
ENCE 201 Engineering Information Processing, Spring Semester, 2025

Homework 1

(Due: February 14, 2025)

This homework assignment will get you started with programming in Python + Jupyter Notebook. Submit
to gradescope a pdf file of the problem descriptions + your solution.

Question 1: 10 points. Write a Python program that solves for all positive integer pairs, i.e., a, b ≥ 0,

√
a+

√
b =

√
n (1)

where n = 2025.

Hint: 2025 happens to be a perfect square, with the prime factorization of 3 · 3 · 3 · 3 · 5 · 5. You can use this
fact and a little bit of number theory to see that there will only be 46 solutions (i.e., (a,b) pairs).

Question 2: 10 points. A square of sheet metal having side length 2L cm has four pieces cut out symmetri-
cally from the corners as shown in Figure 1. Assuming that L is a constant and L > 2x, then the remaining
metal can be folded into a pyramid having volume:

Volume(x) =
4x2

3

√
(L2 − 2Lx) cm3. (2)

The maximum volume occurs when x = 2L/5 cm.

Write a Python program that sets a value for length L = 10 cm, and then systematically computes and print
volumes for appropriate values of x. Organize your output into a tidy table, e.g., something like:

--- Pyramid: L = 10.0 cm
+--------+---------------+
| X (cm) | Volume (cmˆ3) |
+--------+---------------+
| 0.00 | 0.00 |
| 0.50 | 3.16 |
| 1.00 | 11.93 |
| 1.50 | 25.10 |
| 2.00 | 41.31 |
| 2.50 | 58.93 |

1



2x

2L

2L2x

Figure 1: Sheetmetal schematic for a folded pyramid.

Figure 2: Two-dimensional grid of masses + principal axes.

2



| 3.00 | 75.89 |
| 3.50 | 89.46 |
| 4.00 | 95.41 |
| 4.50 | 85.38 |
| 5.00 | 0.00 |
+--------+---------------+

Python has a package called prettytable (i.e., pip3 install prettytable) which you might find useful. A small
test program for pretty tables can be found in: python-code.d/basics/TestPrettyTable01.py.

Question 3: 10 points. Figure 2 shows a two-dimensional grid of masses. If the total number of point
masses is denoted by N, then the total mass of the grid, M, is given by

M =

N∑
i=1

mi (3)

The coordinates of the grid centroid, (x̄, ȳ), are defined by:

Mx̄ =
N∑
i=1

xi ·mi and Mȳ =
N∑
i=1

yi ·mi (4)

The moments of inertia about the x- and y-axes are given by:

Ixx =
N∑
i=1

y2i ·mi and Iyy =
N∑
i=1

x2i ·mi (5)

respectively. Similarly the cross moment of inertia is given by

Ixy =

N∑
i=1

xi · yi ·mi (6)

With solutions to equations 4 - 6 in hand, the corresponding moments of inertia about the centroid are given
by the parallel axes theorem (Google: parallel axis theorem moments of inertia). Finally, the orientation of
the principle axes are given by

tan(2θ) =

[
2Ixy

Ixx − Iyy

]
(7)

3



Now suppose that the (x,y) coordinates and masses are stored in two arrays;

mass = np.array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 2.0 ] );

coord = np.array( [ ( 1.0, 1.0 ),
( 2.0, 2.0 ),
( 3.0, 1.0 ),
( 4.0, 2.0 ),
( 5.0, 1.0 ),
( 5.0, 3.0 ),
( 3.0, 4.0 ),
( 1.0, 3.0 ) ] );

Write a Python program to evaluate equations 3 – 7, and create a plot in Python similar to Figure 2. Add the
centroid and principal axes (drawn with the appropriate orientation) to your plot.

Question 4: 10 points. Figure 3 shows the cross-section of a T-shaped beam (also called T-beam). Rein-
forced concrete T-beams are commonly found in buildings and highway bridges.

Figure 3: T-shaped beam cross section.

Under service load conditions, T-beams are expected to behave elastically, with very small displacements
and no long-term damage. From a mechanics standpoint, the associated elastic analysis procedures require
a knowledge of the section area and centroid, and moments of inertia. The purpose of this question is to take
a first step toward the development of python code that will compute these section properties automatically.
Later on (i.e., homeworks 2 and 3) we will step things up a bit by adding holes to the cross section, and
modeling the whole cross section as an object.

4



Getting Started. The T-beam shown in Figure 3 has (x, y) coordinates stored as two columns of a numpy
array:

coord = np.array( [ ( -8.0, 8.0 ),
( 12.0, 8.0 ),
( 12.0, 7.0 ),
( 4.0, 6.0 ),
( 3.0, -4.0 ),
( 1.0, -4.0 ),
( 0.0, 6.0 ),
( -8.0 , 7.0 ) ] );

Write a Python program that will:

1. Compute and print the minimum and maximum polygon coordinates in both the x and y directions.

2. Compute and print the minimum and maximum distance of the polygon vertices from the coordinate
system origin.

3. Create a plot of the T-beam similar to Figure 3.

4. Write functions perimeter() and area() to compute the perimeter and area of the T-beam, respectively.

Hints. For Parts 1 and 2, use the max() and min() methods in Python. One way of creating Figure 3 is
to draw the vertices as circle objects (i.e., from matplotlib.patches import Circle) and the edges as objects of
type Line2D (i.e., from matplotlib.lines import Line2D). To compute the perimeter and area of the T-beam,
use the fact that the vertices have been specified in a clockwise manner. You should be able to systematically
walk around the perimeter of the T-beam and compute the required values of interest.

Question 5: 10 points. Write a Python program that will compute and print a list of (x, y) pairs for:

y(x) =

[
(x3 − 16x)

(x− 4)(x+ 5) sin(x)

]
(8)

over the range −10 ≤ x ≤ 10 and in intervals of 0.25. You should find that y(0) and y(4) evaluate to
not-a-number (NaN), and that y(−5) evaluates to positive infinity.

Python 3 provides remarkably good builtin support for handling of run-time errors. Create a plot of y(x) vs
x – you should find that errors will be automatically handled within the matplotlib.pyplot environment.

5


