
ENCE 201 Engineering Information Processing, Spring Semester, 2025

Solutions to Homework 2

Question 1: 10 points.

Problem Statement: A laboratory experiment is conducted on 1030 specimens to determine the compres-
sive strength (MPa) of concrete as a function of age (days) and various ingredients (e.g., cement, blast
furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate).

The experimental data (see python-code.d/data/materials/concrete-strength-data.csv) comprises eight
(quantitative) input parameters:

Parameter Description

Cement kg in a m3 mixture.
Blast Furnace Slag kg in a m3 mixture.
Fly Ash kg in a m3 mixture.
Water kg in a m3 mixture.
Superplasticizer kg in a m3 mixture.
Coarse Aggregate kg in a m3 mixture.
Fine Aggregate kg in a m3 mixture.
Age day (1 -- 365).

and one output:

Parameter Description
--
Concrete strength Concrete compressive strength (MPa).
--

What to do? Write a Python program that will:

1. Read the experimental test results from a file concrete-strength-data.csv into a Pandas
dataframe.

2. Extract numpy arrays from the dataframe for age (days) and concrete compressive strength (MPa).

3. Compute and print the range of parameter values for each input (e.g., Cement content, Blast Furnace
Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate and Age.

1

Figure 1: Scatter chart of concrete compressive strength (MPa) vs age (days).

2

4. Compute and print the maximum, minimum, and average concrete compressive strengths.

5. Create a scatter chart of concrete strength (MPa) vs age (days). See Figure 1.

6. Use the Pandas cut function (i.e., google pd.cut()) to organize the strength data into intervals: 0–25,
25–50, 50–75, and 75–100.

7. Generate a histogram of concrete compressive strength (MPa).

8. Generate the cumulative probability distribution for concrete compressive strength, and then create a
stair-step graph of “cumulative frequency” versus “compressive strength.”

Note 1. The average value of the experimental results can be computed using Python’s buildin functions.
The “cumulative frequency” versus “compressive strength” is given by

Cumulative frequency(y) =
∫ y

0
p(x)dx (1)

where p(x) is the probability distribution of concrete compressive strengths. The matplotlib functions
plt.hist(.) and plt.step(.) create histogram and stair-step graphs.

Note 2. See python-code.d/pandas/TestMaterialsA36Steel.py for a very similar problem setup and solution.

Python Source Code:

==
TestMaterialsConcreteStrength02.py: Read, process and visualize experimental
data on compressive strength of concrete.
#
For details, see: data/material/concrete-strength-readme.txt
#
Written by: Mark Austin March 2025
==

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d

from pandas import DataFrame
from pandas import read_csv

===
Main function ...
===

3

Figure 2: Histogram of concrete compressive strength (MPa).

Figure 3: Cumulative distribution of concrete compressive strength (MPa).

4

def main():
print("--- Enter TestMaterialsConcreteStrength02.main() ... ");
print("--- == ... ");
print("");

Load and print dataset

print("--- ");
print("--- Part 01: Load data/materials/concrete-strength-data.csv into Pandas ... ");
print("--- ");

df = pd.read_csv(’data/materials/concrete-strength-data.csv’)
print(df)

Dataframe info and shape ...

print(df.info())
print(df.shape)

print("--- ");
print("--- Part 02: Extract numpy arrays from dataframe columns ... ");
print("--- ");

Input parameters ...

age = np.array (df[’Age’].values)

cement = np.array (df[’Cement’].values)
blastf = np.array (df[’Blast Furnace Slag’].values)
flyash = np.array (df[’Fly Ash’].values)
water = np.array (df[’Water’].values)
superp = np.array (df[’Superplasticizer’].values)
coarseag = np.array (df[’Coarse Aggregate’].values)
fineag = np.array (df[’Fine Aggregate’].values)

Output parameter ...

strength = np.array (df[’Concrete Compressive Strength’].values)

print("--- ");
print("--- Part 03: Range of Input/Output Parameter Values ...");
print("--- ");

print("--- Input: Age: ");
print("--- Min = {:5.2f} days ...".format(min(age)));
print("--- Max = {:5.2f} days ...".format(max(age)));

print("--- Input: Cement: ");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(cement)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(cement)));

print("--- Input: Blast Furnace Slag: ");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(blastf)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(blastf)));

5

print("--- Input: Fly Ash:");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(flyash)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(flyash)));

print("--- Input: Water:");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(water)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(water)));

print("--- Input: Superplasticizer:");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(superp)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(superp)));

print("--- Input: Coarse Aggregate:");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(coarseag)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(coarseag)));

print("--- Input: Fine Aggregate:");
print("--- Min = {:5.2f} kg in m3 mixture ...".format(min(fineag)));
print("--- Max = {:5.2f} kg in m3 mixture ...".format(max(fineag)));

print("--- Output: Concrete Compressive Strength: ");
print("--- Min = {:5.2f} MPa ...".format(min(strength)));
print("--- Max = {:5.2f} MPa ...".format(max(strength)));

print("--- ");
print("--- Part 04: Basic statistics on concrete age/compressive strength ...");
print("--- ");

print("--- Min age = {:5.2f} days ...".format(min(age)));
print("--- Max age = {:5.2f} days ...".format(max(age)));
print("--- Average age = {:5.2f} days ...".format(sum(age)/len(age)));
print("--- ");
print("--- Min strength = {:5.2f} MPa ...".format(min(strength)));
print("--- Max strength = {:5.2f} MPa ...".format(max(strength)));
print("--- Average strength = {:5.2f} MPa ...".format(sum(strength)/len(strength)));

print("--- ");
print("--- Part 05: Transform data arrays into lists ...");
print("--- ");

age.tolist()
strength.tolist()

print("--- ");
print("--- Part 06: Scatter chart of concrete strength (MPa) vs age (days) ...");
print("--- ");

plt.scatter(age, strength)
plt.xlabel(’Age (days)’);
plt.ylabel(’Compressive Strength (MPa)’);
plt.title(’Concrete Compressive Strength (MPa) vs Age (days)’)
plt.grid()
plt.show()

print("--- ");

6

print("--- Part 07: Organize strength data into intervals: 0-25, 25-50, 50-75, 75-100 ... ");
print("--- ");

age_sorted = np.sort(age)
strength_sorted = np.sort(strength)

sinterval = ["0-20", "20-40", "40-60", "60-80", "80-100"]
steel_strength_intervals = pd.cut(strength_sorted, [0, 20, 40, 60, 80, 100], labels = sinterval)

Retrieve interval categories and codes ...

labels = steel_strength_intervals.codes
categories = steel_strength_intervals.categories

Systematically print the interval for each category ...

for index in range(len(strength_sorted)):
label_index = labels[index]
print(strength_sorted[index], label_index, categories[label_index])

print("--- ");
print("--- Part 08: Create histogram of Concrete Compressive Strengths (MPa) ... ");
print("--- ");

nbins = 20;
plt.hist(strength_sorted, nbins);
plt.title(’Concrete Compressive Strength (MPa)’);
plt.xlabel(’Concrete Compressive Strength (MPa)’);
plt.ylabel(’No Observations’);
plt.grid()
plt.show()

print("--- ");
print("--- Part 09: Generate cumulative frequency data and graph ... ");
print("--- ");

Generate cumulative probability distribution

npoints = len(strength_sorted);
print("--- No data points = {:d} ...".format(npoints));
cumulative_probability = np.linspace(0.0, 1.0, npoints, endpoint=True);

Step plot of cumulative probability vs yield strength ...

plt.step(strength_sorted, cumulative_probability);
plt.title(’Cumulative Probability Distribution for Compressive Strength (MPa)’);
plt.xlabel(’Concrete Compressive Strength (MPa)’);
plt.ylabel(’Cumulative Probability’);
plt.grid()
plt.show()

print("--- == ... ");
print("--- Leave TestMaterialsConcreteStrength02.main() ... ");

call the main method ...

7

if __name__ == "__main__":
main()

Program Output: The abbreviated textual output is:

--- Enter TestMaterialsConcreteStrength02.main() ...
--- == ...

--- Part 01: Load data/materials/concrete-strength-data.csv into Pandas ...

Cement Blast Furnace Slag ... Age Concrete Compressive Strength
0 540.0 0.0 ... 28 79.99
1 540.0 0.0 ... 28 61.89
2 332.5 142.5 ... 270 40.27
3 332.5 142.5 ... 365 41.05
4 198.6 132.4 ... 360 44.30
...
1025 276.4 116.0 ... 28 44.28
1026 322.2 0.0 ... 28 31.18
1027 148.5 139.4 ... 28 23.70
1028 159.1 186.7 ... 28 32.77
1029 260.9 100.5 ... 28 32.40

[1030 rows x 9 columns]
<class ’pandas.core.frame.DataFrame’>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 Cement 1030 non-null float64
1 Blast Furnace Slag 1030 non-null float64
2 Fly Ash 1030 non-null float64
3 Water 1030 non-null float64
4 Superplasticizer 1030 non-null float64
5 Coarse Aggregate 1030 non-null float64
6 Fine Aggregate 1030 non-null float64
7 Age 1030 non-null int64
8 Concrete Compressive Strength 1030 non-null float64

dtypes: float64(8), int64(1)
memory usage: 72.5 KB
None
(1030, 9)

--- Part 02: Extract numpy arrays from dataframe columns ...

