Numerical Integration I

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 201 Fall Semester 2024

November 11, 2024

Overview

- Mathematical Question
- 2 General Framework
- Basic Numerical Methods
- Polynomial Approximation
- 5 Trapezoidal Integration
- 6 Simpson's Rule
- Python Code Listings
 - Composite Trapezoid Rule
 - Composite Simpson's Rule

Mathematical Questions

• How do we evaluate:

$$I = \int_a^b f(x)dx? \tag{1}$$

Calculus tells us that the antiderivative of a function f(x) over an interval [a,b] is:

$$I = \int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$
 (2)

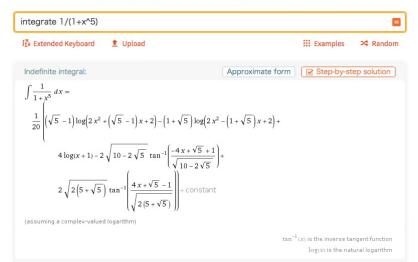
Many integrals cannot be evaluated using this approach, e.g.,

$$I = \int_0^1 \frac{1}{1 + x^5} dx \tag{3}$$

has a very complicated antiderivative.

Mathematical Questions

000



Mathematical Questions

Idea: Let's replace the original function by a new function that is much easier to work with, i.e.,

$$I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} \tilde{f}(x)dx = \tilde{I}.$$
 (4)

We want $\tilde{f}(x)$ to be a good approximation of f(x).

Basic Questions:

- What strategies exist for choosing and integrating $\tilde{f}(x)$?
- ② How much computational work is needed to obtain a required level of accuracy?

General Framework

The approximation error is as follows:

$$\mathsf{Error} = \int_a^b \left[f(x) - \tilde{f}(x) \right] dx \le (b - a) \max_{a \le \xi \le b} \| f(\xi) - \tilde{f}(\xi) \|.$$

This inequality tells us the approximation error E depends on two factors:

- The width of the integration interval (b-a).
- The maximum difference between $f(\xi)$ and $\tilde{f}(\xi)$ within the interval $a \leq \xi \leq b$.

Basic

Numerical Methods

Basic Numerical Methods

Basic approaches to numerical integration:

- Polynomial Approximation
- 2 Rectangular and Midpoint Rules
- Trapezoid Rule
- Simpson's Rule

Composite methods:

- Composite Trapezoid Rule
- 2 Composite Simpson's Rule

Strategy: Choose an approximation $\tilde{f}(x)$ to f(x) that is easily integrable and a good approximation to f(x)

Two candidate schemes:

- **1** Interpolation polynomials approximating f(x).
- 2 Taylor series approximation of f(x).

Note: In order for the Taylor series approximation to work, we need the functional derivatives at "a" to exist.

Polynomial Interpolation

Example 1: Consider the integral: $I = \int_0^{\pi} \sin(x) dx$.

Analytic Solution.

$$I = \int_0^{\pi} \sin(x) dx = [-\cos(x)]_0^{\pi} = 2.0.$$
 (5)

Polynomial Interpolation

Consider the data set (3 data points):

X	0.0	$\pi/2$	π
sin(x)	0.0	1.0	0.0

A quadratic fit will have roots at x=0 and $x=\pi$, and pass through the point $sin(\pi/2)=1.0$.

Polynomial Interpolation

So let:

$$p(x) = Ax(x - \pi). (6)$$

and determine the value of A by applying the constraint $sin(\pi/2) = 1.0$.

$$p(\pi/2) = A\pi/2 (\pi/2 - \pi) = 1.0 \to A = -4/\pi^2.$$
 (7)

Integration

$$I = \int_0^{\pi} \sin(x) dx \approx \left[\frac{-4}{\pi^2} \right] \int_0^{\pi} x (x - \pi) dx = 2.09.$$
 (8)

The relative error is 4.5%. Not bad.

Example 2: Consider the integral:

$$I = \int_0^1 e^{x^2} dx \tag{9}$$

The Taylor series approximation of f(x) is:

$$f(x) = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots + \frac{t^{(n+1)}}{(n+1)!} e^c$$
, where $t = x^2$. (10)

and c is a constant 0 < c < 1.

