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Definition of Row and Column Vectors

Definition. A row vector is simply a (1xn) matrix, i.e.,

vV = [vl Vo V3 Vg c-- v,,] (1)

Definition. A column vector is a (m x 1) matrix, e.g.,

Vi
V2

o (2)

Vm

In both cases, the i-th element of the column vector is denoted v;.
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Properties of Vector Arithmetic
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Components of Three—Dimensional Vector Vector Addition and Subtraction
ea+b=b+a e(a+b)+c=a+(b+c¢)

°at+0=a ©ea+(-a)=0
o c(a+b)=ca+cb ela=a
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Dot Product

Definition. The dot product of two vectors a = [a1, a2, a3, - , ap|
and b = [bl, b2, b3, Tty bn] is:

a.b=Y aibj=a1by + ayby + azby + -+ + anby. (3)
i=1

Note: a.b = b.a. If a and b are perpendicular then a.b = 0.

Engineering Applications
@ Mechanical work is the dot product of force and displacement
vectors (Jou).
@ Power is the dot product of force and velocity vectors (W).

@ Fluid Mechanics.
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Dot Product

Example 1. Let a = [1,2,3] and b = [0,—1,2]. The dot product:
ab=> abj=1x0+2x-1+3x2=4 (4)
i=1

A dot product can also be written as a row vector multiplied by a
column vector, e.g.,

0
[1,2,3]-] -1 | =4. (5)
2

The vector dimensions are: (1 x3) (3x 1) — (1x1).
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Dot Product

Properties. Let a = [a1, a2, a3, a4], b = [b1, bo, b3, bs] and ¢ =
[c1, c2, c3, ca]. And let d be a non-zero constant.

The dot product:

a.b=aib1 + axby + azbz + asbs (6)

obeys the properties:

@ a.a= HaH2.

ea(b+c)=ab+ac @0a=0

e ab=nDba e (da).b =d(a.b)
@eab=0<=a=0o0rb=  a.b = |a|.[b] cos(0).

Ooral b
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Dot Product

Fragment of Python Code:

import numpy as np

# Define vectors a and b

»
[}

np.array([1, 2, 31)
np.array([4, 5, 6])

o'
]

# Compute dot product c = a.b ...

¢ = np.dot(a,b)

Qutput:

[1 2 3]
[4 5 6]

32.000000
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Cross Product

Definition. Consider two vectors A and B in three dimensions:

A:alf+azf+a3lz
B = bii + byj + bsk

The cross product of A and B is:

ik
C=AxB=det| a; a a3
b1 by b3

= (32b3 — a3b2) f—i- (a3b1 — 31b3)f—|— (alb2 — 32b1) /2
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Cross Product

Geometric Interpretation

A x B is a vector that is perpendicular to both A and B.

*axh
Ila x BI|

@ The magnitude of ||A x B]| is equal to the area of the
parallelogram formed using A and B as the sides.

@ The angle between A and B is: ||A x B|| = ||A|| ||B]| sin(«).

@ The cross product is zero when the A and B are parallel.
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Cross Product

Fragment of Python Code: Output:

# Define vectors a and b

[V
]

np.array([1, 2, 3]) [1 2 3]
b = np.array([4, 5, 6]) [4 5 6]

# Compute cross product c = a x b ...
¢ = np.cross(a,b) [-3 6 -3]
# Check that cross product is perpendicular to a and b ...

dl = np.dot(c,a) 0.000000
np.dot(c,b) 0.000000

o}
N
1]
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Linear Independence of Vectors

Linear Independence
A set of vectors (vi,va, v3,- -+, Vp) is said to be linearly
independent if the equation

aivi + avp +azvz+ -+ apv, =0. (7)

can only be satisfied by a; =0 fori =1, ... n.

Put another way: no vector in the sequence can be written as a
linear combination of the other vectors.
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Linear Independence of Vectors

Example 1. Consider three vectors v; = (1, 1), v» = (-3, 2), and
vz = (2, 4) in two-dimensional space.

The vectors will be linearly independent if the only solutions to

1 -3 2 0
R I R MU B
are a; = ap = a3z = 0. Writing these equations in matrix form:
a1
1 -3 2 0
RN 2

as
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Linear Independence of Vectors

Apply row operations (details to follow):

wellal-] w
which can be rearranged:
o [a ][] =) w

We conclude that since a; and as can be written in terms of as,
the equations are linearly dependent.
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Linear Independence of Vectors

A Few Observations

Vectors vy through v3 are two dimensional.

Can show that three (or more) vectors in
two-dimensional space will always be linearly
dependent.

Can show that four (or more) vectors in
three-dimensional space will always be linearly
dependent.

This is why a stool with three legs (vectors) will
always be steady (linearly independent), but one
with four legs (vectors) will sometimes rock
(linearly dependent).
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Definition of a Matrix

Definition. A matrix (or array) of order m by n is simply a set of
numbers arranged in a rectangular block of m horizontal rows and n
vertical columns. We say

a1 di2 - dln
dp1 a2 - ap

A = S . (12)
Aml 4m2 - Admn

is a matrix of size (or dimension) (m X n).

In the double subscript notation aj; for matrix element a(i, j), the
first subscript / denotes the row number, and the second subscript j
denotes the column number.
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Matrix Properties

Properties of Matrix A:

@ A matrix having the same number of rows and columns is
called square.

@ A square matrix of order n is also called a (n x n) matrix.