--- Part 03: Range of Input/Output Parameter Values ...

--- Input: Age:
--- Min = 1.00 days ...
--- Max = 365.00 days ...
--- Input: Cement:
--- Min = 102.00 kg in m3 mixture ...

8

--- Max = 540.00 kg in m3 mixture ...
--- Input: Blast Furnace Slag:
--- Min = 0.00 kg in m3 mixture ...
--- Max = 359.40 kg in m3 mixture ...
--- Input: Fly Ash:
--- Min = 0.00 kg in m3 mixture ...
--- Max = 200.10 kg in m3 mixture ...
--- Input: Water:
--- Min = 121.80 kg in m3 mixture ...
--- Max = 247.00 kg in m3 mixture ...
--- Input: Superplasticizer:
--- Min = 0.00 kg in m3 mixture ...
--- Max = 32.20 kg in m3 mixture ...
--- Input: Coarse Aggregate:
--- Min = 801.00 kg in m3 mixture ...
--- Max = 1145.00 kg in m3 mixture ...
--- Input: Fine Aggregate:
--- Min = 594.00 kg in m3 mixture ...
--- Max = 992.60 kg in m3 mixture ...
--- Output: Concrete Compressive Strength:
--- Min = 2.33 MPa ...
--- Max = 82.60 MPa ...

--- Part 04: Basic statistics on concrete age/compressive strength ...

--- Min age = 1.00 days ...
--- Max age = 365.00 days ...
--- Average age = 45.66 days ...

--- Min strength = 2.33 MPa ...
--- Max strength = 82.60 MPa ...
--- Average strength = 35.82 MPa ...

--- Part 05: Transform data arrays into lists ...

--- Part 06: Scatter chart of concrete strength (MPa) vs age (days) ...

--- Part 07: Organize strength data into intervals: 0-25, 25-50, 50-75, 75-100 ...

2.33 0 0-20
3.32 0 0-20
4.57 0 0-20
4.78 0 0-20

.... lines of output removed ...

79.3 3 60-80
79.4 3 60-80
79.99 3 60-80
80.2 4 80-100
81.75 4 80-100
82.6 4 80-100

--- Part 08: Create histogram of Concrete Compressive Strengths (MPa) ...

9

--- Part 09: Generate cumulative frequency data and graph ...

--- No data points = 1030 ...
--- == ...
--- Leave TestMaterialsConcreteStrength02.main() ...

Clearly, by itself age (days) is not a good predictor of concrete compressive strength (MPa).

10

Question 2: 10 points.

Problem Statement: With only 24 counties, Maryland is a relatively small state. And yet, according to the
American Road and Transportation Builders Association, there are 5,484 highway bridges in Maryland, and
250 of them (or 4.6 percent) are classified as structurally deficient.

Highway bridges in Maryland are given one of three ratings: GOOD, FAIR and POOR (or worse). The
term structurally deficient means that one or more of the bridges key elements – superstructure, substructure,
foundation – are in poor condition (or worse). This question takes a first step toward understanding: (1) how
many bridges there are in each county?, (2) which counties contain bridges that have a POOR condition
rating?, and (3) who is responsible for the maintenance of these bridges? To get a handle on these concerns
we will need a map of Maryland counties and a test program to read and process highway bridge inventory,
including condition ratings, location, ownership and maintenance.

Test Program 01: Maryland Counties. The test program:

python-code.d/io/TestReadMarylandCountiesGEOJSON01.py reads data from:

python-code.d/data/geography/maryland/Maryland-County-Boundaries-Generalized.geojson

Figure 4: 24 counties in Maryland, including Baltimore City.

and then creates a dictionary of key, value pairs, connecting names of the counties (keys) to WKT (well
known text) representations for geometry of the county boundary (values). Individual counties are loaded
into GeoPandas, assigned colors, and visualized as shown Figure 4.

US counties are referenced by FIPS (Federal Information Processing Standard), a 5-digit code to rep-

11

resent a a state (first two digits) followed by a county (next three digits). For Maryland the details are as
follows:

Maryland State Code Prefix: 24

COUNTY FIPS Codes
001 Allegany County 025 Harford County
003 Anne Arundel County 027 Howard County
510 Baltimore City 029 Kent County
005 Baltimore County 031 Montgomery County
009 Calvert County 033 Prince George’s County
011 Caroline County 035 Queen Anne’s County
013 Carroll County 037 St.Mary’s County
015 Cecil County 039 Somerset County
017 Charles County 041 Talbot County
019 Dorchester County 043 Washington County
021 Frederick County 045 Wicomico County
023 Garrett County 047 Worcester County

Test Program 02: Highway Bridge Inventory. The test program:

python-code.d/io/TestReadHighwayBridgeSHP01.py reads data from:

python-code.d/data/bridges/maryland/Bridge Condition NHS 2017.shp ...

a collection of 1,932 highway bridges in Maryland. Data for each bridge is organized into 28 columns:

Column Header Description:

0 Item_8_Str Structure number.
1 Item_5_D_R Route number of the inventory route.
2 Item_3_Cou County code.
3 Item_6a_Fe Features Intersected.
4 Item_7_Fac Facility Carried by Structure.
5 Item_9_Loc Location
6 Item_11_Mi Kilometerpoint (location of bridge on base highway network).
7 Item_12_Ba Base highway network.
8 Item_16_La Latitude (xx degrees xx minutes xx.xx seconds).
9 Item_17_Lo Longitude (xx degrees xx minutes xx.xx seconds).

10 Item_21_Ma Maintenance Responsibility
11 Item_22_Ow Owner
12 Item_26_Fu Functional Classification of Inventory Route (2 digits).
13 Item_48_Sp Length of Maximum Span (xxx meters).
14 Item_49_St Structure Length (xxx meters).
15 Item_51_Wi Bridge Roadway Width, Curb-to-Curb (m)
16 Item_52_Wi Bridge Deck Width (m)
17 Item_58_Co Bridge Deck Condition.
18 Item_59_Co Superstructure Condition.
19 Item_60_Co Substructure Condition.
20 Item_61_Co Channel and Channel Protection Condition.

12

21 Item_62_Co Culverts Conditioon.
22 Item_104_H Highway System of Inventory Route.
23 Item_105_F Federal Lands Highways
24 MinimumCon Minumum Condition.
25 ConditionR Condition Rating
26 DeckArea_S Deck Area (mˆ2).
27 geometry Location of bridge: POINT (lat, long) ...

A sample of output is:

--- Bridge 199 ...
--- Structure Number: 100000160162015 ...
--- Route Number of Inventory Route: 00095 ...
--- County Code: 033 ...
--- Features Intersected: SUITLAND ROAD ...
--- Facility Carried by Structure: IS 95 IL ...
--- Location: 1.71 MILES SOUTH OF MD 4 ...
--- Kilometerpoint: 0014576 ...
--- Base highway network: 1 ...
--- Latitude (degree mins secs): 38491861 ...
--- Longitude (degree mins secs): 076531591 ...
--- Maintenance Responsibility: 01 ...
--- Owner: 01 ...
--- Functional Classification of Inventory Route: 11 ...
--- Length of Maximum Span (m): 00125 ...
--- Structure Length (m): 000448 ...
--- Bridge Roadway Width, Curb-to-Curb (m): 0207 ...
--- Bridge Deck Width (m): 0213 ...
--- Bridge Deck Condition: 4 ...
--- Superstructure Condition: 5 ...
--- Substructure Condition: 5 ...
--- Channel and Channel Protection Condition: N ...
--- Culverts Conditioon: N ...
--- Highway System of Inventory Route: 1 ...
--- Federal Lands Highways: 0 ...
--- Minimum Condition: 4 ...
--- Bridge Rating: POOR ...
--- Deck Area (mˆ2): 954.24 ...
--- Geometry POINT (-76.88776469841079 38.82183509305251) ...

Additional information on the codes (e.g., county code: 033; maintenance responsibility: 66) are given
by FIPS, and tables within Items 22 and 23 of FHWA-PD-96-001, Recording and Coding Guide for the
Structure Inventory and Appraisal of the Nation’s Bridges.

13

What to do? Write a Python program that will:

1. Create dictionaries linking: (1) county codes to county names, and (2) maintenance agency codes to
agency names responsible for maintenance, e.g.,

County code: 033 ---> Prince George’s County.
Maintenance code: 01 ---> State Highway Agency.

2. Load the contents of Bridge Condition NHS 2017.shp. Create a plot of the bridges within PG County
– each bridge can be drawn as a single point (e.g., POINT (-76.88 38.82)) in GeoPandas.

3. Identify the number of bridges within each county having GOOD, FAIR and POOR ratings. Output
these numbers in a tidy table.