Solution:

$$I = \int_0^1 \left[1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \dots + \frac{x^{2n}}{n!} \right] dx + \int_0^1 \left[\frac{x^{2n+2}}{(n+1)!} \right] e^c dx.$$
(11)

Let n = 3. We have

$$I = 1 + \frac{1}{3} + \frac{1}{10} + \frac{1}{42} + Error = 1.4571 + Error.$$
 (12)

An upper bound on the numerical error is:

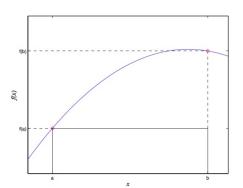
Error
$$\leq \frac{e}{24} \int_0^1 x^8 dx = \frac{e}{216} = 0.0126.$$
 (13)

Difficulties with Polynomial Approximation:

- Taylor series approximations only work well when higher order derivatives exist.
 - This excludes functions that are continuous, but are not continuously differentiable. (e.g., f(x) = |x| is continuous, but not differentiable at x = 0).
- Some Taylor series converge too slowly to get a reasonable approximation by just a few terms of the series.
 - As a rule, if the series has a factorial in the denominator, this technique will work efficiently, otherwise, it will not.

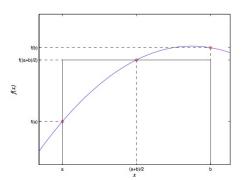
Rectangular Interpolation

$$I = \int_a^b f(x)dx \approx (b-a)f(a) = \tilde{I}. \tag{14}$$



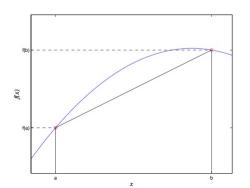
Midpoint Interpolation

$$I = \int_a^b f(x)dx \approx (b-a)f(\frac{a+b}{2}) = \tilde{I}. \tag{15}$$

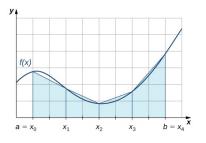


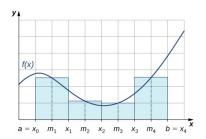
Trapezoid Interpolation

$$I = \int_a^b f(x)dx \approx \frac{(b-a)}{2} \left[f(a) + f(b) \right] = \tilde{I}. \tag{16}$$



Observation: The midpoint rule tends to be more accurate than the trapezoid rule:





When we get to error analysis we will see that, in fact, this is true!

Trapezoid Rule

Trapezoidal Rule

Sketch of Derivation: Let the interval of integration be defined by h = (b - a), and two end points: (a, f(a)) and (b, f(b)).

Linear Polynomial Fit:

$$p(x) = f(a) + \left[\frac{f(b) - f(a)}{h}\right](x - a) \tag{17}$$

Integrate p(x), then simplify:

$$T = \int_{a}^{b} p(x)dx = |f(a)x + \left[\frac{f(b) - f(a)}{h}\right] \cdot \frac{(x - a)^{2}}{2}|_{a}^{b}$$
$$= \frac{h}{2} [f(a) + f(b)].$$

Definition: Assume that f(x) is continuous over an interval [a,b]. Let n be a positive integer and h = (b-a)/n.

Next, let's divide [a,b] into n subintervals, each of length h, with endpoints at $P = [x_0, x_1, x_2, \dots, x_n]$.

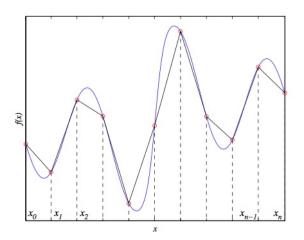
We set:

$$T_n = \frac{h}{2} \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{(n-1)}) + f(x_n) \right]$$
 (18)

Note: As *n* increases toward infinity,

$$\lim_{n \to \infty} T_n = \int_a^b f(x) dx. \tag{19}$$

Visual Representation



Error Analysis

$$I = \int_{a}^{b} f(x)dx = T_{n} - \frac{|f^{2}(\xi)|}{12}h^{2}(b-a). \tag{20}$$

where $[a \le \xi \le b]$. The method is $O(h^2)$ accurate.

Example 1. Error Analysis for $\int_0^2 x^2 dx$. Does equation 20 work?

Analytical Solution:

$$I = \int_0^2 x^2 dx = \left[\frac{1}{3} x^3 \right]_0^2 = \frac{8}{3}.$$
 (21)

Trapezoidal Rule

One Step of Trapezoid: (here h = 2, b-a = 2)

$$\int_0^2 x^2 dx \to T_1 = \frac{h}{2} [f(0) + f(2)] = 4.0.$$
 (22)

Theoretical Error Estimate: $f(x) = x^2$, $\frac{df}{dx} = 2x$, $\frac{d^2f}{dx^2} = 2$.

