Basic Introduction to Vectors and Matrices

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 201, Fall Semester 2024

October 14, 2024

Overview

- Definition of Vectors
- 2 Vector Properties
- Definition of Matrices
- Matrix Properties
- Matrix Arithmetic
- 6 Matrix Operations with Python

Definition of Vectors

Definition of Row and Column Vectors

Definition. A row vector is simply a $(1 \times n)$ matrix, i.e.,

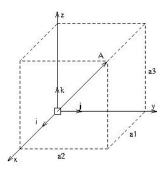
Definition. A column vector is a $(m \times 1)$ matrix, e.g.,

$$V = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ \cdots \\ v_m \end{bmatrix}$$
 (2)

In both cases, the i-th element of the column vector is denoted v_i .

Vector Properties

Properties of Vector Arithmetic

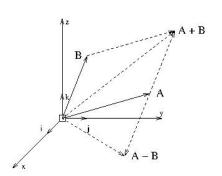


Components of Three-Dimensional Vector

•
$$a + b = b + a$$

•
$$a + 0 = a$$

•
$$c(a + b) = ca + cb$$



Vector Addition and Subtraction

•
$$a + (-a) = 0$$

•
$$1 a = a$$
.

Definition. The dot product of two vectors $a = [a_1, a_2, a_3, \dots, a_n]$ and $b = [b_1, b_2, b_3, \dots, b_n]$ is:

$$a.b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + a_3 b_4 + \dots + a_n b_n.$$
 (3)

Note: a.b = b.a. If a and b are perpendicular then a.b = 0.

Engineering Applications

- Mechanical work is the dot product of force and displacement vectors (Jou).
- Power is the dot product of force and velocity vectors (W).
- Fluid Mechanics.

Example 1. Let a = [1, 2, 3] and b = [0, -1, 2]. The dot product:

$$a.b = \sum_{i=1}^{n} a_i b_i = 1 \times 0 + 2 \times -1 + 3 \times 2 = 4.$$
 (4)

A dot product can also be written as a row vector multiplied by a column vector, e.g.,

$$\left[\begin{array}{c} 1,2,3 \end{array}\right] \cdot \left[\begin{array}{c} 0\\ -1\\ 2 \end{array}\right] = 4. \tag{5}$$

The vector dimensions are: (1×3) $(3 \times 1) \rightarrow (1 \times 1)$.

Properties. Let $a = [a_1, a_2, a_3, a_4]$, $b = [b_1, b_2, b_3, b_4]$ and $c = [c_1, c_2, c_3, c_4]$. And let d be a non-zero constant.

The dot product:

$$a.b = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4 \tag{6}$$

obeys the properties:

• a.a =
$$||a||^2$$
.

•
$$a.(b + c) = a.b + a.c$$

•
$$a.b = 0 \iff a = 0 \text{ or } b = 0 \text{ or } a + b.$$

•
$$0.a = 0$$

•
$$(da).b = d(a.b)$$

• a.b =
$$|a|.|b| \cos(\theta)$$
.

Fragment of Python Code:	Output:
import numpy as np	
# Define vectors a and b	
<pre>a = np.array([1, 2, 3]) b = np.array([4, 5, 6])</pre>	[1 2 3] [4 5 6]
# Compute dot product c = a.b	
c = np.dot(a,b)	32.000000

Cross Product

Definition. Consider two vectors A and B in three dimensions:

$$A = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

$$B = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

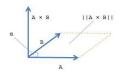
The cross product of A and B is:

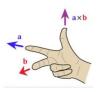
$$C = A \times B = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$
$$= (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}.$$

Cross Product

Geometric Interpretation

 $A \times B$ is a vector that is perpendicular to both A and B.





- The magnitude of $||A \times B||$ is equal to the area of the parallelogram formed using A and B as the sides.
- The angle between A and B is: $||A \times B|| = ||A|| ||B|| \sin(\alpha)$.
- The cross product is zero when the A and B are parallel.