4. Generate a list of bridges having a POOR rating, along with details of ownership and and maintenance
responsibility.

Note 1: For item 2, I originally had in mind a plot for all of the bridges in Maryland, but I think that the result
will just be a sea of blue dots. Focusing on a single county might give a picture that is more reasonable.

Note 2: For item 3, there are a number of ways of approaching the problem. Perhaps the simplest approach
is to create three dictionaries – poor condition bridges, fair condition bridges, and good condition bridges,
with the key being the county and the value being the number of bridges in the county.

Python Source Code:

===
TestReadHighwayBridge02.py: Preliminary analysis of 1,932 highway bridges
in Maryland. Step-by-step details:
#
--- Read GEOJSON datafile for county boundaries of Maryland.
--- Read and process shp file containing data on
highway bridges in Maryland.
--- Create dictionary of FIPS codes for MD counties ...
--- Create dictionary of maintenance codes for highway bridge repair.
--- Create dictionary of maintenance responsibility ...
--- Create plot of bridges in PG county.
#
Written by: Mark Austin March 2025
===

import numpy as np
import pandas as pd
import geopandas

import math

14

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d

from pandas import DataFrame
from pandas import Series

import geopandas as gpd

from prettytable import PrettyTable

==============================
main method ...
==============================

def main():
print("--- Enter TestReadHighwayBridge02.main() ... ");
print("--- == ... ");
print("--- ");

Part 01: Create dictionary of FIPS codes for MD counties ...
--

print("--- ");
print("--- Part 01: Create dictionary of FIPS codes for MD counties ... ");
print("--- -- ");
print("--- ");

mdcounty = {};
mdcounty[’001’] = "Allegany County";
mdcounty[’003’] = "Anne Arundel County";
mdcounty[’510’] = "Baltimore City";
mdcounty[’005’] = "Baltimore County";
mdcounty[’009’] = "Calvert County";
mdcounty[’011’] = "Caroline County";
mdcounty[’013’] = "Carroll County";
mdcounty[’015’] = "Cecil County";
mdcounty[’017’] = "Charles County";
mdcounty[’019’] = "Dorchester County";
mdcounty[’021’] = "Frederick County";
mdcounty[’023’] = "Garrett County";
mdcounty[’025’] = "Hartford County";
mdcounty[’027’] = "Howard County";
mdcounty[’029’] = "Kent County";
mdcounty[’031’] = "Montgomery County";
mdcounty[’033’] = "Prince George’s County";
mdcounty[’035’] = "Queen Anne’s County";
mdcounty[’037’] = "St. Mary’s County";
mdcounty[’039’] = "Somerset County";
mdcounty[’041’] = "Talbot County";
mdcounty[’043’] = "Washington County";
mdcounty[’045’] = "Wicomico County";
mdcounty[’047’] = "Worcester County";

Print dictionary of counties

15

print("--- Dictionary of Counties: ");
countyKeyList = list(mdcounty.keys())
for key in countyKeyList:

print("--- key = {:s} --> value = {:s} ...".format(key, mdcounty.get(key)));

Part 02: Dictionary of condition ratings.

print("--- ");
print("--- Part 02: Dictionary of Condition Ratings ... ");
print("--- -- ");
print("--- ");

conditionrating = {};
conditionrating[’N’] = "Not Applicable";
conditionrating[’9’] = "Excellent Condition";
conditionrating[’8’] = "Very Good Condition (no problems noted)";
conditionrating[’7’] = "Good Condition (some minor problems)";
conditionrating[’6’] = "Satisfactory Condition (structural elements show minor deterioration)";
conditionrating[’5’] = "Fair Condition";
conditionrating[’4’] = "Poor Condition";
conditionrating[’3’] = "Serious Condition";
conditionrating[’2’] = "Critical Condition (advanced deterioration of primary structural elements)";
conditionrating[’1’] = "Imminent Failure Condition (bridge is closed to traffic)";
conditionrating[’0’] = "Failed Condition (out of service -- beyond corrective action)";

Print dictionary of condition ratings ...

print("--- Dictionary of Condition Ratings:");
conditionratingKeyList = list(conditionrating.keys())
for key in conditionratingKeyList:

print("--- key = {:s} --> value = {:s} ...".format(key, conditionrating.get(key)));

Part 03: Dictionary of maintenance responsibility ...
--

print("--- ");
print("--- Part 03: Create dictionary of maintenance responsibility ... ");
print("--- -- ");
print("--- ");

maintenanceresponsibility = {};
maintenanceresponsibility[’01’] = "State Highway Agency";
maintenanceresponsibility[’02’] = "County Highway Agency";
maintenanceresponsibility[’03’] = "Town or Township Highway Agency";
maintenanceresponsibility[’04’] = "City or Municipal Highway Agency";
maintenanceresponsibility[’11’] = "State Park, Forest, or Reservation Agency";
maintenanceresponsibility[’12’] = "Local Park, Forest, or Reservation Agency";
maintenanceresponsibility[’21’] = "Other State Agencies";
maintenanceresponsibility[’25’] = "Other Local Agencies";
maintenanceresponsibility[’26’] = "Private (other than railroad)";
maintenanceresponsibility[’27’] = "Railroad";
maintenanceresponsibility[’31’] = "State Toll Authority";
maintenanceresponsibility[’32’] = "Local Toll Authority";

16

maintenanceresponsibility[’60’] = "Other Federal Authority";
maintenanceresponsibility[’61’] = "Indian Tribal Government";
maintenanceresponsibility[’62’] = "Bureau of Indian Affairs";
maintenanceresponsibility[’63’] = "Bureau of Fish and Wildlife";
maintenanceresponsibility[’64’] = "US Forest Service";
maintenanceresponsibility[’66’] = "National Park Service";
maintenanceresponsibility[’67’] = "Tennessee Valley Authority";
maintenanceresponsibility[’68’] = "Bureau of Land Management";
maintenanceresponsibility[’69’] = "Bureau of Reclamation";
maintenanceresponsibility[’70’] = "Corps of Engineers (Civil)";
maintenanceresponsibility[’71’] = "Corps of Engineers (Military)";
maintenanceresponsibility[’72’] = "Air Force";
maintenanceresponsibility[’73’] = "Navy/Marines";
maintenanceresponsibility[’74’] = "Army";
maintenanceresponsibility[’75’] = "NASA";
maintenanceresponsibility[’76’] = "Metropolitan Washington Airports Service";
maintenanceresponsibility[’80’] = "Unknown";

Print dictionary of maintenance responsibility‘...

print("--- Dictionary of Maintenance Responsibilities");
maintenanceresponsibilityKeyList = list(maintenanceresponsibility.keys())
for key in maintenanceresponsibilityKeyList:

print("--- key = {:s} --> value = {:s} ...".format(key, maintenanceresponsibility.get(key)));

Part 04: Dictionary of bridge owners ...
--

print("--- ");
print("--- Part 04: Dictionary of bridge owners ... ");
print("--- -- ");
print("--- ");

bridgeowner = {};
bridgeowner[’01’] = "State Highway Agency";
bridgeowner[’02’] = "County Highway Agency";
bridgeowner[’03’] = "Town or Township Highway Agency";
bridgeowner[’04’] = "City or Municipal Highway Agency";
bridgeowner[’11’] = "State Park, Forest, or Reservation Agency";
bridgeowner[’12’] = "Local Park, Forest, or Reservation Agency";
bridgeowner[’21’] = "Other State Agencies";
bridgeowner[’25’] = "Other Local Agencies";
bridgeowner[’26’] = "Private (other than railroad)";
bridgeowner[’27’] = "Railroad";
bridgeowner[’31’] = "State Toll Authority";
bridgeowner[’32’] = "Local Toll Authority";
bridgeowner[’60’] = "Other Federal Authority";
bridgeowner[’61’] = "Indian Tribal Government";
bridgeowner[’62’] = "Bureau of Indian Affairs";
bridgeowner[’63’] = "Bureau of Fish and Wildlife";
bridgeowner[’64’] = "US Forest Service";
bridgeowner[’66’] = "National Park Service";
bridgeowner[’67’] = "Tennessee Valley Authority";
bridgeowner[’68’] = "Bureau of Land Management";
bridgeowner[’69’] = "Bureau of Reclamation";

17

bridgeowner[’70’] = "Corps of Engineers (Civil)";
bridgeowner[’71’] = "Corps of Engineers (Military)";
bridgeowner[’72’] = "Air Force";
bridgeowner[’73’] = "Navy/Marines";
bridgeowner[’74’] = "Army";
bridgeowner[’75’] = "NASA";
bridgeowner[’76’] = "Metropolitan Washington Airports Service";
bridgeowner[’80’] = "Unknown";

Print dictionary of maintenance responsibility‘...

print("--- Dictionary of Bridge Owners");
bridgeownerKeyList = list(bridgeowner.keys())
for key in bridgeownerKeyList:

print("--- key = {:s} --> value = {:s} ...".format(key, bridgeowner.get(key)));

Part 05: Load dataset of Maryland counties ...
--

print("--- ");
print("--- Part 05: Load dataset of Maryland counties into GeoPandas ... ");
print("--- --- ");
print("--- ");

Read dataset into geopandas

datafile01 = "data/geography/maryland/Maryland-County-Boundaries-Generalized.geojson";
counties = gpd.read_file(datafile01)
gdf01 = gpd.GeoDataFrame (counties)

Create dictionary of US State Boundaries ...

countyboundaries = {}

Assemble dictionary of county boundaries ...

i = 1
for index, row in gdf01.iterrows():

county00 = str(row[0]); # <-- county ID ...
county01 = str(row[1]); # <-- county ...
county02 = str(row[2]); # <-- district ...
county03 = row[3]; # <-- county FIP ...
county04 = row[4]; # <-- county number ...
geometry09 = row[9]; # <-- geometry ...