Error
$$\leq \frac{|f^2(\xi)|}{12}h^2(b-a) \to \frac{2 \cdot 2^2 \cdot 2}{12} = \frac{16}{12} = 1.33.$$
 (23)

Actual Error:

Absolute Error =
$$|\text{Exact} - \text{Trapezoid}| = |8/3 - 4| = 1.33.$$
 (24)

Trapezoidal Rule

Example 2. Evaluate $I = \int_0^4 xe^{2x} dx$.

Analytic Solution.

$$I = \int_0^4 xe^{2x} dx = \left[\frac{x}{2}e^{2x} - \frac{1}{4}e^{2x}\right]_0^4 = 5,216.92.$$
 (25)

One Step of Trapezoid Rule (n = 1).

$$T_1 = \left\lceil \frac{4-0}{2} \right\rceil [f(0) + f(4)] = 23,847.66.$$
 (26)

Not very accurate at all!

Example 3. Evaluate $I = \int_0^4 xe^{2x} dx$ with two segments (n = 2).

Solution. We have:

$$I = \int_0^4 xe^{2x} dx = \int_0^2 xe^{2x} dx + \int_2^4 xe^{2x} dx$$

$$\approx \left[\frac{2-0}{2} \right] [f(0) + f(2)] + \left[\frac{4-2}{2} \right] [f(2) + f(4)]$$

$$= [f(0) + 2f(2) + f(4)] = [0 + 4e^4 + 4e^8]$$

$$T_2 = [0 + 4e^4 + 4e^8] = 12,142.22.$$

Answer is much better than one step, but still very poor accuracy.

Test Program Source Code:

```
# TestIntegrationTrapezoidO1.py: Use trapezod algorithm to integrate functions.
    # Written By: Mark Austin
                                                                               July 2023
    import math;
    import Integration;
10
    def f2(x):
11
        return x*math.exp(2 * x)
12
13
    # main method ...
14
15
    def main():
16
        print("--- ");
17
        print("--- Case Study 2: Integrate x*math.exp(2x) over [0, 4] ... ");
18
19
20
        # Initialize problem setup ...
21
22
        a = 0.0:
23
        b = 4.0
24
        nointervals = 2
25
26
        print("--- Inputs:")
```

Test Program Source Code: Continued ...

```
27
        print("--- a = {:9.4f} ... ".format(a) )
28
        print("--- b = {:9.4f} ... ".format(b) )
29
        print("--- no intervals = {:d} ...".format(nointervals) )
30
31
        # Compute numerical solution to integral ...
32
33
        print("--- Execution:")
34
        xi = Integration.trapezoid(f2, a, b, nointervals)
35
36
        # Summary of computations ...
37
38
        print("--- Output:")
39
        print("--- integral = {:12.4f} ...".format( xi ) )
40
41
    # call the main method ...
42
43
    main()
```

Abbreviated Output:

```
Case Study 2: Integrate x*math.exp(2x) over [0, 4] ...
--- Inputs:
    a = 0.0000 \dots
    b = 4.0000 ...
    no intervals = 2 \dots
--- Execution:
--- Output:
    integral = 12142.2245 ...
   Case Study 2: Integrate x*math.exp(2x) over [0, 4] ...
--- Inputs:
         0.0000 ...
     a =
   b = 4.0000 ...
     no intervals = 4 \dots
--- Execution:
--- Output:
    integral = 7288.7877 ...
```

Systematic Refinement: T_1 , T_2 , \cdots , T_{512} :

No Intervals	h	Integral T_n
1	4.0	$T_1 = 23,847.66$
2	2.0	$T_2 = 12,142.22$
4	1.0	$T_4 = 7,288.79$
8	0.5	$T_8 = 5,764.76$
16	0.25	$T_{16} = 5,355.94$
32	0.125	$T_{32} = 5,251.81$
64	0.0625	$T_{64} = 5,225.81$
128	0.0312	$T_{128} = 5,219.10$
256	0.0156	$T_{256} = 5,217.47$
512	0.0078	$T_{512} = 5,217.06$

Key Takeaway: Trapezoid works, but convergence is very slow.

Example 4. Use the Trapezoid rule with n=10 segments to approximate $\int_0^{\pi} e^x \cos x dx$.

Determine the absolute true error $|E_t|$, and compare it with the true-error bound provided above.

Solution. We have

$$\Delta x = (b-a)/n = (\pi - 0)/10 = 0.314159,$$

and $\Delta x/2 = 0.157080$.

Moreover x_0, x_1, \dots, x_{10} satisfy $x_i = a + i\Delta x = i\Delta x$, for all $i = 0, 1, \dots, 10$.

