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Need for Mathematical Test

Three cases to consider:

Test Structure A: Determinate.

Can compute:

Support reactions. X
Member forces. X HA

B

VB

A

VA

Test Structure B: Indeterminate.

Can compute:

Support reactions. X
Member forces. 7 HA

VA

A

VB

B

forces

Too many unknown
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Need for Mathematical Test

Test Structure C: Unstable.

Can compute:

Support reactions. 7
Member forces. 7 HA

B

VB

A

VA

Key Points:

Intuition on notions of determinacy will not scale. We need a
mathematical test to classify structures.

Initial inclination is to design for A and avoid B – it’s
complicated and probably won’t work. Unless, there are
benefits to B?
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Computing Degree of Indeterminacy

Definition. The degree of indeterminacy is equal to the number of
additional equations needed to solve a problem uniquely.

Additional info:

Compatibility of deformations – this is the force method.

Equilibrium of forces – this is the displacement method.

Beams: î = f -3 - r, where:

f = total no of external forces,

r = total no of releases (hinges),

3 = no of equations from statics.
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Indeterminacy of Beams

Example 1. Supported Cantilever Beam.

We have:

r = 0,

f = {VA,HA, · · · ,VB} =
5.

î = f - 3 - r = 2.

HB

VA

HA

MA

VB

Need to release two restraints to create determinate structures,
e.g.,
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Indeterminacy of Beams

Example 2. Fixed-Fixed Beam.

HA

MA

VB

HB

VA

MB

We have: r = 0,

f = {VA,HA,MA,VB ,HB ,MB} = 6.

î = f - 3 - r = 3.
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Indeterminacy of Beams

Example 3. Fixed-Fixed Beam + Hinge.

VA

HA

MA

VB

HB

MB

will be zero.

Pin – bending moment

We have: r = 1,

f = {VA,HA,MA,VB ,HB ,MB} = 6.

î = f - 3 - r = 2.
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Indeterminacy of Beams

Example 4. Two-Span Beam.

We have: r = 0,

f = {VA,HA,VB ,HB ,VC ,HC} = 6.

î = f - 3 - r = 3.
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Indeterminacy of Frames
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Tree Method

Approach: Systematically release redundant forces until trees are
formed.

Formula: î = f - 3t, where:

f = no of external forces,

t = no of trees.

Constraints: Frame cannot have internal
releases (no loops in trees).

Trees:

A tree has one root.

A tree cannot have a closed loop
branch.
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Tree Method

Example 1a.

Cut 1

f = 3 f = 3

Tree 1

f = 6

t = 1

î = 6� 3 = 3

Example 1b.

Cut 2

f = 3 f = 3

f = 3

Tree 1

Tree 2

f = 9.

t = 2.

î = 9� 3 ⇤ 2 = 3
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Tree Method

Example 2.

f = 3 f = 3

Tree 1

f = 3

f = 3

Cut

Tree 2

f = 12.

t = 2.

î = 12� 3 ⇤ 2 = 6.
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Ring Method

Formula: î = 3n - r, where:

n = no of rings.

r = no of releases (each ring has 3 degrees of indeterminacy).

Example 1.

n = 2.

r = 1.

Release at hinge.

ring 1

ring 2

î = 6 - 1 = 5.
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Ring Method

Example 2.

î = 3*4 - 3 = 9.

ring 2

ring 3

ring 4

r = 3

n = 4.

Release at

hinge.

No moment.

No shear force.

ring 1
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