Add county boundary to dictionary of boundaries ...

countyboundaries[county01] = str(geometry09);

Summary of data ...

print("--- ");
print("--- County {:s}: {:s} ...".format(county00, county01));
print("--- District: {:s} ...".format(county02));
print("--- WKT Geometry: {:s} ...".format(str(geometry09)[0:70])); # <-- This works !!!

18

print("--- ");
print("--- Part 06: Load highway bridge data file ... ");
print("--- -- ");
print("--- ");

datapath01 = "data/bridges/maryland/Bridge_Condition_NHS_2017.shp";
mdbridges = geopandas.read_file(datapath01)

Dataframe description ...

print(mdbridges.describe())
print(mdbridges.info())
print(mdbridges.shape)

Dataset column headings ...

for col in mdbridges.columns:
print(col)

print("--- ");
print("--- Part 07: Assemble table of highway bridge conditions ... ");
print("--- -- ");
print("--- ");

table01 = PrettyTable(["County", "GOOD", "FAIR", "POOR"])
table01.title = "Bridge Conditions in Maryland";

Loop over counties; count bridges in good, fair and poor condition ...

for county in mdcounty.keys():
for cond in ["GOOD"]:

ng = len(mdbridges[mdbridges["Item_3_Cou"].isin([county]) &
mdbridges["ConditionR"].isin([cond])])

for cond in ["FAIR"]:
nf = len(mdbridges[mdbridges["Item_3_Cou"].isin([county]) &

mdbridges["ConditionR"].isin([cond])])

for cond in ["POOR"]:
np = len(mdbridges[mdbridges["Item_3_Cou"].isin([county]) &

mdbridges["ConditionR"].isin([cond])])

table01.add_row([mdcounty[county], ng, nf, np], divider=True);

print(table01);

print("--- ");
print("--- Part 08: Print details of bridges in POOR condition ... ");
print("--- --- ");
print("--- ");

poorconditionbridges = mdbridges[mdbridges["ConditionR"].isin(["POOR"])]

i = 1

19

for index, row in poorconditionbridges.iterrows():
bridge00 = str(row.iloc[0]);
bridge01 = str(row.iloc[1]);
bridge02 = str(row.iloc[2]);
bridge03 = str(row.iloc[3]);
bridge04 = str(row.iloc[4]);
bridge05 = str(row.iloc[5]);
bridge06 = str(row.iloc[6]);
bridge07 = str(row.iloc[7]);
bridge08 = str(row.iloc[8]);
bridge09 = str(row.iloc[9]);
bridge10 = str(row.iloc[10]);
bridge11 = str(row.iloc[11]);
bridge12 = str(row.iloc[12]);
bridge13 = str(row.iloc[13]);
bridge14 = str(row.iloc[14]);
bridge15 = str(row.iloc[15]);
bridge16 = str(row.iloc[16]);
bridge17 = str(row.iloc[17]);
bridge18 = str(row.iloc[18]);
bridge19 = str(row.iloc[19]);
bridge20 = str(row.iloc[20]);
bridge21 = str(row.iloc[21]);
bridge22 = str(row.iloc[22]);
bridge23 = str(row.iloc[23]);
bridge24 = str(row.iloc[24]);
bridge25 = str(row.iloc[25]);
bridge26 = str(row.iloc[26]);
geometry27 = row.iloc[27];

Print details of bridge in poor condition

print("--- ");
print("--- Bridge {:d} ...".format(i));
print("--- Structure Number: {:s} ...".format(bridge00));
print("--- County Code: {:s} ...".format(bridge02));
print("--- County: {:s} ...".format(mdcounty.get(bridge02)));
print("--- Maintenance: {:s} ...".format(maintenanceresponsibility.get(bridge10)));
print("--- Geometry {:s} ...".format(str(geometry27)));
print("--- Owner: {:s} ...".format(bridgeowner.get(bridge11)));
print("--- Bridge Rating: {:s} ...".format(bridge25));
print("--- Minimum Condition: {:s} ...".format(bridge24));
print("--- Bridge Deck Condition: {:s} ...".format(bridge17));
print("--- Superstructure Condition: {:s} ...".format(bridge18));
print("--- Substructure Condition: {:s} ...".format(bridge19));
print("--- Channel and Channel Protection Condition: {:s} ...".format(bridge20));
print("--- Culverts Condition: {:s} ...".format(bridge21));

i = i + 1;

print("--- ");
print("--- Part 09: Plot of Bridges in PG County ... ");
print("--- -- ");
print("--- ");

20

Part 1: Retrieve boundary of Prince George’s County ...

print("--- Retrieve boundary of Prince George’s County ... ");

key = ’Prince George\’s’
pgCountyBoundary = countyboundaries.get(key)
print("--- PG County = {:s} --> {:s} ...".format(key, str(pgCountyBoundary)[0:70]))

g01 = gpd.GeoSeries.from_wkt([str(pgCountyBoundary)]);
df17 = g01.to_frame(name=’geometry’);
geo01 = gpd.GeoDataFrame(df17, geometry=’geometry’)
geo01.geometry;

Part 2: Setup plot ...

ax = geo01.plot(color=’red’, edgecolor=’black’)
ax.set_aspect(’equal’)

Create plot of PG county boundary ...

geo01.plot(ax=ax, color=’white’, edgecolor=’blue’, linewidth = 1)

Part 3: Filter dataframe to only keep bridges in PG county ...

options = [’033’]
pgbridges = mdbridges [mdbridges[’Item_3_Cou’].isin(options)].copy()

print(’--- PG bridges dataframe :\n’, pgbridges)

Create plot of PG county bridges ...

gdf02 = gpd.GeoDataFrame(pgbridges, crs=’epsg:4326’)
gdf02.geometry

gdf02.plot(ax=ax, color=’green’, edgecolor=’black’)

plt.xlabel(’longitude’)
plt.ylabel(’latitude’)
plt.title("Bridges in PG County")
plt.grid(True)
plt.show()

print("--- == ... ");
print("--- Leave TestReadHighwayBridge02.main() ... ");

==
call the main method ...
==

main()

Program Output: The abbreviated textual output is:

--- Enter TestReadHighwayBridge02.main() ...

21

--- == ...

--- Part 01: Create dictionary of FIPS codes for MD counties ...
--- --

--- Dictionary of Counties:
--- key = 001 --> value = Allegany County ...
--- key = 003 --> value = Anne Arundel County ...
--- key = 510 --> value = Baltimore City ...

.... output removed ...

--- key = 033 --> value = Prince George’s County ...

.... output removed ...

--- key = 047 --> value = Worcester County ...

--- Part 02: Dictionary of Condition Ratings ...
--- --

--- Dictionary of Condition Ratings:
--- key = N --> value = Not Applicable ...
--- key = 9 --> value = Excellent Condition ...
--- key = 8 --> value = Very Good Condition (no problems noted) ...
--- key = 7 --> value = Good Condition (some minor problems) ...
--- key = 6 --> value = Satisfactory Condition (structural elements show minor deterioration) ...
--- key = 5 --> value = Fair Condition ...
--- key = 4 --> value = Poor Condition ...
--- key = 3 --> value = Serious Condition ...
--- key = 2 --> value = Critical Condition (advanced deterioration of primary structural elements) ...
--- key = 1 --> value = Imminent Failure Condition (bridge is closed to traffic) ...
--- key = 0 --> value = Failed Condition (out of service -- beyond corrective action) ...

--- Part 03: Create dictionary of maintenance responsibility ...
--- --

--- Dictionary of Maintenance Responsibilities
--- key = 01 --> value = State Highway Agency ...
--- key = 02 --> value = County Highway Agency ...
--- key = 03 --> value = Town or Township Highway Agency ...
--- key = 04 --> value = City or Municipal Highway Agency ...
--- key = 11 --> value = State Park, Forest, or Reservation Agency ...
--- key = 12 --> value = Local Park, Forest, or Reservation Agency ...
--- key = 21 --> value = Other State Agencies ...
--- key = 25 --> value = Other Local Agencies ...
--- key = 26 --> value = Private (other than railroad) ...
--- key = 27 --> value = Railroad ...
--- key = 31 --> value = State Toll Authority ...
--- key = 32 --> value = Local Toll Authority ...
--- key = 60 --> value = Other Federal Authority ...
--- key = 61 --> value = Indian Tribal Government ...
--- key = 62 --> value = Bureau of Indian Affairs ...
--- key = 63 --> value = Bureau of Fish and Wildlife ...
--- key = 64 --> value = US Forest Service ...