Hence,

$$x_0 = 0, x_1 = 0.314159, x_2 = 0.628319, \dots, x_{10} = 3.14159.$$

Trapezoidal Rule

Solution Continued. Therefore,

$$\int_0^{\pi} e^{x} \cos x dx \approx \frac{\Delta x}{2} (e^{x_0} \cos(x_0) + \dots + e^{x_{10}} \cos(x_{10})) = -12.2695.$$
(27)

Error Analysis. The analytical solution is:

$$\int_0^{\pi} e^x \cos x dx = -(1 + e^{\pi})/2 = -12.0703.$$
 (28)

This gives $|E_t| = 0.199199$. Finally, we note f''(x) reaches an absolute minimum value of -14.9210 at $x = 3\pi/4$. And so

Worst case error
$$\leq (14.9210)\pi^3/(12)(10)^2 = 0.385537.$$
 (29)

Trapezoidal Rule

Example 5. How many intervals are needed to compute:

$$I = \int_0^1 \left[\frac{\sin(x)}{x} \right] dx \tag{30}$$

to an accuracy 10^{-8} ?

Solution. First, we note $|f^2(\xi)|_{max} = 1/3$.

For the trapezium rule:

Error
$$\leq \frac{1}{12}h^2|f^2(\xi)|_{max} = \frac{h^2}{36} \leq \frac{10^{-8}}{2}.$$
 (31)

Hence, $h \le \sqrt{18} \times 10^{-4}$. We also have nh = 1.

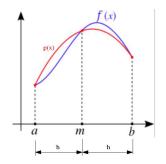
Number of required intervals: $n \ge 2,357$.

Simpson's Rule

(Thomas Simpson, 1710-1761)

Simpson's Rule

Objective: Approximate the integral of a function by fitting a quadratic function q(x) through three equally spaced points: [a, f(a)], [m, f(m)] and [b, f(b)].



Interval of integration: [b-a] = 2h. Midpoint m = [(a+b)/2].

Simpson's Rule

Sketch of Derivation: Suppose that:

$$q(x) = q_0 + q_1(x - a) + q_2(x - a)(x - m)$$
 (32)

fits through [a, f(a)], [m, f(m)] and [b, f(b)].

We can use the method of divided differences to show:

$$q_0 = f(a)$$

 $q_1 = (f(m) - f(a))/h$
 $q_2 = (f(b) - 2f(m) + f(a))/2h^2$

Sketch of Derivation:

Next, integrate q(x) and simplify. This gives:

$$S = \int_{a}^{b} q(x)dx = \frac{h}{3}[f(a) + 4f(m) + f(b)]. \tag{33}$$

For a single step of Simpon's rule,

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{b} q(x)dx - \frac{1}{90} \left[\frac{(b-a)}{2} \right]^{5} f^{4}(\xi), \quad (34)$$

where $[a \le \xi \le b]$.

Important Point

Notice that the error depends on the fourth derivative of f(x).

Thus, if f(x) happens to be a polynomial of degree three or less,

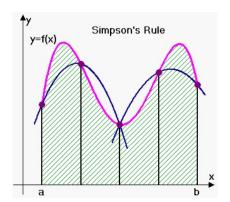
$$f(x) = f_0 + f_1 x + f_2 x^2 + f_2 x^3$$
 (35)

then Simpsons rule will give an exact answer, i.e,

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{b} q(x)dx.$$
 (36)

Composite Simpson's Rule

Objective: Simply chain together a sequence of simpson rule approximations:



Composite Simpson's Rule

Numerical Formula

$$S_n = \frac{h}{3} \sum_{j=1}^{n/2} \left[f(x_{2j-1}) + 4f(x_{2j}) + f(x_{2j+1}) \right]$$
 (37)

Error Analysis

$$I = \int_{a}^{b} f(x)dx = S_{n} - \frac{h^{4}}{180}(b-a)|f^{4}(\xi)|$$
 (38)

where $[a \le \xi \le b]$ and h = (b-a)/n is the step length. The method is $O(h^4)$ accurate.

Example 1. Consider the integral: $\int_0^{\pi} \sin(x) dx$.

Applying Simpson's Rule to the data set:

X	0.0	$\pi/2$	π
sin(x)	0.0	1.0	0.0

gives:

$$S = \frac{\pi/2}{3}[f(0) + 4f(\pi/2) + f(\pi)] = \frac{\pi}{6}[0 + 4 * 1 + 0].$$
 (39)

which, by coincidence, is identical to the quadratic polynomial approximation.

