
Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Python Tutorial II – Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 201, Spring Semester 2025

February 23, 2025

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Overview

1 Working with Objects and Classes

2 Data Hiding and Encapsulation

3 Relationships Among Classes

4 Inheritance Mechanisms

5 Composition of Object Models

6 Working with Groups of Objects

7 Case Study: GeoModeling Spatial Entities

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Working with Objects

and Classes

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Working with Objects and Classes

Working with Objects and Classes:
Collections of objects share similar traits (e.g., data, structure,
behavior).
Collections of objects will form relationships with other
collections of objects.

Definition of a Class
A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object
An object is an instance of a class.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Working with Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Working with Objects and Classes

Principles for Development of Reusable Code:
Inheritance: Create new (specialized) classes from existing
classes through mechanism of concept extension.
Encapsulation: Hide some details of a class from other
(external) classes.
Polymorphism: Use common operation in different ways
depending on details of data input.

Key Design Tasks
Identify objects and their attributes and functions,
Establish relationships among the objects,
Implement and test the individual objects,
Assemble and test the system.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 1. Working with Points

A Very Simple Class in Python
1 # ===
2 # Point .py: Create point objects ...
3 #
4 # Modified by: Mark Austin October , 2020
5 # ===
6
7 import math
8
9 class Point :

10
11 def __init__ (self , xCoord =0, yCoord =0):
12 self. __xCoord = xCoord
13 self. __yCoord = yCoord
14
15 # compute distance between two points ...
16
17 def distance (self , second):
18 x_d = self. __xCoord - second . __xCoord
19 y_d = self. __yCoord - second . __yCoord
20 return (x_d **2 + y_d **2)**0.5
21
22 # return string represention of object ...
23
24 def __str__ (self):
25 return "(%6.2f, %6.2f) " % (self.__xCoord , self. __yCoord)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 1. Working with Points

Create and Print two Point Objects
8 pt1 = Point (0.0 , 0.0)
9 pt2 = Point (3.0 , 4.0)

10
11 print (" --- pt1 = %s ..." % (pt1))
12 print (" --- pt2 = %s ..." % (pt2))

Output:
--- pt1 = (0.00, 0.00) ...
--- pt2 = (3.00, 4.00) ...

Compute Distance between Two Points
10 distance = pt1. distance (pt2)
11 print (" --- Distance between pt1 and pt2 --> %.2f ..." % (distance))

Output:
--- Distance between pt1 and pt2 --> 5.00 ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 2. Working with Circles

A circle can be described by the (x,y) position of its center and
by its radius.

y

(x, y)

radius

x

There are numerous things we can do with circles:
Compute their circumference, perimeter or area,
Check if a point is inside a circle.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 2. Working with Circles

1 # ===
2 # Circle .py: Simplified modeling of a circle ...
3 #
4 # Written by: Mark Austin October , 2020
5 # ===
6
7 import math
8
9 class Circle :

10 radius = 0
11 area = 0
12 perimeter = 0
13
14 def __init__ (self , x, y, radius):
15 self. radius = radius
16 self.area = math.pi* radius * radius
17 self. perimeter = 2.0* math.pi* radius
18 self.x = x
19 self.y = y
20
21 # Set circle radius , recompute area and perimeter ...
22
23 def setRadius (self , radius):
24 self. radius = radius
25 self.area = math.pi* radius * radius
26 self. perimeter = 2.0* math.pi* radius

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 2. Working with Circles

27
28 # Print details of circle ...
29
30 def printCircle (self):
31 print (" --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f: perimeter = %.2f"
32 % (self.x, self.y, self.radius , self.area , self. perimeter))

Create and Print two Circle Objects
1 x = Circle (0.0 , 0.0 , 3.0)
2 y = Circle (1.0 , 2.0 , 4.0)
3 x. printCircle ()
4 y. printCircle ()

Output:
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27
--- Circle: (x,y) = (1.00, 2.00): radius = 4.00: area = 50.27

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 3. Object Model of a Person

Part I: Program Architecture. The TestPerson will create
objects of type Person.

PersonTestPerson

Part II: Person Object Model:
1 # ===
2 # Person .py: Simplified model of a person ...
3 #
4 # Written by: Mark Austin October , 2022
5 # ===
6
7 class Person :
8 age = 0
9 ssn = 0

10
11 def __init__ (self , fname , lname):
12 self. firstname = fname
13 self. lastname = lname
14
15 def printname (self):
16 print (" --- Name: {:s}, {:s}". format (self.firstname , self. lastname))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 3. Object Model of a Person

Part II: Person Object Model: (Continued) ...
17
18 # Get first and last names ...
19
20 def getFirstName (self):
21 return self. firstname
22
23 def getLastName (self):
24 return self. lastname
25
26 # Set / print age ...
27
28 def setAge (self , age):
29 self.age = age
30
31 def printAge (self):
32 print (" --- Age = {:d} ". format (self.age))
33
34 # Set / print social security number ...
35
36 def setSSN (self , ssn):
37 self.ssn = ssn
38
39 def printSSN (self):
40 print (" --- Social Security No: {:d} ...". format (self.ssn))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 3. Object Model of a Person

Part III: Person Test Program:
1 # ===
2 # TestPerson .py: Test program for person objects ...
3 # ===
4
5 from Person import Person
6
7 # main method ...
8
9 def main ():

10 print (" --- Enter TestPerson .main () ... ");
11 print (" --- =============================== ... ");
12
13 # Exercise methods in class Person ...
14
15 x = Person (" Angela ", " Austin ")
16 x. printname ()
17
18 print (" --- First name: {:s} ". format (x. getFirstName ()))
19 print (" --- Family name: {:s} ". format (x. getLastName ()))
20
21 # Initialize attribute values ..
22
23 x. setAge (29)
24 x. setSSN (123456789)
25
26 # Print attribute values ..

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 3. Test Program for Person Object Model

Part III: Person Test Program: (Continued) ...
28 x. printAge ()
29 x. printSSN ()
30
31 print (" --- =============================== ... ");
32 print (" --- Finished TestPerson .main () ... ");
33
34 # call the main method ...
35
36 main ()

Output:
--- Enter TestPerson.main() ...
--- =============================== ...
--- Name: Angela, Austin
--- First name: Angela
--- Family name: Austin
--- Age = 29
--- Social Security No: 123456789
--- =============================== ...
--- Finished TestPerson.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 3. Object Model of a Person

Part IV: Files before Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestPerson.py

Part IV: Files after Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestPerson.py
drwxr-xr-x 4 austin staff 128 Feb 18 13:27 __pycache__

./__pycache__:
total 16
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Person.cpython-37.pyc

Note: When TestPerson imports Person, python builds a compiled
bytecode for Person (with .pyc extension).

Subsequent imports will be easier and faster.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Data Hiding and

Encapsulation

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Hiding Information

Data Hiding
Data Hiding is isolation of the client from a part of program
implementation. Some objects in the module are kept internal,
invisible, and inaccessible to the user.

Principle of Information Hiding
The principle of information hiding states that information which is
likely to change (e.g., over the lifetime of a software/systems
package) should be hidden inside a module.