22

--- key = 66 --> value = National Park Service ...
--- key = 67 --> value = Tennessee Valley Authority ...
--- key = 68 --> value = Bureau of Land Management ...
--- key = 69 --> value = Bureau of Reclamation ...
--- key = 70 --> value = Corps of Engineers (Civil) ...
--- key = 71 --> value = Corps of Engineers (Military) ...
--- key = 72 --> value = Air Force ...
--- key = 73 --> value = Navy/Marines ...
--- key = 74 --> value = Army ...
--- key = 75 --> value = NASA ...
--- key = 76 --> value = Metropolitan Washington Airports Service ...
--- key = 80 --> value = Unknown ...

--- Part 04: Dictionary of bridge owners ...
--- --

--- Dictionary of Bridge Owners
--- key = 01 --> value = State Highway Agency ...
--- key = 02 --> value = County Highway Agency ...
--- key = 03 --> value = Town or Township Highway Agency ...
--- key = 04 --> value = City or Municipal Highway Agency ...
--- key = 11 --> value = State Park, Forest, or Reservation Agency ...
--- key = 12 --> value = Local Park, Forest, or Reservation Agency ...
--- key = 21 --> value = Other State Agencies ...
--- key = 25 --> value = Other Local Agencies ...
--- key = 26 --> value = Private (other than railroad) ...
--- key = 27 --> value = Railroad ...
--- key = 31 --> value = State Toll Authority ...
--- key = 32 --> value = Local Toll Authority ...
--- key = 60 --> value = Other Federal Authority ...
--- key = 61 --> value = Indian Tribal Government ...
--- key = 62 --> value = Bureau of Indian Affairs ...
--- key = 63 --> value = Bureau of Fish and Wildlife ...
--- key = 64 --> value = US Forest Service ...
--- key = 66 --> value = National Park Service ...
--- key = 67 --> value = Tennessee Valley Authority ...
--- key = 68 --> value = Bureau of Land Management ...
--- key = 69 --> value = Bureau of Reclamation ...
--- key = 70 --> value = Corps of Engineers (Civil) ...
--- key = 71 --> value = Corps of Engineers (Military) ...
--- key = 72 --> value = Air Force ...
--- key = 73 --> value = Navy/Marines ...
--- key = 74 --> value = Army ...
--- key = 75 --> value = NASA ...
--- key = 76 --> value = Metropolitan Washington Airports Service ...
--- key = 80 --> value = Unknown ...

--- Part 05: Load dataset of Maryland counties into GeoPandas ...
--- ---

--- County 1: Allegany ...
--- District: 6.0 ...
--- WKT Geometry: MULTIPOLYGON (((-78.38474173299994 39.624211004000074, -78.38467783799 ...

--- County 2: Anne Arundel ...

23

--- District: 5.0 ...
--- WKT Geometry: MULTIPOLYGON (((-76.53694920699996 38.848001004000025, -76.52852073799 ...

... output removed ...

--- County 24: Worcester ...
--- District: 1.0 ...
--- WKT Geometry: MULTIPOLYGON (((-75.09252954399994 38.32319208900003, -75.092733840999 ...

--- Part 06: Load highway bridge data file ...
--- --

DeckArea_S
count 1932.000000
mean 2775.213354
std 6121.349448
min 19.200000
25% 632.622500
50% 1180.025000
75% 2548.180000
max 96827.520000
<class ’geopandas.geodataframe.GeoDataFrame’>
RangeIndex: 1932 entries, 0 to 1931
Data columns (total 28 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 Item_8_Str 1932 non-null object
1 Item_5_D_R 1932 non-null object
2 Item_3_Cou 1932 non-null object
3 Item_6a_Fe 1932 non-null object
4 Item_7_Fac 1932 non-null object
5 Item_9_Loc 1932 non-null object
6 Item_11_Mi 1932 non-null object
7 Item_12_Ba 1894 non-null object
8 Item_16_La 1932 non-null object
9 Item_17_Lo 1932 non-null object
10 Item_21_Ma 1932 non-null object
11 Item_22_Ow 1932 non-null object
12 Item_26_Fu 1932 non-null object
13 Item_48_Sp 1932 non-null object
14 Item_49_St 1932 non-null object
15 Item_51_Wi 1932 non-null object
16 Item_52_Wi 1932 non-null object
17 Item_58_Co 1932 non-null object
18 Item_59_Co 1932 non-null object
19 Item_60_Co 1932 non-null object
20 Item_61_Co 1932 non-null object
21 Item_62_Co 1932 non-null object
22 Item_104_H 1932 non-null object
23 Item_105_F 1932 non-null object
24 MinimumCon 1932 non-null object
25 ConditionR 1932 non-null object
26 DeckArea_S 1932 non-null float64
27 geometry 1932 non-null geometry

dtypes: float64(1), geometry(1), object(26)

24

memory usage: 422.8+ KB
None
(1932, 28)

--- Part 07: Assemble table of highway bridge conditions ...
--- --

+---+
| Bridge Conditions in Maryland |
+------------------------+------+------+------+
| County | GOOD | FAIR | POOR |
+------------------------+------+------+------+
| Allegany County | 32 | 47 | 1 |
+------------------------+------+------+------+
| Anne Arundel County | 69 | 109 | 0 |
+------------------------+------+------+------+
| Baltimore City | 36 | 184 | 16 | <--- Just the worst !!!!
+------------------------+------+------+------+
| Baltimore County | 89 | 227 | 5 |
+------------------------+------+------+------+
| Calvert County | 2 | 10 | 0 |
+------------------------+------+------+------+
| Caroline County | 1 | 8 | 0 |
+------------------------+------+------+------+
| Carroll County | 10 | 14 | 0 |
+------------------------+------+------+------+
| Cecil County | 7 | 39 | 1 |
+------------------------+------+------+------+
| Charles County | 6 | 6 | 0 |
+------------------------+------+------+------+
| Dorchester County | 2 | 5 | 0 |
+------------------------+------+------+------+
| Frederick County | 28 | 78 | 4 |
+------------------------+------+------+------+
| Garrett County | 4 | 23 | 1 |
+------------------------+------+------+------+
| Hartford County | 13 | 30 | 0 |
+------------------------+------+------+------+
| Howard County | 22 | 94 | 0 |
+------------------------+------+------+------+
| Kent County | 0 | 3 | 1 |
+------------------------+------+------+------+
| Montgomery County | 96 | 100 | 0 |
+------------------------+------+------+------+
| Prince George’s County | 110 | 162 | 6 |
+------------------------+------+------+------+
| Queen Anne’s County | 2 | 18 | 3 |
+------------------------+------+------+------+
| St. Mary’s County | 0 | 2 | 0 |
+------------------------+------+------+------+
| Somerset County | 1 | 9 | 0 |
+------------------------+------+------+------+
| Talbot County | 0 | 12 | 0 |
+------------------------+------+------+------+
| Washington County | 23 | 85 | 2 |

25

+------------------------+------+------+------+
| Wicomico County | 9 | 35 | 0 |
+------------------------+------+------+------+
| Worcester County | 8 | 22 | 0 |
+------------------------+------+------+------+

--- Part 08: Print details of bridges in POOR condition ...
--- ---

--- Bridge 1 ...
--- Structure Number: 200000BC5103010 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Geometry POINT (-76.63380581671525 39.26919245034452) ...
--- Owner: City or Municipal Highway Agency ...
--- Bridge Rating: POOR ...
--- Minimum Condition: 4 ...
--- Bridge Deck Condition: 5 ...
--- Superstructure Condition: 4 ...
--- Substructure Condition: 4 ...
--- Channel and Channel Protection Condition: N ...
--- Culverts Condition: N ...

... details of individual bridges removed ...

--- Bridge 17 ...
--- County Code: 021 ...
--- County: Frederick County ...
--- Maintenance: State Highway Agency ...

--- Bridge 18 ...
--- County Code: 033 ...
--- County: Prince George’s County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 19 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...

--- Bridge 20 ...
--- County Code: 005 ...
--- County: Baltimore County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 21 ...
--- County Code: 023 ...
--- County: Garrett County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 22 ...

26

--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 23 ...
--- County Code: 035 ...
--- County: Queen Anne’s County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 24 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 25 ...
--- County Code: 021 ...
--- County: Frederick County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 26 ...
--- County Code: 033 ...
--- County: Prince George’s County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 27 ...
--- County Code: 015 ...
--- County: Cecil County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 28 ...
--- County Code: 021 ...
--- County: Frederick County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 29 ...
--- County Code: 029 ...
--- County: Kent County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 30 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 31 ...
--- County Code: 043 ...