Now let's extend the data set from 3 to 5 points:

	Х	0.0	$\pi/4$	$\pi/2$	$3\pi/4$	π
ĺ	sin(x)	0.0	$1/\sqrt{2}$	1.0	$1/\sqrt{2}$	0.0

Applying Simpson's Rule for four intervals:

$$S_4 = \frac{\pi/4}{3} [f(0) + 4f(\pi/4) + 2f(\pi/2) + 4f(3\pi/4) + f(\pi)]$$

$$= \frac{\pi}{12} [0.0 + 4/\sqrt{2} + 2 * 1.0 + 4/\sqrt{2} + 0.0]$$

$$= \frac{\pi}{12} [2.0 + 8/\sqrt{2}]$$

$$= 2.0045$$

Estimate of Maximum Absolute Error:

Maximum Error
$$\leq \frac{h^4}{180}(b-a)|f^4(\xi)|$$
 (40)

We have:
$$f(x) = \sin(x) \to f^4(\xi) = \sin(\xi) \le 1.0$$
.

The interval $(b-a)=\pi$ and $h=\pi/4$. Thus, we estimate:

Maximum Error
$$\leq \frac{(\pi/4)^4}{180}\pi = \left[\frac{\pi^5}{16x16x180}\right] = 0.0066.$$
 (41)

Actual error = 0.0045.

Composite Simpson's Rule

Systematic Refinement: S_2 , S_4 , \cdots , S_{32} :

No Intervals	h	Integral S_n
2	$\pi/2$	$S_2 = 2.0944$
4	$\pi/4$	$S_4 = 2.0045$
8	$\pi/8$	$S_8 = 2.00027$
16	$\pi/16$	$S_{16} = 2.00002$
32	$\pi/32$	$S_{32} = 2.000001$

Key Takeaway: Simpson's Rule converges much faster than Trapezoid ...

Example 2. Evaluate $I = \int_0^4 xe^{2x} dx$.

Analytic Solution.

$$I = \int_0^4 x e^{2x} dx = \left[\frac{x}{2} e^{2x} - \frac{1}{4} e^{2x} \right]_0^4 = 5,216.92.$$
 (42)

Systematic Refinement: S_2 , S_4 , \cdots , S_{32} :

No Intervals	h	Integral S_n
2	2	$S_2 = 8,240.41$
4	1	$S_4 = 5,670.97$
8	0.5	$S_8 = 5,256.75$
16	0.25	$S_{16} = 5,219.67$
32	0.125	$S_{32} = 5,217.10$

Example 3. How many intervals are needed to compute:

$$I = \int_0^1 \left[\frac{\sin(x)}{x} \right] dx \tag{43}$$

to an accuracy 10^{-8} ?

Solution. For the Simpson's Rule:

Error
$$\leq \frac{1}{180} h^4 |f^4(\xi)|_{max} \leq \frac{10^{-8}}{2}.$$
 (44)

Number of required intervals: $n \ge 20$.

This is significantly better than Trapezoidal Rule (n = 2,357), but still a lot of work. We need a more efficient method!

Python Code Listings

Code 1: Composite Trapezoid Rule

```
# Integration.trapezoid(): Numerical integration of f(x) with
                                 composite trapezoid rule.
    # Args: f (function): the equation f(x).
             a (float): the initial point.
             b (float): the final point.
             n (int): number of intervals.
10
    # Returns:
11
             xi (float): numerical approximation of the definite integral.
12
13
14
    import math
15
    import numpy as np
16
17
    def trapezoid(f, a, b, n):
18
        h = (b - a) / n
19
20
        sum_x = 0
21
22
        for i in range(0, n - 1):
23
             x = a + (i + 1) * h
24
             sum_x += f(x)
25
26
        xi = h / 2 * (f(a) + 2 * sum x + f(b))
27
        return xi
```

Code 2: Composite Simpson's Rule

```
# Integration.simpson(): Numerical integration of f(x) with 1/3 Simpson's Rule.
    # Aras: f (function): the equation f(x).
             a (float): the initial point.
             b (float): the final point.
             n (int): number of intervals.
9
    # Returns:
10
             xi (float): numerical approximation of the definite integral.
11
12
13
    import math
14
    import numpy as np
15
16
    def simpson(f, a, b, n):
        h = (b - a) / n
17
18
19
        sum_odd = 0
20
        sum_even = 0
21
22
        for i in range(0, n - 1):
23
             x = a + (i + 1) * h
24
             if (i + 1) \% 2 == 0:
25
                 sum even += f(x)
26
             else:
27
                 sum odd += f(x)
28
29
        xi = h / 3 * (f(a) + 2 * sum_even + 4 * sum_odd + f(b))
30
        return xi
```