Key Advantages
Prevents accidental linkage to incorrect data.
It heightens the security against hackers that are unable to
access confidential data.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Data Hiding and Encapsulation

Encapsulation – User’s view of AbstractionDesigner’s view of Aggregation

Unstructured Components Aggregation

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Data Hiding and Encapsulation

Application. Process for Implementation of Information Hiding.

Processes and data Private processeshiding
Information

and data

and data.
Access to public processesAll data and processes

are public.

Data Hiding in Python (Private and Protected) ...
Data hiding is implemented by using a double underscore
before (prefix) the attribute name. Making an attribute
private hides it from users.
Use of a single underscore makes the variable/method
protected. The variables/methods will be available to the
class, and all of its subclasses.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model
1 # ==
2 # Circle .py: Implementation of circle model with encapsulation
3 # (hiding) of circle parameters and properties .
4 #
5 # Written by: Mark Austin October , 2020
6 # ==
7
8 import math
9

10 class Circle :
11 __radius = 0 # <-- private parameters
12 __area = 0
13 __perimeter = 0
14
15 def __init__ (self , x, y, radius):
16 self. __radius = radius
17 self. __area = math.pi* radius * radius
18 self. __perimeter = 2.0* math.pi* radius
19 self.__x = x
20 self.__y = y
21
22 # Set circle coordinates ...
23
24 def setX(self , x):
25 self.__x = x

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model (Continued) ...
27 def setY(self , y):
28 self.__y = y
29
30 # Set circle radius , recompute area and perimeter ...
31
32 def setRadius (self , radius):
33 self. __radius = radius
34 self. __area = math.pi* radius * radius
35 self. __perimeter = 2.0* math.pi* radius
36
37 # Get circle parameters ...
38
39 def getX(self):
40 return self.__x
41
42 def getY(self):
43 return self.__y
44
45 def getRadius (self):
46 return self. __radius
47
48 def getArea (self):
49 return self. __area
50
51 def getPerimeter (self):
52 return self. __perimeter

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model (Continued) ...
54 # String represention of circle ...
55
56 def __str__ (self):
57 return " --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f:
58 perimeter = %.2f" % (self.__x , self.__y , self.__radius ,
59 self.__area , self. __perimeter)

Part II: Test Program for Circle Object Model
1 # ===
2 # TestCircles .py: Exercise circle objects .
3 #
4 # Written by: Mark Austin December 2022
5 # ===
6
7 from Circle import Circle
8
9 # main method ...

10
11 def main ():
12 print (" --- Enter TestCircles .main () ... ");
13 print (" --- =============================== ... ");
14
15 print (" --- Part 1: Create and print circle ... ");
16
17 x = Circle (0.0 , 0.0 , 3.0)
18 print (x)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 4. Revised Circle Object Model

Part II: Test Program for Circle Object Model (Continued) ...
20 print (" --- =============================== ... ");
21 print (" --- Finished TestCircles .main () ... ");
22
23 # call the main method ...
24
25 main ()

Part III: Program Output
--- Enter TestCircles.main() ...
--- =============================== ...
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27
--- =============================== ...
--- Finished TestCircles.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Relationships Among

Classes

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Relationships Among Classes

Motivation

Classes and objects by themselves are not enough to describe
the structure of a system.
We also need to express relationships among classes.
Object-oriented software packages are assembled from
collections of classes and class-hierarchies that are related in
three fundamental ways.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Relationships Among Classes

1. Use: Class A uses Class B (method call).

Call Method

CLASS A CLASS B

Class A uses Class B if a method in A calls a method in an object of
type B.

Example

import math

dAngle = math.sin (math.PI / 3.0);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Relationships Among Classes

2. Containment (Has a): Class A contains a reference to Class
B.

CLASS BCLASS A

Clearly, containment is a special case of use (i.e., see Item 1.).

Example

class LineSegment
self.start = Point() ...
self.end = Point() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Relationships Among Classes

3. Inheritance (Is a): In everyday life, we think of inheritance as
something that is received from a predecessor or past generation.
Here, Class B inherits the data and methods (extends) from Class
A.

CLASS A CLASS B

Extends

Two Examples from Python

class ColoredCircle (Circle)
class Student (Person)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Inheritance

Mechanisms

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Inheritance Mechanisms

Inheritance Structures
Inheritance structures allow you to capture common characteristics
in one model artifact and permit other artifacts to inherit and
possibly specialize them. Class hierarchies are explicitly designed
for customization through extension.

In this approach to development:
Forces us to identify and separate the common elements of a
system from those aspects that are different/distinct.
Commonalities are captured in a super-class and inherited and
specialized by the sub-classes.
Inherited features may be overridden with extra features
designed to deal with exceptions.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Base and Derived Classes

Goal: Avoid duplication and redundancy of data in a problem
specification.

In
cr

ea
sin

g
sp

ec
ia

liz
at

io
n

Derived Class

Base Class

public constants ...
public methods ...

public constants ...
public methods ...

Interface to the base class

Interface to the derived class

extends

In
cr

ea
sin

g
ab

st
ra

ct
io

n

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Base and Derived Classes

Points to note:

A class in the upper hierarchy is called a superclass (or base,
parent class).
A class in the lower hierarchy is called a subclass (or derived,
child, extended class).
The classes in the lower hierarchy inherit all the variables
(static attributes) and methods (dynamic behaviors) from the
higher-level classes.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Base and Derived Classes

Python Syntax:

Base Class ...

class BaseClass:

Constructor of Base Class

Base class variables and methods ...

Derived class extends Base Class ...

class DerivedClass(BaseClass):

Constructor of Derived Class

Derived class variables and methods ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part I: Program Architecture. The TestCircle program will
create objects of type ColoredCircle.

TestColoredCircles

Circle

ColoredCircle

Circle Attributes:
x, y, radius, area, perimeter.

ColoredCircle Attributes:
color.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part IIa: Circle Object Model (with Protected Variables)
1 # ==
2 # Circle .py: Implementation of circle model with protection of
3 # circle parameters and methods .
4 #
5 # Written by: Mark Austin October , 2020
6 # ==
7
8 import math
9

10 class Circle :
11 _radius = 0
12 _area = 0
13 _perimeter = 0
14
15 def __init__ (self , x, y, radius):
16 self. _radius = radius
17 self. _area = math.pi* radius * radius
18 self. _perimeter = 2.0* math.pi* radius
19 self._x = x
20 self._y = y
21
22 # Set circle coordinates ...
23
24 def setX(self , x):
25 self._x = x
26
27 def setY(self , y):

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part IIa: Circle Object Model (Continued) ...
28 self._y = y
29
30 # Set circle radius , recompute area and perimeter ...
31
32 def setRadius (self , radius):
33 self. _radius = radius
34 self. _area = math.pi* radius * radius
35 self. _perimeter = 2.0* math.pi* radius
36
37 # Get circle parameters ...
38
39 def getX(self):
40 return self._x
41
42 def getY(self):
43 return self._y
44
45 def getRadius (self):
46 return self. _radius
47
48 def getArea (self):
49 return self. _area
50
51 def getPerimeter (self):
52 return self. _perimeter

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part IIa: Circle Object Model (Continued) ...
54 # String represention of circle ...
55
56 def __str__ (self):
57 return " --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f: perimeter = %.2f" % (
58 self._x , self._y , self._radius , self._area , self. _perimeter)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part IIb: Colored Circle Object Model
1 # ===
2 # ColoredCircle .py: Extend circle to create coloredcircles .
3 #
4 # Written by: Mark Austin October , 2022
5 # ===
6
7 from Circle import Circle
8
9 class ColoredCircle (Circle):