27

--- County: Washington County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 32 ...
--- County Code: 005 ...
--- County: Baltimore County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 33 ...
--- County Code: 035 ...
--- County: Queen Anne’s County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 34 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 35 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 36 ...
--- County Code: 001 ...
--- County: Allegany County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 37 ...
--- County Code: 035 ...
--- County: Queen Anne’s County ...
--- Maintenance: State Highway Agency ...
--- Owner: State Highway Agency ...

--- Bridge 38 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 39 ...
--- County Code: 510 ...
--- County: Baltimore City ...
--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Bridge 40 ...
--- County Code: 510 ...
--- County: Baltimore City ...

28

--- Maintenance: City or Municipal Highway Agency ...
--- Owner: City or Municipal Highway Agency ...

--- Part 09: Plot of Bridges in PG County ...
--- --

--- Retrieve boundary of Prince George’s County ...
--- PG County = Prince George’s --> MULTIPOLYGON (((-77.03704928799993 38.712400983000066, -77.03105626199 ...
--- PG bridges dataframe :

Item_8_Str Item_5_D_R ... DeckArea_S geometry
5 100000160269030 00197 ... 934.40 POINT (-76.76875 39.02009)
8 100000160046010 00214 ... 2597.85 POINT (-76.80153 38.89876)
...
1930 3530035P0000000 00001 ... 496.07 POINT (-76.83929 39.0559)
1931 3530033P0000000 00001 ... 1533.60 POINT (-76.90208 38.96722)

[278 rows x 28 columns]
--- == ...
--- Leave TestReadHighwayBridge02.main() ...

29

Question 3: 10 points.

Problem Statement: As shown in Figure 5 below, rectangles may be defined by the (x,y) coordinates of
corner points that are diagonally opposite.

y

x

Point (x2, y2)

Point(x1, y1)

Figure 5: Definition of a rectangle via diagonally opposite corner points.

With this definition in place, the following script of code is a basic implementation of a class for creating
and working with rectangle objects.

===
Rectangle01.py: Very basic implementation of rectangle objects, where
corner points are defined by varibles (x1, y1) and (x2, y2).
#
Written by: Mark Austin September, 2024
===

class Rectangle:

def __init__(self, x1, y1, x2, y2):
self.x1 = x1;
self.y1 = y1;
self.x2 = x2;
self.y2 = y2;
self.name = "";

Set rectangle name ...

def setName(self, name):
self.name = name;

Compute perimeter of rectangle ..

30

def getPerimeter (self):
perimeter = 2*(abs(self.x2-self.x1) + abs(self.y2-self.y1))
return perimeter

Compute area of rectangle ..

def getArea (self):
area = abs(self.x2-self.x1)*abs(self.y2-self.y1);
return area

String represention of rectangle ...

def __str__(self):
rectangleinfo = [];

... details removed ...

return "".join(rectangleinfo);

The Rectangle class uses variables x1, y1, x2, and y2 to define the corner points, and has a method to create
rectangle objects (i.e, init), convert the details of a rectangle object into a string format (i.e., str), and
compute the rectangle area and perimeter (i.e., getArea() and getPerimeter()).

A script of test program usage is as follows:

prompt >>
prompt >> python3 TestRectangle01.py
--- Enter TestRectangle01.main() ...
--- =============================== ...
--- Part 1: Create and print rectangle A ...

--- Rectangle: A ...
--- ---
--- Corner Point (x1,y1) = (1.00, 2.00) ...
--- Corner Point (x2,y2) = (3.00, 4.00) ...
--- Perimeter = 8.00 ...
--- Area = 4.00 ...
--- ---

--- Part 2: Create and print rectangle B ...

--- Rectangle: B ...
--- ---
--- Corner Point (x1,y1) = (0.00, 0.00) ...
--- Corner Point (x2,y2) = (6.00, 5.00) ...
--- Perimeter = 22.00 ...
--- Area = 30.00 ...
--- ---

--- =============================== ...
--- Finished TestRectangle01.main() ...
prompt >> exit

31

Source Code: Full details of the rectangle code and test program can be found in: python-code.d/classes/ ...

Question: Now suppose that instead of using the variables x1, y1, x2 and y2 to define the corner points, we
use the class Point:

import math

class Point:

def __init__(self, xCoord=0, yCoord=0):
self.__xCoord = xCoord
self.__yCoord = yCoord

get x coordinate

def get_xCoord(self):
return self.__xCoord

..... details of other functions removed ...

The appropriate modification for Rectangle is:

from Point import Point

class Rectangle:

def __init__(self, x1, y1, x2, y2):
self.pt1 = Point(x1,y1) # <-- create lower corner point ...
self.pt2 = Point(x2,y2) # <-- create upper corner point ...

..... details rectangle removed
}

The arrangement of Rectangle and Point classes can be visualized as follows:

PointTestRectangle
2

Rectangle

Figure 6: Test program script and classes in a rectangle system.

What to do? Fill in the missing details (i.e., constructors and str method) of class Point. Modify the code
in Rectangle to use the Point class. The resulting program should have essentially the same functionality as
the original implementation (v1) of Rectangle.

Python Source Code: The source code is comprised of three Python files: Point.py, Rectangle.py and
TestRectangle.py.

32

Abbreviated Object Source Code: Python.py

===
Point class that demonstrates overloading of operators
for arithmetic and relational expressions.
#
Modified by: Mark Austin October, 2024
===

import math

class Point:

def __init__(self, xCoord=0, yCoord=0):
self.xCoord = xCoord
self.yCoord = yCoord

Get/set X, Y coordinates

def getX(self):
return self.xCoord

def setX(self, xCoord):
self.xCoord = xCoord

Get/set Y coordinate

def getY(self):
return self.yCoord

def setY(self, yCoord):
self.yCoord = yCoord

Get current position

def get_position(self):
return self.__xCoord, self.__yCoord

Move x & y coordinates by p & q

def move(self, p, q):
self.xCoord += p
self.yCoord += q

Compute distance between two points ...

def distance(self, second):
x_d = self.xCoord - second.xCoord
y_d = self.yCoord - second.yCoord
return (x_d**2 + y_d**2)**0.5

Return string represention of object ...

def __str__(self):
return "(%6.2f, %6.2f)" % (self.xCoord, self.yCoord)

33

Object Source Code: Rectangle02.py

===
Rectangle02.py: Very basic implementation of rectangle objects, where
corner points are defined by varibles (x1, y1) and (x2, y2).
#
Written by: Mark Austin September, 2024
===

import math

from Point import Point

class Rectangle:

def __init__(self, x1, y1, x2, y2):
self.pt1 = Point(x1,y1)
self.pt2 = Point(x2,y2)
self.name = "";

Set rectangle name ...

def setName(self, name):
self.name = name;

Compute perimeter of rectangle ..

def getPerimeter (self):
x1 = self.pt1.getX(); y1 = self.pt1.getY();
x2 = self.pt2.getX(); y2 = self.pt2.getY();
perimeter = 2*((x2 - x1) + abs(y2 - y1))
return perimeter

Compute area of rectangle ..

def getArea (self):
x1 = self.pt1.getX(); y1 = self.pt1.getY();
x2 = self.pt2.getX(); y2 = self.pt2.getY();
area = abs(x2 - x1)*abs(y2 - y1)
return area

String represention of rectangle ...

def __str__(self):
rectangleinfo = [];
rectangleinfo.append("--- Rectangle: {:s} ... \n".format(self.name));
rectangleinfo.append("--- --- \n");
rectangleinfo.append("--- Corner Point (x1,y1) = {:s} ... \n".format(self.pt1.__str__()));
rectangleinfo.append("--- Corner Point (x2,y2) = {:s} ... \n".format(self.pt2.__str__()));
rectangleinfo.append("--- Perimeter = {:6.2f} ... \n".format(self.getPerimeter()));
rectangleinfo.append("--- Area = {:6.2f} ... \n".format(self.getArea()));
rectangleinfo.append("--- --- \n");
return "".join(rectangleinfo);

34

Test Program Source Code: TestRectangle02.py

==
TestRectangle02.py: Exercise point() version of Rectangle.
#
Written by: Mark Austin September, 2024
==

from Rectangle02 import Rectangle;

main method ...

def main():
print("--- Enter TestRectangle02.main() ... ");
print("--- ================================== ... \n");

print("--- Part 1: Create and print rectangle A ... \n");

rectangleA = Rectangle(1.0, 2.0, 3.0, 4.0)
rectangleA.setName("A")
print(rectangleA)

print("--- Part 2: Create and print rectangle B ... \n");

rectangleB = Rectangle(0.0, 0.0, 6.0, 5.0)
rectangleB.setName("B")
print(rectangleB)

print("--- ===================================== ... ");
print("--- Finished TestRectangle02.main() ... ");

call the main method ...

if __name__ == "__main__":
main()

Abbreviated Program Output:

--- Enter TestRectangle02.main() ...
--- ================================== ...

--- Part 1: Create and print rectangle A ...

--- Rectangle: A ...
--- ---
--- Corner Point (x1,y1) = (1.00, 2.00) ...
--- Corner Point (x2,y2) = (3.00, 4.00) ...
--- Perimeter = 8.00 ...
--- Area = 4.00 ...
--- ---

--- Part 2: Create and print rectangle B ...

