PkN(C).

V2 V2
At Joint D:
> H=0, Fip=0FkN.
Y V=0 FB—F=0— Fy=PkN()
At Joint G:
2 V5
ZHIO, F13—F14+EF18:O.—>F18:—7PkN(C>.
V=0, -Fs+F+ iFlg =0. — Fs = _3p EN(C).
9 \/g 2
At Joint H:
» H=0, L P+ Pt —=Fig = 0. — Fiy = —P EN(C).
V2 V2
Y V=0, F-F+ LRl = Fig =0 — Fig = V2P EN(T).
V2 V2
At Joint I:
2 2 2 V5
Y V=0 P+F + L Fig— —Fir+ ——Fis = 0. (check equilibrium)
) 5 \/5 16 \/5 17 \/5 18 . q
At Joint J:

2 1
Z H=0, F;-— EFN + EFN =0. (check equilibrium)
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1

1 S
\@FN + —F19 =0 (check equilibrium) 21)

Y V=0, Fs+ 7%

Part [3d]. If the maximum force any member can support is 10 kN in tension and 7 kN in compression,
determine the maximum value of P that the crane tower can safely carry.

Sol’n: Find limiting cases:
Maximum tensile force is v/2 P (kN).
Maximum compressive force is -2P (kN).

Limiting constraint is: -2P = 7 kN, therefore P,,,, = 3.5 kN.



Question 4: 20 points. Consider the leaning tower structure shown in Figure 5.
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Figure 5: Elevation view of a leaning tower structure.

Horizontal loads P (kN) are applied at nodes F and G as shown in the figure.

Note: No joints 7 = 7, no members m = 11, and no reactions r = 3. Hence m + r = 25 — statically
determinate.

Part [4a]. Compute the total support reactions at A and B.

Sol’n: First, take moments about A (for the whole structure):

> Mp=0-— Ry L =2PL+3PL=5PL — Ry, = 5P kN. (22)



Next, look at equilibrium in vertical direction (for the whole structure):
> V=0 Ray+ Rypy = 0kN — Ray = —5P kN. (23)

Summing forces in the horizontal direction, R, = - 2P kN. Hence, the total reaction force at A is: [22 + 52] 1/2

=29 kN.

Part [4b]. Using the method of joints (or otherwise) compute the distribution of tension and compression
forces throughout the structure. Show all of your working.

Sol’n: Systematically look at equilibrium at nodes A, B, C, D, G and F.

At Joint A:
F,
Y V=0, —£=5P— F,.=2V2PEN(T). (24)
V2
> H=0 Foe | Fy =2 — Fyy = —3P kN(O). (25)
V2
At Joint B:
F
STH=0, “24+3P=0-— Fyy=-3V2P kN(C). (26)
V2
2
Y v=o, 5P+Fbc—3\—[:0—>FbC:—2PkN(C’). 27)
V2
At Joint C:
FCC
d v=o, ﬁ+2P—5P:O—>FC€:3\@PkN(T). (28)
> H=0, —£+Fq=5P— F,q=2PkN(T). (29)
V2
At Joint D:
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> H=0, —£=2P-3P— Fy=—V2PkN(C). (30)

\/i
Fy
Y V=0, Fapt+—% Y 43P =0— Fy = —2P kN(O). 31
V2
At Joint G:
Y H=0, Feo _p_, F., = V2P kN(T). (32)
V2
Foy
Y v=o, 73 T g =0 Iy = —~P EN(O). (33)
At Joint F:
Ly V2
Y v=o, P+ﬂ—0—>Fdf—— 2P kN (C). (34)
Ty _
Y H=0, ef+\f P — F.; = 2P kEN(T). (35)

At Joint E: Can validate equilibrium by checking >V = > H = 0.

Part [4¢]. Now suppose that the maximum tensile force any member can support is 10 kN, and that the
maximum allowable compressive force is:

L\ 2
P, = 8<L ) kN, (36)

where L; is the length of the i-th element, and F,; is the maximum allowable compressive force of the i-th
element before buckling.

Determine the maximum value of P (kN) that the leaning tower can safely carry.
Sol’n: From the analysis:

Maximum tensile force = 5v/2P (T).
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Figure 6: Elevation view of a leaning tower structure.
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Maximum compressive force = —3v/2P (C) in element BD.

Limiting constraint in tension:

5vV2P < 10kN — P < \/2P. (37)
Limiting constraint in compression:
SVIP < S _apN —p< -2 p (38)
— 2 — 3\/§ .

Compression case limits allowable load.
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