Output:

Cross Product

Fragment of Pvthon Code:

# Define vectors a and b	
<pre>a = np.array([1, 2, 3]) b = np.array([4, 5, 6])</pre>	[1 2 3] [4 5 6]
# Compute cross product c = a x b	
c = np.cross(a,b)	[-3 6 -3]
# Check that cross product is perp	endicular to a and b
<pre>d1 = np.dot(c,a) d2 = np.dot(c,b)</pre>	0.000000 0.000000

Linear Independence

A set of vectors $(v_1, v_2, v_3, \dots, v_n)$ is said to be linearly independent if the equation

$$a_1v_1 + a_2v_2 + a_3v_3 + \cdots + a_nv_n = 0.$$
 (7)

can only be satisfied by $a_i = 0$ for i = 1, ... n.

Put another way: no vector in the sequence can be written as a linear combination of the other vectors.

Example 1. Consider three vectors $v_1 = (1, 1)$, $v_2 = (-3, 2)$, and $v_3 = (2, 4)$ in two-dimensional space.

The vectors will be linearly independent if the only solutions to

$$a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} -3 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{8}$$

are $a_1 = a_2 = a_3 = 0$. Writing these equations in matrix form:

$$\begin{bmatrix} 1 & -3 & 2 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{9}$$

Apply row operations (details to follow):

$$\begin{bmatrix} 1 & 0 & 16/5 \\ 0 & 1 & 2/5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{10}$$

which can be rearranged:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + a_3 \begin{bmatrix} 16/5 \\ 2/5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{11}$$

We conclude that since a_1 and a_2 can be written in terms of a_3 , the equations are linearly dependent.

A Few Observations

- Vectors v_1 through v_3 are two dimensional.
- Can show that three (or more) vectors in two-dimensional space will always be linearly dependent.
- Can show that four (or more) vectors in three-dimensional space will always be linearly dependent.
- This is why a stool with three legs (vectors) will always be steady (linearly independent), but one with four legs (vectors) will sometimes rock (linearly dependent).

Definition of Matrices

Definition of a Matrix

Definition. A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of m horizontal rows and n vertical columns. We say

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 (12)

is a matrix of size (or dimension) $(m \times n)$.

In the double subscript notation a_{ij} for matrix element a(i,j), the first subscript i denotes the row number, and the second subscript j denotes the column number.

Matrix Properties

Matrix Properties

Properties of Matrix A:

- A matrix having the same number of rows and columns is called square.
- A square matrix of order n is also called a $(n \times n)$ matrix.
- The elements a_{11} , a_{22} , \cdots , a_{nn} are called the principal diagonal.
- A diagonal matrix with elements $a_{ii} = 1$, and all other matrix elements zero, is called the identity matrix I.

Matrix Transpose

Matrix Transpose. The transpose of a $(m \times n)$ matrix A is the $(n \times m)$ matrix obtained by interchanging the rows and columns of A. The transpose is denoted A^T .

Example 1. The matrix transpose of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \quad \text{is} \quad A^{T} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$
 (13)

Properties

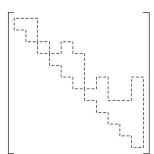
- $\bullet (A+B)^T = A^T + B^T.$
- $\bullet (ABC)^T = C^T B^T A^T.$

Symmetric and Skew-Symmetric Matrices

Matrix Symmetry:

- A square matrix A is symmetric if $A = A^T$.
- A square matrix A is skew-symmetric if $A = -A^T$.

Large symmetric matrices play a central role in structural analysis.



Schematic of Non-Zero Matrix Elements

Skyline Storage Pattern

Matrix Inverse

Definition: When it exists, the inverse of matrix A is written A^{-1} and it has the property:

$$[A][A^{-1}] = [A^{-1}][A] = I.$$
 (14)

Nomenclature

- If matrix A has an inverse, then A is called non-singular.
- If matrix A has an inverse, then the inverse will be unique.
- If matrix A does not have an inverse, then A is called singular.

Theorem. For a $(n \times n)$ matrix A, the inverse A^{-1} exists \iff rank(A) = n.

 Conversely, matrix A is singular if rank(A) < n (i.e., rank deficient).

Matrix Inverse

Computational Procedure. We want to carry out row operations such that:

$$[A|I] \xrightarrow{\text{row operations}} [I|A^{-1}].$$
 (15)

Example. Can apply row operations to get:

$$\begin{bmatrix} -1 & 1 & 2 & 1 & 0 & 0 \\ 3 & -1 & 1 & 0 & 1 & 0 \\ -1 & 3 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{row ops}} \begin{bmatrix} 1 & 0 & 0 & -0.7 & 0.2 & 0.3 \\ 0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\ 0 & 0 & 1 & 0.8 & 0.2 & -0.2 \end{bmatrix}.$$

$$(16)$$

If A has rank(A) < n, then the last row in echelon form will be the O (zero) vector, and the computation will fail.