35

--- Rectangle: B ...
--- ---
--- Corner Point (x1,y1) = (0.00, 0.00) ...
--- Corner Point (x2,y2) = (6.00, 5.00) ...
--- Perimeter = 22.00 ...
--- Area = 30.00 ...
--- ---

--- ===================================== ...
--- Finished TestRectangle02.main() ...

36

Question 4: 20 points.

Problem Statement: The left-hand side of Figure 7 shows the essential details of a domain familiar to many
children. One by one, rectangular blocks are stacked as high as possible until they come tumbling down –
the goal, afterall, is to create a spectacular crash!!

2

y

x
Tower of Blocks

Block

Rectangle

Classes in "Tower of Blocks" Program

1 *TestBlockTower

Point
1

Figure 7: Schematic and classes for tower of blocks problem.

Suppose that we wanted to model this process and use engineering principles to predict incipient instability
of the block tower. Consider the following observations:

1. Rather than start from scratch, it would make sense to create a Block class that inherits the properties of
Rectangle (previous question), and adds details relevant to engineering analysis (e.g., the density of
the block).

2. Then we could develop a BlockTower class that systematically assembles the tower, starting at the base
and working upwards. At each step of the tower assembly, analysis procedures should make sure that
the tower is still stable.

The right-hand side of Figure 7 shows the relatioship among the classes. One TestBlockTower program (1)
will employ many blocks, as indicated by the asterik (*).

Develop a Python program that builds upon the Rectangle class written in the previous questions.
The class Block should store the depth and density of the block – this will be important in determining the
mass and centroid of each block. The TestBlockTower class will use block objects to build the tower. A
straight forward way of modeling the block tower is with a List. After each block is added, the program
should conduct a stability check. If the system is still stable, then add another block should be added. The
simulation should cease when the tower of blocks eventually becomes unstable.

Note. To simplify the analysis, assume that adjacent blocks are firmly connected.

Stability Considerations. If the blocks are stacked perfectly on top of each other, then from a mathematical

37

standpoint the tower will never become unstable. In practice, this never happens. There is always a small
offset and, eventually, it’s the accumulation of offsets that leads to spectacular disaster.

For the purposes of this question, assume that blocks are five units wide, one unit high, and depth of
one unit. When a new block is added, the block offset should be one unit. To make the question interesting,
assume that four blocks are stacked with an offset to the right, then three blocks are added with an offset to
the left, then four to the right, three to the left, and so forth. This sequence can be accomplished with the
looping construct:

Compute incremental offset for i-th block

offset = math.floor((BlockNo - 1)/5.0) + (BlockNo-1)%5;
if ((BlockNo-1)%5 == 4):

offset = offset - 2;

The tower will become unstable when the center of gravity of blocks above a particular level falls outside
the edge of the supporting block.

What to do? Write a Python program that will:

1. Determine how many blocks can be added to the stack before it crashes.

2. Create a figure of the block configuration and centroid position immediately before collapse.

Python Source Code: Four files: Point.py, Vertex01.py, Block01.py, TestBlockTower01.py.

Abbreviated Point Object Code: Point02.py

===
Point class that demonstrates overloading of operators
for arithmetic and relational expressions.
#
Modified by: Mark Austin October, 2024
===

import math

class Point:

def __init__(self, xCoord=0, yCoord=0):
self.xCoord = xCoord
self.yCoord = yCoord

Get/set X coordinate

38

def getX(self):
return self.xCoord

def setX(self, xCoord):
self.xCoord = xCoord

Get/set Y coordinate

def getY(self):
return self.yCoord

def setY(self, yCoord):
self.yCoord = yCoord

Get current position

def get_position(self):
return self.__xCoord, self.__yCoord

change x & y coordinates by p & q

def move(self, p, q):
self.xCoord += p
self.yCoord += q

compute distance between two points ...

def distance(self, second):
x_d = self.xCoord - second.xCoord
y_d = self.yCoord - second.yCoord
return (x_d**2 + y_d**2)**0.5

Overload Arithmetic operators ...
--

... details removed ...

Overload Relational Operators ...
--

... details removed ...

return string represention of object ...
--

def __str__(self):
return "(%6.2f, %6.2f)" % (self.xCoord, self.yCoord)

Vertex Object Code: Vertex01.py

==
Vertex.py: A vertex is a point with a label ...

39

==

from Point import Point

class Vertex(Point):
label = ""

Constructor method ...

def __init__(self, x, y) :
Point.__init__(self, x, y)
self.label = ""

Set/get label ...

def setLabel(self, label):
self.label = label

def getLabel(self):
return self.label

Assemble string represention of Vertex ...

def __str__(self):
vertexinfo = [];
vertexinfo.append("\n");
vertexinfo.append("--- Vertex: {:s} ... \n".format(self.getLabel()));
vertexinfo.append("--- --- \n");
vertexinfo.append("--- Coordinate: (x,y) = {:s} ... \n".format(Point.__self__()));
vertexinfo.append("--- --- ");
return "".join(vertexinfo);

Block Object Code: Block01.py

===
Block01.py: A block is rectangle that has mass (density + thickness) ...
#
Written by: Mark Austin February, 2025
===

import math

from Rectangle02 import Rectangle
from Point import Point

from matplotlib.patches import Circle
from matplotlib.lines import Line2D

class Block (Rectangle):

40

density = 0.0;
thickness = 0.0;

def __init__(self, x1, y1, x2, y2):
Rectangle.__init__(self, x1, y1, x2, y2);

Set block density ...

def setDensity (self, density):
self.density = density;

Set block thickness density ...

def setThickness (self, thickness):
self.thickness = thickness;

Compute block mass and centroid ...

def getMass(self):
volume = self.thickness * self.getArea();
return self.density*volume;

def getCentroid(self):
centroid = Point();

centroid.setX(1.0/2.0 * (self.pt1.getX() + self.pt2.getX()));
centroid.setY(1.0/2.0 * (self.pt1.getY() + self.pt2.getY()));
return centroid;

Draw block ...

def draw(self, ax):
width = 0.1;

x1 = self.pt1.getX();
y1 = self.pt1.getY();
x2 = self.pt2.getX();
y2 = self.pt2.getY();

Draw block edges ...

ax.add_line(Line2D([x1, x1], [y1, y2]))
ax.add_line(Line2D([x1, x2], [y2, y2]))
ax.add_line(Line2D([x2, x2], [y2, y1]))
ax.add_line(Line2D([x2, x1], [y1, y1]))

Draw block vertices as small circles ...

ax.add_patch(Circle((x1, y1), width, facecolor=’red’))
ax.add_patch(Circle((x2, y1), width, facecolor=’red’))
ax.add_patch(Circle((x1, y2), width, facecolor=’red’))
ax.add_patch(Circle((x2, y2), width, facecolor=’red’))

String represention of block ...

41

def __str__(self):
blockinfo = [];
blockinfo.append("--- Block: {:s} ... \n".format(self.name));
blockinfo.append("--- Density: {:f} ... \n".format(self.density));
blockinfo.append("--- Centroid: {:s} ... \n".format(self.getCentroid().__str()__));
blockinfo.append("--- --- \n");
blockinfo.append("--- Corner Point (x1,y1) = {:s} ... \n".format(self.pt1.__str__()));
blockinfo.append("--- Corner Point (x2,y2) = {:s} ... \n".format(self.pt2.__str__()));
blockinfo.append("--- --- \n");
return "".join(blockinfo);

Test Program: TestBlockTower01.py

===
TestObjectBlockTower01.py: Assemble tower of blocks until they become
unstable.
#
Written by: Mark Austin February, 2025
===

import math;
import matplotlib.pyplot as plt

from matplotlib.patches import Circle
from matplotlib.lines import Line2D

from Block01 import Block;

main method ...

def main():
print("--- Enter TestObjectBlockTower01.main() ... ");
print("--- =================================== ... ");

print("--- \n");
print("--- Part 1: Create and print test block A ...");
print("--- ===================================== ...");

blockA = Block(0.0, 0.0, 5.0, 1.0)
blockA.setName("A")
blockA.setThickness(1.0)
blockA.setDensity(1.0)

print(blockA)
print("--- Block mass = {:6.2f} ...".format(blockA.getMass()));
print("--- CentroidX() = {:6.2f} ...".format(blockA.getCentroid().getX()));
print("--- CentroidY() = {:6.2f} ...".format(blockA.getCentroid().getY()));

print("--- ");
print("--- Part 2: Simulate Block Tower ... ");
print("--- ===================================== ... ");
print("--- ");

42

tower = [];

blockTowerStable = True;
maxIterations = 20;
BlockNo = 0;
towerCentroidX = 0.0;
towerCentroidY = 0.0;
while(blockTowerStable == True and BlockNo < maxIterations):

BlockNo = BlockNo + 1;

print("--- ");
print("--- Add Block No: {:d} ...".format(BlockNo));
print("--- === ... ");

Compute incremental offset for i-th block

offset = math.floor((BlockNo - 1)/5.0) + (BlockNo-1)%5;
if ((BlockNo-1)%5 == 4):

offset = offset - 2;

print("--- offset = {:d} ...".format(offset));

Compute (x,y) coordinates of block vertices...

x1 = 0.0 + offset;
x2 = 5.0 + offset;
y1 = 0.0 + BlockNo - 1;
y2 = 1.0 + BlockNo - 1;

Create new block ...

b = Block (x1, y1, x2, y2);
b.setDensity(1.0);
b.setThickness(1.0)
print(b)

Add block to tower

tower.append(b);

Compute (x,y) coordinates of tower centroid ...