10 def __init__ (self , x, y, radius , color):
11 Circle . __init__ (self , x, y, radius)
12 self. _color = color
13
14 # Set /get color ...
15
16 def setColor (self , color):
17 self. _color = color
18
19 def getColor (self):
20 return self. _color
21
22 # String representation of colored circle ...
23
24 def __str__ (self):
25 return " --- ColoredCircle : (x,y) = (%4.1f, %4.1f): radius = %5.2f: area = %6.2f: color = %s" % (
26 self._x , self._y , self._radius , self._area , self. _color)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part II: Colored Circle Test Program
1 # ===
2 # TestColoredCircles .py: Exercise colored circle objects .
3 #
4 # Written by: Mark Austin December 2022
5 # ===
6
7 from Circle import Circle
8 from ColoredCircle import ColoredCircle
9

10 # main method ...
11
12 def main ():
13 print (" --- Enter TestCircles .main () ... ");
14 print (" --- =============================== ... ");
15
16 print (" --- Part 1: Create and print circle ... ");
17
18 x = Circle (0.0 , 0.0 , 3.0)
19 print (x)
20
21 print (" --- Part 2: Create and print colored circle ... ");
22
23 y = ColoredCircle (0.0 , 0.0 , 0.0 , "blue")
24 print (y)
25 y. setRadius (1.0)
26 print (y)
27 y. setRadius (2.0)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part II: Colored Circle Test Program (Continued) ...
28 print (y)
29
30 print (" --- Part 3: Change coordinates and color ... ");
31
32 y.setX(1.0)
33 y.setY(1.0)
34 y. setColor ("red")
35 y. setRadius (3.0)
36
37 print (y)
38
39 print (" --- =============================== ... ");
40 print (" --- Finished TestCircles .main () ... ");
41
42 # call the main method ...
43
44 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part III: Abbreviated Output:
--- Enter TestCircles.main() ...
--- =============================== ...
--- Part 1: Create and print circle ...
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27: perimeter = 18.85
--- Part 2: Create and print colored circle ...
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 0.00: area = 0.00: color = blue
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 1.00: area = 3.14: color = blue
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 2.00: area = 12.57: color = blue
--- Part 3: Change coordinates and color ...
--- ColoredCircle: (x,y) = (1.0, 1.0): radius = 3.00: area = 28.27: color = red
--- =============================== ...
--- Finished TestCircles.main() ...

Source Code: See: python-code.d/inheritance/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 5. Model Colored Circles by Extending Circle

Part IV: Files before Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Circle.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 ColoredCircle.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestColoredCircles.py

Part IV: Files after Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Circle.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 ColoredCircle.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestColoredCircles.py
drwxr-xr-x 4 austin staff 128 Feb 18 13:27 __pycache__

./__pycache__:
total 16
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Circle.cpython-37.pyc
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 ColoredCircle.cpython-37.pyc

Note: Python builds compiled bytecodes for Circle and
ColoredCircle (with .pyc extension).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part I: Program Architecture. The TestStudent program will
create objects of type Student.

StudentTestStudent

Person

Person Attributes:
firstname, lastname, age (age), ssn (social security), dob

(date of birth).

Student Attributes:
gpa (grade point average).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part IIa: Person Object Model (with Protected Variables)
1 # ==
2 # Person .py: Simple model of a Person . The scope of variables
3 # _age , _ssn , and _dob are protected to Person and all subclasses .
4 #
5 # Written by: Mark Austin November 2022
6 # ==
7
8 from datetime import date
9

10 class Person :
11 _age = 0 # <-- age ...
12 _ssn = 0 # <-- social security number ...
13 _dob = 0 # <-- date of birth ...
14
15 # Constructor method ...
16
17 def __init__ (self , fname , lname , dob):
18 self. _firstname = fname
19 self. _lastname = lname
20 self._dob = dob
21 self._age = self. calculateAge ()
22
23 # Get first and last names ...
24
25 def getFirstName (self):
26 return self. _firstname

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part IIa: Person Object Model (Continued) ...
27
28 def getLastName (self):
29 return self. _lastname
30
31 # Set /get date of birth ...
32
33 def setDob (self , dob):
34 self._dob = dob
35
36 def getDob (self , dob):
37 return self._dob
38
39 # Calculate age ...
40
41 def calculateAge (self):
42 today = date. today ()
43 age = today .year - self._dob.year - ((today .month , today .day) < (self._dob.month , self._dob.day))
44 return age
45
46 # Set /get / print age ...
47
48 def setAge (self , age):
49 self._age = age
50
51 def getAge (self):
52 return self._age

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part IIa: Person Object Model (Continued) ...
53
54 # Set /get / print social security number ...
55
56 def setSSN (self , ssn):
57 self._ssn = ssn
58
59 def getSSN (self):
60 return self._ssn
61
62 # return string represention of object ...
63
64 def __str__ (self):
65 return " Person : {:6.2 f} {:6.2 f}: age = {:f} ". format (self. _firstname ,
66 self._lastname ,
67 self._age)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part Ib: Student Object Model
1 # ==
2 # Student .py: A Student is a specialization of Person ...
3 # ==
4
5 from Person import Person
6
7 class Student (Person):
8 _gpa = 0
9

10 # Parameterized constructor ...
11
12 def __init__ (self , fname , lname , dob , year):
13 Person . __init__ (self , fname , lname , dob)
14 self. _graduationyear = year
15
16 # Set/ get gpa ...
17
18 def setGpa (self , gpa):
19 self._gpa = gpa
20
21 def getGpa (self):
22 return self._gpa

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part Ib: Student Object Model
24 # Boolean to confirm person is a student ...
25
26 def isStudent (self):
27 return True
28
29 # Assemble string represention of student ...
30
31 def __str__ (self):
32 studentinfo = [];
33 studentinfo . append ("\n");
34 studentinfo . append (" --- Student : {:s} {:s} ... \n". format (self. _firstname ,
35 self. _lastname));
36 studentinfo . append (" --- --- \n");
37 studentinfo . append (" --- Gpa = {:6.2 f} ... \n". format (self._gpa));
38 studentinfo . append (" --- Age = {:6d} ... \n". format (self._age));
39 studentinfo . append (" --- Graduation year = {:d} ... \n". format (
40 self. _graduationyear));
41 studentinfo . append (" --- --- ");
42 return "".join(studentinfo);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part II: Student Test Program
1 # ===
2 # TestStudent .py: Exercise methods in Student class ...
3 #
4 # Written by: Mark Austin November 2022
5 # ===
6
7 from Student import Student
8 from datetime import date
9

10 # main method ...
11
12 def main ():
13 print (" --- Enter TestStudents .main () ... ");
14 print (" --- ===================================== ... ");
15
16 print (" --- Part 1: Create student Angela Austin ...")
17
18 y = Student (" Angela ", " Austin ", date (2002 ,3 ,2) ,2023)
19 y. setGpa (3.5)
20 y. setSSN (1234)
21
22 print (" --- Part 2: Retrieve student parameters ...")
23
24 print (" --- First Name: {:s}". format (y. getFirstName ()))
25 print (" --- Last Name: {:s}". format (y. getLastName ()))
26 print (" --- Age = {:d}". format (y. getAge ()))
27 print (" --- Social Security Number = {:d}". format (y. getSSN ()))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part II: Student Test Program (Continued) ...
28 print (" --- Is student : {:s}". format (str(y. isStudent ())))
29
30 print (" --- Part 3: Assemble string representation of student ...")
31
32 print (y. __str__ ())
33
34 print (" --- ===================================== ... ");
35 print (" --- Finished TestStudents .main () ... ");
36
37 # call the main method ...
38
39 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part III: Abbreviated Output:
--- Part 1: Create student Angela Austin ...
--- Part 2: Retrieve student parameters ...