@ The elements aj1, a2, -+, an, are called the principal
diagonal.

@ A diagonal matrix with elements a;; = 1, and all other matrix
elements zero, is called the identity matrix /.
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Matrix Transpose

Matrix Transpose. The transpose of a (m x n) matrix A is the
(n x m) matrix obtained by interchanging the rows and columns of
A. The tranpose is denoted AT .

Example 1. The matrix transpose of

O
o0 ~N O O

Properties
o (A+B)" = AT + BT,
o (ABC)" = CT BT AT,
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Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:
@ A square matrix A is symmetric if A = AT,

o A square matrix A is skew-symmetric if A = -AT.

Large symmetric matrices play a central role in structural analysis.

X X e
X X Lo
‘__I__I | S |
x X Vot dam
XX ! :
X X E__ - _—
X X X X LT [
i b a
X o Bissadl 3
X XXXKX P !
X X i i
X XX i i
=T 1
X X XX P

Schematic of Non—Zero Matrix Elements Skyline Storage Pattern
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Matrix Inverse

Definition: When it exists, the inverse of matrix A is written A~!
and it has the property:

(Al [A7Y] = [ [A] = 1. (14)

Nomenclature
@ If matrix A has an inverse, then A is called non-singular.
@ If matrix A has an inverse, then the inverse will be unique.

o If matrix A does not have an inverse, then A is called singular.
Theorem. For a (n x n) matrix A, the inverse A~! exists <=
rank(A) = n.

o Conversely, matrix A is singular if rank(A) < n (i.e., rank
deficient).
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Matrix Inverse

Computational Procedure. We want to carry out row operations
such that:

[A|/] row operations |:I|A_]_:| ] (15)

Example. Can apply row operations to get:

1 2[100 100[-07 02 03
3 -1 1/010|™™1010/-13 -02 07
3 4/0 01 00 1| 08 02 —02
(16)

If A has rank(A) < n, then the last row in echelon form will be the
O (zero) vector, and the computation will fail.
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Matrix Inverse

Properties:
A=A (17)
(AB) ™' = B71AL, (18)
(ABC) ' =c7iB7tA L. (19)

[ATT1 — (a7 (20)
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Lower and Upper Triangular Matrices

A lower triangular matrix L is one where a;; = 0 for all entries
above the diagonal.

An upper triangular matrix U is one where a;; = 0 for all entries
below the diagonal. That is,

ai o - 0 a1l a2 -+ ain

ax ax»n - 0 0 ax -+ aom
L = U =

dml 4m2 " Admn 0 0 --- amn
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Matrix Addition and Subtraction

Definition. If A is a (m x n) matrix and B is a (r x p) matrix,
then the matrix sum C = A 4 B is defined only when m = r and n
= p, and is a (m X n) matrix C whose elements are

cj=aj+ bj, fori=1,2,---mand j=1,2,---n. (22)

Properties
e (kA) B=k (A.B)
e A(BC) = (AB)C.
e (A+B)C) = AB + AC.
e C(A+B)=CA+ CB.
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Matrix Addition and Subtraction

Example 1. Let

A:[i é] and B:[g i}. (23)

The matrix sum is:

C:A+B:[ié]+[gi]:[2§]. (24)
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Matrix Multiplication

Definition. Let A and B be (m x n) and (r x p) matrices,
respectively.

The matrix product A - B is defined only when interior matrix
dimensions are the same (i.e., n = r).

The matrix product C = A - B is a (m X p) matrix whose elements
are

n
Cij = Z ajk bkj (25)
k=1

fOI’I':].,2,-~mandj:]_727...n.
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Matrix Multiplication

Example 1. Assuming that matrices A and B are as defined in the
previous section:

(2 1 4 2
C_A'B__4 6}[0 1}

(2.441.0 2-2+1-1
| 4-446-0 4.246-1

[ 8 5
Tl 16 14|

Geometric Interpretation. Matrix element ¢;; is the dot product
of the i-th row of A with the j-th column of B.
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Matrix Multiplication

Properties.
e AB.C=(A.B).C=A.(B.C).
e A(B+C)=AB+ AC.
e (A+B).C=AC+B.C
o Al =A.
@ In general, A.B # B.A.
@ A.B = ¢ does not necessarily imply A = ¢ or B = ¢. Counter

example:
11 -1 1
A_[2 2}andB—[ 1 _1]. (27)
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Matrix Operations with Python

Fragment of Python Code: Output:
A = np.array([ [2, 11, [4, 6] 1); Matrix: A
2.00 1.00
4.00 6.00
B = np.array([ [4, 2], [0, 1] 1); Matrix: B
4.00 2.00
0.00 1.00

# Compute matrix transpose ...

C=A.T Matrix: A°T
2.00 4.00
1.00 6.00
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Matrix Operations with Python

Fragment of Python Code: Output:

# Use numpy add() for matrix addition ...

C = np.add(A,B) Matrix: np.add(A,B)
6.00 3.00
4.00 7.00

# Add matrices with + operator ...

C=A+8B Matrix: A + B
6.00 3.00
4.00 7.00
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Matrix Operations with Python

Fragment of Python Code: Output:

# Use numpy matmul () for matrix multiplication ...

C = np.matmul( A, B ) Matrix: np.matmul(A,B)
8.00 5.00
16.00 14.00

# Use * operator for matrix element-level multiplies ...
C=A=xB Matrix: Element-level multiply Ax*B

8.00 2.00
0.00 6.00
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