Example 3-2

Determine the force in each member of the roof truss shown in Fig. 3-20a. State whether the members are in tension or compression. The reactions at the supports are given.

$\begin{array}{c} & F_{AG} \\ & 30^{\circ} \\ & F_{AB} \end{array}$ $\begin{array}{c} & X \\ & 4 \text{ kN} \\ & (b) \end{array}$

Solution

Only the forces in half the members have to be determined, since the truss is symmetric with respect to both loading and geometry.

Joint A, Fig. 3-20b. We can start the analysis at joint A. Why? The free-body diagram is shown in Fig. 3-20b.

$$+\uparrow \Sigma F_y = 0;$$
 $4 - F_{AG} \sin 30^\circ = 0$ $F_{AG} = 8 \text{ kN (C)}$ Ans.
 $\pm \Sigma F_x = 0;$ $F_{AB} - 8 \cos 30^\circ = 0$ $F_{AB} = 6.93 \text{ kN (T)}$ Ans.

Joint G, Fig. 3-20c. In this case note how the orientation of the x, y axes avoids simultaneous solution of equations.

$$+\sum F_y = 0$$
; $F_{GB} - 3\cos 30^\circ = 0$ $F_{GB} = 2.60$ kN (C) Ans. $+\sum F_x = 0$; $8 - 3\sin 30^\circ - F_{GF} = 0$ $F_{GF} = 6.50$ kN (C) Ans.

Joint B, Fig. 3-20d

$$+\uparrow \Sigma F_{y} = 0; \quad F_{BF} \sin 60^{\circ} - 2.60 \sin 60^{\circ} = 0$$

$$F_{BF} = 2.60 \text{ kN (T)} \qquad \text{Ans.}$$
 $\stackrel{+}{\rightarrow} \Sigma F_{x} = 0; \quad F_{BC} + 2.60 \cos 60^{\circ} + 2.60 \cos 60^{\circ} - 6.93 = 0$

$$F_{BC} = 4.33 \text{ kN (T)} \qquad \text{Ans.}$$

Results are some to signs are different.

Results are symmetric. (Structure & Loads are symmetric)