--- First Name: Angela
--- Last Name: Austin
--- Age = 20
--- Social Security Number = 1234
--- Is student: True

--- Part 3: Assemble string representation of student ...

--- Student: Angela Austin ...
--- ---
--- Gpa = 3.50 ...
--- Age = 20 ...
--- Graduation year = 2023 ...
--- ---

Source Code: See: python-code.d/inheritance/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 6. Student is an Extension of Person

Part IV: Files before Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Student.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestStudents.py

Part IV: Files after Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Student.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestStudents.py
drwxr-xr-x 4 austin staff 128 Feb 18 13:27 __pycache__

./__pycache__:
total 16
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Person.cpython-37.pyc
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Student.cpython-37.pyc

Note: Python builds compiled bytecodes for Student and Person
(with .pyc extension).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Mutiple Inheritance Mechanisms

Multiple Inheritance Structures
In a multiple inheritance structure, a class can inherit
properties from multiple parents.
The downside is that properties and/or operations may be
partially or fully contradictory.

Example
People is a generalization of Children and Customers.
Young customers inherits properties from Customers and
Children.

Note. Python supports use of multiple inheritance. Java explicitly
prevents multiple inheritance – instead, it allows classes to have
multiple interfaces.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Mutiple Inheritance Mechanisms

Children

People

Young Customers

Customers

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Mutiple Inheritance Mechanisms

Python Syntax:
class People:

People constructor ...
People variables, and methods ...

class Customers (People):

Customers constructor ...
Customers variables, and methods ...

class Children (People):

Children constructor ...
Children variables, and methods ...

class YoungCustomers(Customers, Children):

YoungCustomer constructor ...
YoungCustomer variables, and methods ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Composition of

Object Models

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Composition of Object Models

Definition
Composition is known as is a part of or is a relationship.

The member object is a part of the containing class and the
member object cannot survive or exist outside the enclosing or
containing class or doesn’t have a meaning after the lifetime of the
enclosing object.

Is it Aggregation or Composition?
Ask the question: if the part moves, can one deduce that the
whole moves with it in normal circumstances?

Example: A car is composition of wheels and an engine. If you
drive the car to work, hopefully the wheels go too!

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Composition of Object Models

Notation for Aggregation and Composition

Item

List

Point

Rectangle

AggregationComposition

Recall: Aggregation is all about grouping of things ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 7. Modeling Line Segments

Model Composition

LineSegment Point21

Creating a line segment object with:
segmentA = LineSegment(1, 2, 3, 4);

should give a layout of memory:
Point

x = 1

y = 2

x = 3

y = 4

segmentA LineSegment

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 7. Modeling Line Segments

Part I: Line Segment Object Model
1 # ==
2 # LineSegment .py: Line segments are defined by end points (x1 , y1) and
3 # (x2 , y2). Compute length and angle of the line segment in radians .
4 #
5 # Written by: Mark Austin October , 2022
6 # ==
7
8 import math
9

10 from Point import Point
11
12 class LineSegment :
13 __length = 0
14 __angle = 0
15
16 def __init__ (self , x1 , y1 , x2 , y2):
17 self. __pt1 = Point (x1 ,y1) # <-- Object composition ...
18 self. __pt2 = Point (x2 ,y2) # <-- Object composition ...
19 self. __length = self. __pt1 . distance (self. __pt2)
20 self. __angle = self. getAngle ()
21
22 # Compute angle (radians) for coordinates in four quadrants
23
24 def getAngle (self):
25 dX = self. __pt2 . get_xCoord () - self. __pt1 . get_xCoord ();
26 dY = self. __pt2 . get_yCoord () - self. __pt1 . get_yCoord ();

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 7. Modeling Line Segments

Part I: Line Segment Object Model (Continued) ...
27
28 if dY > 0.0 and dX == 0.0:
29 angle = math.pi /2.0
30 if dY >= 0.0 and dX > 0.0:
31 angle = math.atan(dY/dX)
32 if dY >= 0.0 and dX < 0.0:
33 angle = math.pi + math.atan(dY/dX)
34 if dY < 0.0 and dX < 0.0:
35 angle = math.pi + math.atan(dY/dX)
36 if dY < 0.0 and dX >= 0.0:
37 angle = 2* math.pi + math.atan(dY/dX)
38
39 return angle
40
41 # String represention of line segment ...
42
43 def __str__ (self):
44 x1 = self. __pt1 . get_xCoord ();
45 y1 = self. __pt1 . get_yCoord ();
46 x2 = self. __pt2 . get_xCoord ();
47 y2 = self. __pt2 . get_yCoord ();
48 return " --- LineSegment : (x1 ,y1) = (%5.2f, %5.2f), (x2 ,y2) = (%5.2f, %5.2f),
49 angle = %.2f, length = %.2f" % (x1 , y1 , x2 , y2 , self.__angle , self. __length)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 7. Modeling Line Segments

Part II: Line Segment Test Program
1 # ===
2 # TestLineSegment .py: Exercise line segment class ...
3 # ===
4
5 from LineSegment import LineSegment
6
7 # main method ...
8
9 def main ():

10 print (" --- Enter TestLineSegment .main () ... ");
11 print (" --- =============================== ... ");
12
13 print (" --- Part 1: Create test line segment ... ");
14
15 segmentA = LineSegment (1.0 , 2.0 , 3.0 , 4.0)
16 print (segmentA)
17
18 print (" --- Part 2: Sequence of line segments ... ");
19
20 a = LineSegment (0.0 , 0.0 , 3.0 , 0.0)
21 print (a)
22 b = LineSegment (0.0 , 0.0 , 3.0 , 3.0)
23 print (b)
24 c = LineSegment (0.0 , 0.0 , 0.0 , 3.0)
25 print (c)
26 d = LineSegment (0.0 , 0.0 , -3.0, 3.0)
27 print (d)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 7. Modeling Line Segments

Part II: Line Segment Test Program (Continued) ...
28 e = LineSegment (0.0 , 0.0 , -3.0, 0.0)
29 print (e)
30
31 print (" --- =============================== ... ");
32 print (" --- Finished TestLineSegment .main () ... ");
33
34 # call the main method ...
35
36 main ()

Part III: Abbreviated Program Output:
--- Part 1: Create test line segment ...
--- LineSegment: (x1,y1) = (1.00, 2.00), (x2,y2) = (3.00, 4.00), angle = 0.79, length = 2.83
--- Part 2: Sequence of line segments ...
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (3.00, 0.00), angle = 0.00, length = 3.00
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (3.00, 3.00), angle = 0.79, length = 4.24
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (0.00, 3.00), angle = 1.57, length = 3.00
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (-3.00, 3.00), angle = 2.36, length = 4.24
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (-3.00, 0.00), angle = 3.14, length = 3.00

Source Code: See: python-code.d/classes/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Source Code: See: python-code.d/applications/shapes/TestSimplePolygon01.py

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part I: Program Architecture

SimplePolygon

extends

Vertex

Point

3+
TestSimplePolygon

Point Attributes:
xCoord, yCoord, ...