Matrix Inverse

Properties:

$$\left[A^{-1}\right]^{-1} = A. \tag{17}$$

$$(AB)^{-1} = B^{-1}A^{-1}. (18)$$

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}. (19)$$

$$\left[A^{T}\right]^{-1} = \left[A^{-1}\right]^{T}.\tag{20}$$

Lower and Upper Triangular Matrices

A lower triangular matrix L is one where $a_{ij} = 0$ for all entries above the diagonal.

An upper triangular matrix U is one where $a_{ij}=0$ for all entries below the diagonal. That is,

$$L = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} U = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$
(21)

Matrix Arithmetic

Matrix Addition and Subtraction

Definition. If A is a $(m \times n)$ matrix and B is a $(r \times p)$ matrix, then the matrix sum C = A + B is defined only when m = r and n = p, and is a $(m \times n)$ matrix C whose elements are

$$c_{ij} = a_{ij} + b_{ij}$$
, for $i = 1, 2, \dots m$ and $j = 1, 2, \dots n$. (22)

Properties

- (kA) B = k (A.B)
- A(BC) = (AB)C.
- $\bullet (A+B)C) = AB + AC.$
- C(A+B) = CA + CB.

Matrix Addition and Subtraction

Example 1. Let

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}. \tag{23}$$

The matrix sum is:

$$C = A + B = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix}. \tag{24}$$

Matrix Multiplication

Definition. Let A and B be $(m \times n)$ and $(r \times p)$ matrices, respectively.

The matrix product $A \cdot B$ is defined only when interior matrix dimensions are the same (i.e., n = r).

The matrix product $C = A \cdot B$ is a $(m \times p)$ matrix whose elements are

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 (25)

for $i = 1, 2, \dots m$ and $j = 1, 2, \dots n$.

Matrix Multiplication

Example 1. Assuming that matrices A and B are as defined in the previous section:

$$C = A \cdot B = \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \cdot 4 + 1 \cdot 0 & 2 \cdot 2 + 1 \cdot 1 \\ 4 \cdot 4 + 6 \cdot 0 & 4 \cdot 2 + 6 \cdot 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ 16 & 14 \end{bmatrix}.$$

$$(26)$$

Geometric Interpretation. Matrix element c_{ij} is the dot product of the i-th row of A with the j-th column of B.

Matrix Multiplication

Properties.

- A.B.C = (A.B).C = A.(B.C).
- A.(B + C) = A.B + A.C.
- (A + B).C = A.C + B.C.
- A.I = A.
- In general, $A.B \neq B.A$.
- A.B = ϕ does not necessarily imply A = ϕ or B = ϕ . Counter example:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}. \tag{27}$$

Matrix Operations with Python

Fragment of Python Code:	Output:	
A = np.array([[2, 1], [4, 6]]);	Matrix: A 2.00 4.00	1.00
<pre>B = np.array([[4, 2], [0, 1]]); # Compute matrix transpose</pre>	Matrix: B 4.00 0.00	
# Compute matrix transpose		
C = A.T	Matrix: A^T 2.00 1.00	

Matrix Operations with Python

```
Fragment of Python Code:
                                     Output:
# Use numpy add() for matrix addition ...
C = np.add(A,B)
                                     Matrix: np.add(A,B)
                                         6.00 3.00
                                         4.00
                                                 7.00
# Add matrices with + operator ...
C = A + B
                                     Matrix: A + B
                                         6.00 3.00
                                         4.00
                                                  7.00
```

Matrix Operations with Python

```
Fragment of Python Code:
                             Output:
# Use numpy matmul() for matrix multiplication ...
C = np.matmul(A, B)
                             Matrix: np.matmul(A,B)
                                 8.00 5.00
                                16.00 14.00
# Use * operator for matrix element-level multiplies ...
C = A * B
                             Matrix: Element-level multiply A*B
                                 8.00
                                          2.00
                                 0.00 6.00
```