TotalMass = 0.0;
FirstMomentX = 0.0;
FirstMomentY = 0.0;

for item in tower:
TotalMass += item.getMass();
FirstMomentX = FirstMomentX + item.getMass() * item.getCentroid().getX();
FirstMomentY = FirstMomentY + item.getMass() * item.getCentroid().getY();

print("--- Block Tower Analytics ...");
print("--- ------------------------------------- ...");
print("--- Total Mass = {:6.2f} ...".format(TotalMass));
print("--- FirstMoment(X) = {:6.2f} ...".format(FirstMomentX));

43

print("--- FirstMoment(Y) = {:6.2f} ...".format(FirstMomentY));
print("--- Tower Centroid(X) = {:6.2f} ...".format(FirstMomentX/TotalMass));
print("--- Tower Centroid(Y) = {:6.2f} ...".format(FirstMomentY/TotalMass));

Save tower centroid ...

towerCentroidX = FirstMomentX/TotalMass;
towerCentroidY = FirstMomentY/TotalMass;

Test for stability of tower ...

print("--- ------------------------------------- ...");
if (FirstMomentX/TotalMass < 5.0):

print("--- Tower of blocks is stable ...");
else:

blockTowerStable = False;
print("");
print("--- Crash!!");
print("--- Tower of {:d} blocks is unstable".format(BlockNo));

print("--- ");
print("--- Part 3: Draw Block Tower ... ");
print("--- ===================================== ... ");

Define Matplotlib figure and axis

fig, ax = plt.subplots()

Draw individual blocks in tower ...

for block in tower:
block.draw(ax);

Draw tower centroid ...

width = 0.2;
ax.add_patch(Circle((towerCentroidX, towerCentroidY), width, facecolor=’green’))

Create and show matplotlib graphic ...

plt.title(’Block Tower at Collapse’)
plt.ylabel(’y’)
plt.xlabel(’x’)
plt.ylim(-1, 15)
plt.xlim(-1, 11)
plt.grid(True)
plt.show()

print("--- ====================================== ... ");
print("--- Finished TestObjectBlockTower01.main() ... ");

call the main method ...

if __name__ == "__main__":
main()

44

Figure 8: Block tower at collapse.

45

Program Output: The abbreviated textual output is:

--- Enter TestObjectBlockTower01.main() ...
--- =================================== ...

--- Part 1: Create and print test block A ...
--- ===================================== ...
--- Block: A ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (0.00, 0.00) ...
--- Corner Point (x2,y2) = (5.00, 1.00) ...
--- ---

--- Block mass = 5.00 ...
--- CentroidX() = 2.50 ...
--- CentroidY() = 0.50 ...

--- Part 2: Simulate Block Tower ...
--- ===================================== ...

--- Add Block No: 1 ...
--- === ...
--- offset = 0 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (0.00, 0.00) ...
--- Corner Point (x2,y2) = (5.00, 1.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 5.00 ...
--- FirstMoment(X) = 12.50 ...
--- FirstMoment(Y) = 2.50 ...
--- Tower Centroid(X) = 2.50 ...
--- Tower Centroid(Y) = 0.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 2 ...
--- === ...
--- offset = 1 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (1.00, 1.00) ...
--- Corner Point (x2,y2) = (6.00, 2.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 10.00 ...
--- FirstMoment(X) = 30.00 ...

46

--- FirstMoment(Y) = 10.00 ...
--- Tower Centroid(X) = 3.00 ...
--- Tower Centroid(Y) = 1.00 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 3 ...
--- === ...
--- offset = 2 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (2.00, 2.00) ...
--- Corner Point (x2,y2) = (7.00, 3.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 15.00 ...
--- FirstMoment(X) = 52.50 ...
--- FirstMoment(Y) = 22.50 ...
--- Tower Centroid(X) = 3.50 ...
--- Tower Centroid(Y) = 1.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 4 ...
--- === ...
--- offset = 3 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (3.00, 3.00) ...
--- Corner Point (x2,y2) = (8.00, 4.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 20.00 ...
--- FirstMoment(X) = 80.00 ...
--- FirstMoment(Y) = 40.00 ...
--- Tower Centroid(X) = 4.00 ...
--- Tower Centroid(Y) = 2.00 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 5 ...
--- === ...
--- offset = 2 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (2.00, 4.00) ...
--- Corner Point (x2,y2) = (7.00, 5.00) ...
--- ---

47

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 25.00 ...
--- FirstMoment(X) = 102.50 ...
--- FirstMoment(Y) = 62.50 ...
--- Tower Centroid(X) = 4.10 ...
--- Tower Centroid(Y) = 2.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 6 ...
--- === ...
--- offset = 1 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (1.00, 5.00) ...
--- Corner Point (x2,y2) = (6.00, 6.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 30.00 ...
--- FirstMoment(X) = 120.00 ...
--- FirstMoment(Y) = 90.00 ...
--- Tower Centroid(X) = 4.00 ...
--- Tower Centroid(Y) = 3.00 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 7 ...
--- === ...
--- offset = 2 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (2.00, 6.00) ...
--- Corner Point (x2,y2) = (7.00, 7.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 35.00 ...
--- FirstMoment(X) = 142.50 ...
--- FirstMoment(Y) = 122.50 ...
--- Tower Centroid(X) = 4.07 ...
--- Tower Centroid(Y) = 3.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 8 ...
--- === ...
--- offset = 3 ...
--- Block: ...

48

--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (3.00, 7.00) ...
--- Corner Point (x2,y2) = (8.00, 8.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 40.00 ...
--- FirstMoment(X) = 170.00 ...
--- FirstMoment(Y) = 160.00 ...
--- Tower Centroid(X) = 4.25 ...
--- Tower Centroid(Y) = 4.00 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 9 ...
--- === ...
--- offset = 4 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (4.00, 8.00) ...
--- Corner Point (x2,y2) = (9.00, 9.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 45.00 ...
--- FirstMoment(X) = 202.50 ...
--- FirstMoment(Y) = 202.50 ...
--- Tower Centroid(X) = 4.50 ...
--- Tower Centroid(Y) = 4.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 10 ...
--- === ...
--- offset = 3 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (3.00, 9.00) ...
--- Corner Point (x2,y2) = (8.00, 10.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 50.00 ...
--- FirstMoment(X) = 230.00 ...
--- FirstMoment(Y) = 250.00 ...
--- Tower Centroid(X) = 4.60 ...
--- Tower Centroid(Y) = 5.00 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

49

--- Add Block No: 11 ...
--- === ...
--- offset = 2 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (2.00, 10.00) ...
--- Corner Point (x2,y2) = (7.00, 11.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 55.00 ...
--- FirstMoment(X) = 252.50 ...
--- FirstMoment(Y) = 302.50 ...
--- Tower Centroid(X) = 4.59 ...
--- Tower Centroid(Y) = 5.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 12 ...
--- === ...
--- offset = 3 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (3.00, 11.00) ...
--- Corner Point (x2,y2) = (8.00, 12.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 60.00 ...
--- FirstMoment(X) = 280.00 ...
--- FirstMoment(Y) = 360.00 ...
--- Tower Centroid(X) = 4.67 ...
--- Tower Centroid(Y) = 6.00 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 13 ...
--- === ...
--- offset = 4 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (4.00, 12.00) ...
--- Corner Point (x2,y2) = (9.00, 13.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 65.00 ...
--- FirstMoment(X) = 312.50 ...

50

--- FirstMoment(Y) = 422.50 ...
--- Tower Centroid(X) = 4.81 ...
--- Tower Centroid(Y) = 6.50 ...
--- ------------------------------------- ...
--- Tower of blocks is stable ...

--- Add Block No: 14 ...
--- === ...
--- offset = 5 ...
--- Block: ...
--- Density: 1.000000 ...
--- ---
--- Corner Point (x1,y1) = (5.00, 13.00) ...
--- Corner Point (x2,y2) = (10.00, 14.00) ...
--- ---

--- Block Tower Analytics ...
--- ------------------------------------- ...
--- Total Mass = 70.00 ...
--- FirstMoment(X) = 350.00 ...
--- FirstMoment(Y) = 490.00 ...
--- Tower Centroid(X) = 5.00 ...
--- Tower Centroid(Y) = 7.00 ...
--- ------------------------------------- ...

--- Crash!!
--- Tower of 14 blocks is unstable

--- ====================================== ...
--- Finished TestObjectBlockTower01.main() ...

51