Vertex Attributes:
label ...

SimplePolygon Attributes:
v01, v02, ... v06, polygon01, ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part II: Abbreviated Program Output:
--- Enter TestSimplePolygon01.main() ...
--- =================================== ...

--- Part 1: Create list of vertices ...

--- Part 2: Assemble and print simple polygon object ...

--- SimplePolygon: L-shaped Polygon ...
--- ---
--- Vertex 1: (x,y) = (1.00, 5.00) ...
--- Vertex 2: (x,y) = (6.00, 5.00) ...
--- Vertex 3: (x,y) = (6.00, 3.00) ...
--- Vertex 4: (x,y) = (3.00, 3.00) ...
--- Vertex 5: (x,y) = (3.00, 1.00) ...
--- Vertex 6: (x,y) = (1.00, 1.00) ...
--- Perimeter = 18.00 ...
--- ---
--- Part 3: Draw simple polygon ...

--- ======================================= ...
--- Finished TestSimplePolygon01.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part III: Point Object Model
1 # ==
2 # Point01 .py: Bare - bones implementation of a Point class ...
3 #
4 # Written by: Mark Austin October , 2024
5 # ==
6
7 import math
8
9 class Point :

10
11 def __init__ (self , xCoord =0, yCoord =0):
12 self. _xCoord = xCoord
13 self. _yCoord = yCoord
14
15 # Get/ set X coordinate
16
17 def getX(self):
18 return self. _xCoord
19
20 def setX(self , xCoord):
21 self. _xCoord = xCoord
22
23 # Get/ set Y coordinate
24
25 def getY(self):
26 return self. _yCoord

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part III: Point Object Model (Continued) ...
27
28 def setY(self , yCoord):
29 self. _yCoord = yCoord
30
31 # Get current position
32
33 def get_position (self):
34 return self.getX (), self.getY ()
35
36 # Change x & y coordinates by p & q
37
38 def move(self , p, q):
39 self. _xCoord += p
40 self. _yCoord += q
41
42 # Compute distance between two points ...
43
44 def distance (self , second):
45 x_d = self.getX () - second .getX ()
46 y_d = self.getY () - second .getY ()
47 return (x_d **2 + y_d **2)**0.5
48
49 # Return string represention of object ...
50
51 def __str__ (self):
52 return "(%6.2f, %6.2f)" % (self.getX (), self.getY ())

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part III: Vertex Object Model
1 # ==
2 # Vertex .py: A vertex is a point with a label ...
3 # ==
4
5 from Point01 import Point
6
7 class Vertex (Point):
8 _label = ""
9

10 # Constructor method ...
11
12 def __init__ (self , x, y) :
13 Point . __init__ (self , x, y)
14 self. _label = ""
15
16 # Set/ get label ...
17
18 def setLabel (self , label):
19 self. _label = label
20
21 def getLabel (self):
22 return self. _label

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part III: Vertex Object Model (Continued) ...
23
24 # Assemble string represention of Vertex ...
25
26 def __str__ (self):
27 vertexinfo = [];
28 vertexinfo . append ("\n");
29 vertexinfo . append (" --- Vertex : {:s} ... \n". format (self. getLabel ()));
30 vertexinfo . append (" --- --- \n");
31 vertexinfo . append (" --- Coordinate : (x,y) = {:s} ... \n". format (Point . __self__ ()));
32 vertexinfo . append (" --- --- ");
33 return "".join(vertexinfo);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part IV: Simple Polygon Object Model
1 # ==
2 # SimplePolygon01 .py: Bare - bones implementation of a simple polygon .
3 #
4 # Written by: Mark Austin October 2024
5 # ==
6
7 import math
8
9 from Vertex01 import Vertex

10 from matplotlib . patches import Circle
11 from matplotlib . lines import Line2D
12
13 class SimplePolygon :
14 area = 0
15 perimeter = 0
16 name = ""
17 coords = []
18
19 # Constructor method ...
20
21 def __init__ (self , vertexlist):
22 self. coords = vertexlist ; # <--- Assign vertex list to coords ...
23 self. perimeter = self. getPerimeter () # <--- Compute perimeter ...
24
25 # Set /get name ...
26
27 def setName (self , name):

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part IV: Simple Polygon Object Model (Continued) ...
28 self.name = name
29
30 def getName (self):
31 return self.name
32
33 # Compute polygon perimeter ...
34
35 def getPerimeter (self):
36
37 dperimeter = 0.0;
38 for i in range (len(self. coords) -1):
39 dperimeter += self. coords [i]. distance (self. coords [i+1]);
40
41 lastnode = len(self. coords) - 1
42 dperimeter += self. coords [lastnode]. distance (self. coords [0]);
43
44 return dperimeter ;
45
46 # Draw simple polygon ...
47
48 def draw(self , ax):
49
50 # Draw polygon edges ...
51
52 for i in range (len(self. coords) -1):
53 xcoords = [self. coords [i]. getX (), self. coords [i+1]. getX ()];
54 ycoords = [self. coords [i]. getY (), self. coords [i+1]. getY ()];
55 ax. add_line (Line2D (xcoords , ycoords))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part IV: Simple Polygon Object Model (Continued) ...
56
57 lastnode = len(self. coords) - 1
58 xcoords = [self. coords [0]. getX (), self. coords [lastnode]. getX ()];
59 ycoords = [self. coords [0]. getY (), self. coords [lastnode]. getY ()];
60 ax. add_line (Line2D (xcoords , ycoords))
61
62 # Draw polygon vertices as small circles ...
63
64 width = 0.1;
65 for i in range (len(self. coords)):
66 xcoord = self. coords [i]. getX ();
67 ycoord = self. coords [i]. getY ();
68 ax. add_patch (Circle ((xcoord , ycoord), width , facecolor =’red ’))
69
70 # Draw node labels ...
71
72 dx = 0.1; dy = 0.1
73 for i in range (len(self. coords)):
74 xcoord = self. coords [i]. getX ();
75 ycoord = self. coords [i]. getY ();
76 label = self. coords [i]. getLabel ();
77 ax.text(xcoord + dx , ycoord + dy , label)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part IV: Simple Polygon Object Model (Continued) ...
78
79 # String represention of simple polygon ...
80
81 def __str__ (self):
82 polygoninfo = [];
83 polygoninfo . append ("\n");
84 polygoninfo . append (" --- SimplePolygon : {:s} ... \n". format (self.name));
85 polygoninfo . append (" --- --- \n");
86
87 for i in range (len(self. coords)):
88 xc = self. coords [i]. getX ();
89 yc = self. coords [i]. getY ();
90 polygoninfo . append (" --- Vertex {:2d}: (x,y) = ({:6.2 f}, {:6.2 f}) ... \n". format (i+1, xc , yc));
91
92 polygoninfo . append (" --- Perimeter = {:6.2 f} ... \n". format (self. getPerimeter ()));
93 polygoninfo . append (" --- --- ");
94 return "".join(polygoninfo);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part V: Simple Polygon Test Program
1 # ===
2 # TestSimplePolygon01 .py: Exercise SimplePolygon class ...
3 # ===
4
5 from Vertex01 import Vertex
6 from SimplePolygon01 import SimplePolygon
7
8 import matplotlib . pyplot as plt
9

10 # main method ...
11
12 def main ():
13 print (" --- Enter TestSimplePolygon01 .main () ... ");
14 print (" --- =================================== ... ");
15
16 print (" --- Part 1: Create list of vertices ... ");
17
18 v01 = Vertex (1.0 , 5.0); v01. setLabel ("v1");
19 v02 = Vertex (6.0 , 5.0); v02. setLabel ("v2");
20 v03 = Vertex (6.0 , 3.0); v03. setLabel ("v3");
21 v04 = Vertex (3.0 , 3.0); v04. setLabel ("v4");
22 v05 = Vertex (3.0 , 1.0); v05. setLabel ("v5");
23 v06 = Vertex (1.0 , 1.0); v06. setLabel ("v6");
24
25 print (" --- Part 2: Assemble and print simple polygon object ... ");

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 8. Simple Polygon Object

Part V: Simple Polygon Test Program (Continued) ...
27 polygon01 = SimplePolygon ([v01 , v02 , v03 , v04 , v05 , v06])
28 polygon01 . setName ("L- shaped Polygon ")
29
30 print (polygon01)
31
32 print (" --- Part 3: Draw simple polygon ... \n");
33
34 # Define Matplotlib figure and axis
35
36 fig , ax = plt. subplots ()
37
38 polygon01 .draw(ax)
39
40 plt. title (’Simple Polygon Object ’)
41 plt. ylabel (’y’)
42 plt. xlabel (’x’)
43 plt.ylim(0, 6)
44 plt.xlim(0, 8)
45 plt.grid(True)
46 plt.show ()
47
48 print (" --- ======================================= ... ");
49 print (" --- Finished TestSimplePolygon01 .main () ... ");
50
51 # call the main method ...
52
53 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Working with

Groups of Objects

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Pathway From Objects to Groups of Objects

Data Structures
Now that we know how to create objects, the next subject is how
to organize collections of objects so that they are easy to store,
easy to find, and easy to modify?

Approach: Two-step procedure:
Choose an appropriate mathematical formalism.
Develop software to support each formalism.

As a starting point, of objects can be organized into:
Arrays
Linked lists and queues (lists in Python).
HashMaps (dictionaries in Python).
Trees and Graphs.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Memory Layout: Arrays, Lists, Queues, Trees, and Graphs

tail

Arrays Linked List

QueuesHash Map

Trees Graphs

head

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Linear and Nonlinear Data Structures

Linear Data Structure:
Items are arranged in a linear fashion.
Simple to implement.

Examples:
Array: Sequential arrangement of data elements paired with
the index of the data element.
Linked List: Each data element contains a link to another
element along with the data present in it.
Stack: LIFO (last in First Out) or FILO (First in Last Out).
Queue: Similar to Stack, but the order of operation is only
FIFO (First In First Out).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Linear and Nonlinear Data Structures

Nonlinear Data Structure:
Items are not ordered in any particular way.
Often, items are often organized into hierarchies.

Examples:
Binary Tree: Each data element can be connected to
maximum two other data elements and it starts with a root
node.
Hash Table: Retrieves values using keys rather than index
from a data element.
Graph: Arrangement of vertices and nodes where some of the
nodes are connected to each other through links.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Python Builtin Data Structures

Lists:
Lists are used to store multiple items in a single variable.
A list may store multiple types (heterogeneous) of elements.

Dictionary:
Dictionaries store data values as key:value pairs.
As of Python 3.7, a dictionary is a collection which is ordered,
changeable and do not allow duplicates.

Set:
Sets store multiple items in a single variable.
A set is a collection which is unordered, unchangeable (but
you can remove items and add new items) and unindexed.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part I: Program Architecture

−− lastName

studentList
size: 6

Angela

Austin

Nina

Austin

0

1

student01

student02

student065
Aaron

Austin

−− firstName

−− firstName

−− firstName

−− lastName

−− lastName

Assemble list of six students. Sort and print by name and gpa.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part II: Assemble Student Objects ...
1 # ==
2 # TestStudents02 .py: Assemble list of students ...
3 #
4 # Written by: Mark Austin February 2023
5 # ==
6
7 from Student import Student
8 from datetime import date
9

10 # main method ...
11
12 def main ():
13 print (" --- Enter TestStudents02 .main () ... ");
14 print (" --- === ... ");
15
16 print (" --- ")
17 print (" --- Part 1: Create student objects ...")
18
19 student01 = Student (" Angela ", " Austin ", date (2002 , 3, 2), 2023)
20 student01 . setGpa (3.5) , student01 . setSSN (1234)
21
22 student02 = Student ("Nina", " Austin ", date (2001 , 4, 12) , 2025)
23 student02 . setGpa (3.2) , student02 . setSSN (2134)
24
25 student03 = Student (" David ", " Austin ", date (2000 , 6, 8), 2025)
26 student03 . setGpa (2.9) , student03 . setSSN (2143)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part II: Assemble Student Objects ...
27
28 student04 = Student (" Marie ", " Austin ", date (2005 , 8, 5), 2026)
29 student04 . setGpa (3.9) , student04 . setSSN (1243)
30
31 student05 = Student (" Albert ", " Austin ", date (1999 , 10, 20) , 2026)
32 student05 . setGpa (3.8) , student05 . setSSN (3124)
33
34 student06 = Student (" Aaron ", " Austin ", date (2002 , 12, 2), 2026)
35 student06 . setGpa (4.0) , student06 . setSSN (1131)
36
37 print (" --- ")
38 print (" --- Part 2: String description of student parameters ...")
39
40 print (student01 . __str__ ())
41 print (student02 . __str__ ())
42 print (student03 . __str__ ())
43 print (student04 . __str__ ())
44 print (student05 . __str__ ())
45 print (student06 . __str__ ())
46
47 print (" --- ")
48 print (" --- Part 3: Add students to list ... ")
49
50 studentList = [];
51 studentList . append (student01)
52 studentList . append (student02)
53 studentList . append (student03)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part II: Assemble Student Objects ...
54 studentList . append (student04)
55 studentList . append (student05)
56 studentList . append (student06)
57
58 print (" --- ")
59 print (" --- Part 4: Print contents of list ... ")
60
61 i = 0
62 for student in studentList :
63 print (" --- list01 [{:d}]: {:6s} --> {:.2f} ...". format (i, student . getFirstName (), student . getGpa ()))
64 i = i + 1
65
66 print (" --- ")
67 print (" --- Part 5: Sort list items by first name ... ")
68
69 sort_values = sorted (studentList , key = lambda x: x. _firstname)
70
71 i = 0
72 for student in sort_values :
73 print (" --- list01 [{:d}]: {:6s} --> {:.2f} ...". format (i, student . getFirstName (), student . getGpa ()))
74 i = i + 1
75
76 print (" --- ")
77 print (" --- Part 6: Sort list items by gpa ... ")
78
79 sort_values = sorted (studentList , key = lambda x: x._gpa)
80
81 i = 0

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part II: Assemble Student Objects ...
82 for student in sort_values :
83 print (" --- list01 [{:d}]: {:6s} --> {:.2f} ...". format (i, student . getFirstName (), student . getGpa ()))
84 i = i + 1
85
86 print (" --- === ... ");
87 print (" --- Finished TestStudents02 .main () ... ");
88
89 # call the main method ...
90
91 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part III: Abbreviated Output:
--- Enter TestStudents02.main() ...
--- === ...
--- Part 1: Create student objects ...
--- Part 2: String description of student parameters ...

--- Student: Angela Austin ...
--- ---
--- Gpa = 3.50, Age = 20, Graduation year = 2023 ..
--- ---

--- Student: Nina Austin ...
--- ---
--- Gpa = 3.20, Age = 21, Graduation year = 2025 ..
--- ---

--- Student: David Austin ...
--- ---
--- Gpa = 2.90, Age = 22, Graduation year = 2025 ..
--- ---

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part III: Abbreviated Output: (Continued) ...
--- Student: Marie Austin ...
--- ---
--- Gpa = 3.90, Age = 17, Graduation year = 2026 ..
--- ---

--- Student: Albert Austin ...
--- ---
--- Gpa = 3.80, Age = 23, Graduation year = 2026 ..
--- ---

--- Student: Aaron Austin ...
--- ---
--- Gpa = 4.00, Age = 20, Graduation year = 2026 ..
--- ---

--- Part 4: Print contents of list ...

--- list01[0]: Angela --> 3.50 ...
--- list01[1]: Nina --> 3.20 ...
--- list01[2]: David --> 2.90 ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 9: Create List of Student Objects

Part III: Abbreviated Output: (Continued) ...
--- list01[3]: Marie --> 3.90 ...
--- list01[4]: Albert --> 3.80 ...
--- list01[5]: Aaron --> 4.00 ...

--- Part 5: Sort list items by first name ...
--- list01[0]: Aaron --> 4.00 ...
--- list01[1]: Albert --> 3.80 ...
--- list01[2]: Angela --> 3.50 ...
--- list01[3]: David --> 2.90 ...
--- list01[4]: Marie --> 3.90 ...
--- list01[5]: Nina --> 3.20 ...

--- Part 6: Sort list items by gpa ...
--- list01[0]: David --> 2.90 ...
--- list01[1]: Nina --> 3.20 ...
--- list01[2]: Angela --> 3.50 ...
--- list01[3]: Albert --> 3.80 ...
--- list01[4]: Marie --> 3.90 ...
--- list01[5]: Aaron --> 4.00 ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part I: Program Architecture

person02

−− firstName

−− firstName

−− firstName

−− lastName

−− lastName

−− lastName

Max

Headroom

key value

1980

1230

1012
Charlie

Brown

Homer

Simpson

person06

person01

Assemble dictionary of six cartoon characters (key = SSN, value =
reference to object). Convert dictionary to list, then sort by age.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part II: Dictionary of Fictional Characters
1 # ===
2 # TestDictionary03 .py: Create dictionary of objects ...
3 #
4 # Last Modified : February 2023
5 # ===
6
7 from Person import Person
8
9 # main method ...

10
11 def main ():
12 print (" --- Enter TestDictionary03 .main () ... ");
13 print (" --- == ... ");
14
15 # Create cartoon characters ...
16
17 print (" --- Part 01: Create cartoon character objects ...")
18
19 person01 = Person ("Max", " Headroom ")
20 person01 . setAge (42)
21 person01 . setSSN (1980)
22
23 person02 = Person (" Homer ", " Simpson ")
24 person02 . setAge (55)
25 person02 . setSSN (1230)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part II: Dictionary of Fictional Characters:
27 person03 = Person ("Bart", " Simpson ")
28 person03 . setAge (35)
29 person03 . setSSN (1231)
30
31 person04 = Person ("Yogi", "Bear")
32 person04 . setAge (65)
33 person04 . setSSN (1111)
34
35 person05 = Person (" Charlie ", " Brown ")
36 person05 . setAge (72)
37 person05 . setSSN (1012)
38
39 print (" --- ")
40 print (" --- Part 02: Print sample objects ...")
41 print (" --- ")
42
43 print (" --- person01 --> {:s} ...". format (person01 . __str__ ()))
44 print (" --- person05 --> {:s} ...". format (person05 . __str__ ()))
45
46 print (" --- ")
47 print (" --- Part 03: Assemble dictionary of cartoon characters ...")
48
49 cartoon = {}
50 cartoon [person01 . getSSN ()] = person01
51 cartoon [person02 . getSSN ()] = person02
52 cartoon [person03 . getSSN ()] = person03
53 cartoon [person03 . getSSN ()] = person03

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part II: Dictionary of Fictional Characters:
54 cartoon [person04 . getSSN ()] = person04
55 cartoon [person05 . getSSN ()] = person05
56
57 print (" --- ")
58 print (" --- Part 04: Retrieve items from dictionary ...")
59 print (" --- ")
60
61 key = 1980
62 personItem = cartoon .get(key)
63 print (" --- key = {:d} --> {:s} ...". format (key , personItem . __str__ ()))
64
65 key = 1230
66 personItem = cartoon .get(key)
67 print (" --- key = {:d} --> {:s} ...". format (key , personItem . __str__ ()))
68
69 key = 1231
70 personItem = cartoon .get(key)
71 print (" --- key = {:d} --> {:s} ...". format (key , personItem . __str__ ()))
72
73 key = 1111
74 personItem = cartoon .get(key)
75 print (" --- key = {:d} --> {:s} ...". format (key , personItem . __str__ ()))
76
77 key = 1012
78 personItem = cartoon .get(key)
79 print (" --- key = {:d} --> {:s} ...". format (key , personItem . __str__ ()))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part II: Dictionary of Fictional Characters:
81 print (" --- ")
82 print (" --- Part 04: Convert dictionary to list ...")
83
84 keysList = list (cartoon .keys ())
85 cartoonlist = [];
86 for person in keysList :
87 cartoonlist . append (cartoon .get(person))
88
89 print (" --- ")
90 print (" --- Part 05: Sort list of cartoon items by age ...")
91 print (" --- ")
92
93 sorted_items = sorted (cartoonlist)
94
95 i = 1
96 for person in sorted_items :
97 print (" --- person [%d]: %s --> %s ..." %(i, person . getFirstName (), person . getAge ()))
98 i = i + 1
99

100 print (" --- == ... ");
101 print (" --- Leave TestDictionnary03 .main () ... ");
102
103 # call the main method ...
104
105 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part III: Abbreviated Output:
--- Enter TestDictionary03.main() ...
--- == ...
--- Part 01: Create cartoon character objects ...

--- Part 02: Print sample objects ...

--- person01 --> Person: Max Headroom: age = 42.00 ...
--- person05 --> Person: Charlie Brown: age = 72.00 ...

--- Part 03: Assemble dictionary of cartoon characters ...

--- Part 04: Retrieve items from dictionary ...

--- key = 1980 --> Person: Max Headroom: age = 42.00 ...
--- key = 1230 --> Person: Homer Simpson: age = 55.00 ...
--- key = 1231 --> Person: Bart Simpson: age = 35.00 ...
--- key = 1111 --> Person: Yogi Bear: age = 65.00 ...
--- key = 1012 --> Person: Charlie Brown: age = 72.00 ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Example 10: Dictionary of Fictional Characters

Part III: Abbreviated Output: (Continued) ...
--- Part 05: Convert dictionary to list ...

--- Part 06: Sort list of cartoon items by age ...

--- person[1]: Bart --> 35 ...
--- person[2]: Max --> 42 ...
--- person[3]: Homer --> 55 ...
--- person[4]: Yogi --> 65 ...
--- person[5]: Charlie --> 72 ...
--- == ...
--- Leave TestDictionnary03.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study

(GeoModeling Spatial Entities)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Geospatial Data Model: Create city and airport models. Use
Haversine formula to compute distances between entities.

Haversine GeospatialEntity

TestUrbanDataModel Airport City

Geospatial Attributes: latitude, longitude, elevation.
City Attributes: name, population, state, country.
Airport Attributes: name, airport code.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Haversine Formula

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Haversine Formula: Source code ...
1 # ===
2 # Haversine .py. Small class that provides approximate distance (km) between
3 # two points using the Haversine formula .
4 #
5 # Call in a static context :
6 #
7 # Haversine . distance (47.6788206 , -122.3271205 ,
8 # 47.6788206 , -122.5271205) --> 14.973190481586224 [km]
9 #

10 # earthRadius = 6372.8; # Earth radius in KM
11 # earthRadius = 3959.87433 # Earth radius in miles .
12 #
13 # Written by: Jason Winn (http :// jasonwinn . org)
14 # Modified by: Mark Austin February 2023
15 # ===
16
17 from math import radians , cos , sin , asin , sqrt
18
19 class Haversine :
20
21 # =====================================
22 # Compute haversine distance ...
23 # =====================================
24
25 @staticmethod
26 def distance (lat1 , lon1 , lat2 , lon2):

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Haversine Formula: Source code ...
27 earthRadius = 3959.87433 # Earth radius in miles .
28 dLat = radians (lat2 - lat1)
29 dLon = radians (lon2 - lon1)
30 lat1 = radians (lat1)
31 lat2 = radians (lat2)
32
33 a = sin(dLat /2)**2 + cos(lat1)* cos(lat2)* sin(dLon /2)**2
34 c = 2* asin(sqrt(a))
35
36 return earthRadius * c

Source Code: See: python-code.d/geospatial/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Compute Distance between Washington DC and NYC
1 # ===
2 # TestHaversine .py: Small test program for haversine formula .
3 # ===
4
5 from Haversine import Haversine
6 from City import City
7 from Airport import Airport
8
9 # main method ...

10
11 def main ():
12 print (" --- Enter TestHaversine .main () ... ");
13 print (" --- =============================== ... ");
14
15 print (" --- Part 1: Create sample cities and airports ... ");
16
17 city01 = City(" Washington DC", 38.907192 , -77.036871 , 410.0 , 5)
18 city02 = City(" Baltimore ", 39.290385 , -76.612189 , 480.0 , 10)
19 city03 = City("New York", 40.712784 , -74.005941 , 265.0 , 10)
20
21 airport01 = Airport (" Baltimore - Washington ", "BWI", 39.177404 , -76.668392 , 148.0);
22 airport02 = Airport (" Washington Dulles ", "IAD", 38.952934 , -77.447741 , 313.0);
23
24 print (" --- Part 2: Print details of cities and airports ... ");
25
26 print (city01); print (city02); print (city03)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Compute Distance between Washington DC and NYC
27 print (airport01); print (airport02)
28
29 print (" --- Part 3: Compute distances between locations ... ");
30
31 # Compute distance between Washington DC and Baltimore ...
32
33 lat1 = city01 . getLatitude (); lon1 = city01 . getLongitude ()
34 lat2 = city02 . getLatitude (); lon2 = city02 . getLongitude ()
35 d1 = Haversine . distance (lat1 , lon1 , lat2 , lon2)
36
37 print (" --- Distance : Washington DC to Baltimore --> {:f} miles ..". format (d1))
38
39 # Compute distance between Washington DC and New York ...
40
41 lat1 = city01 . getLatitude (); lon1 = city01 . getLongitude ()
42 lat2 = city03 . getLatitude (); lon2 = city03 . getLongitude ()
43
44 d1 = Haversine . distance (lat1 , lon1 , lat2 , lon2)
45
46 print (" --- Distance : Washington DC to New York --> {:f} miles ..". format (d1))
47
48 # Compute distance between IAD and BWI ...
49
50 lat01 = airport01 . getLatitude (); lon01 = airport01 . getLongitude ()
51 lat02 = airport02 . getLatitude (); lon02 = airport02 . getLongitude ()
52
53 d1 = Haversine . distance (lat01 , lon01 , lat02 , lon02)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Compute Distance between Washington DC and NYC
55
56 code01 = airport01 . getAirportCode ()
57 code02 = airport02 . getAirportCode ()
58 print (" --- Distance : {:s} to {:s} --> {:f} miles ..". format (code01 , code02 , d1))
59
60 print (" --- =============================== ... ");
61 print (" --- Leave TestHaversine .main () ... ");
62
63 # call the main method ...
64
65 main ()

Source Code: See: python-code.d/geospatial/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Abbreviated Output:
--- Enter TestHaversine.main() ...
--- =============================== ...
--- Part 1: Create sample cities and airports ...
--- Part 2: Print details of cities and airports ...

--- City: Washington DC ...
--- ---
--- Latitude = 38.907192 ...
--- Longitude = -77.036871 ...
--- Elevation (highest) = 410.00 ft ...
--- Population = 5.00 ...
--- ---

--- City: Baltimore ...
--- ---
--- Latitude = 39.290385 ...
--- Longitude = -76.612189 ...
--- Elevation (highest) = 480.00 ft ...
--- Population = 10.00 ...
--- ---

--- City: New York ...
--- ---
--- Latitude = 40.712784 ...
--- Longitude = -74.005941 ...
--- Elevation (highest) = 265.00 ft ...
--- Population = 10.00 ...
--- ---

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

Case Study: GeoModeling Spatial Entities

Abbreviated Output: (Continued) ...
--- Airport: Baltimore-Washington (BWI) ...
--- ---
--- Latitude = 39.177404 ...
--- Longitude = -76.668392 ...
--- Elevation (highest) = 148.00 ft ...
--- ---

--- Airport: Washington Dulles (IAD) ...
--- ---
--- Latitude = 38.952934 ...
--- Longitude = -77.447741 ...
--- Elevation (highest) = 313.00 ft ...
--- ---

--- Part 3: Compute distances between locations ...

--- Distance: Washington DC to Baltimore --> 34.931571 miles ..
--- Distance: Washington DC to New York --> 203.608912 miles ..
--- Distance: BWI to IAD --> 44.605415 miles ..

--- =============================== ...
--- Leave TestHaversine.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling Spatial Entities

References

....

....

	Working with Objects and Classes
	Data Hiding and Encapsulation
	Relationships Among Classes
	Inheritance Mechanisms
	Composition of Object Models
	Working with Groups of Objects
	Case Study: GeoModeling Spatial Entities

