

ABSTRACT

Title of Document: SYSTEM MODELING EXAMPLES USING
HIGRAPH FORMALISMS

Jason E. Smith
Master of Science, Systems Engineering, 2007
University of Maryland, College Park

Directed By: Dr. Mark Austin

Department of Civil and Environmental
Engineering and
Institute for Systems Research
University of Maryland, College Park

One of the most important tools for a systems engineer is their system model.
From this model, engineering decisions can be made without costly integration,
fabrication, or installations. Existing system modeling languages used to create
system models are detailed and comprehensive, but lack a true ability to unify
the system model by showing all relationships among all components in the
model. This paper shows by example how higraphs, a type of mathematical
graph, allow systems engineers to not only represent all required information in a
system model, but to formally show all relationships in the model through
hierarchies, edges, and orthogonalities. With a higraph system model, all
relationships between system requirements, components, and behaviors are
formalized. This allows for a “smart” model that can be queried for custom sets
of information that will aid a systems engineer in engineering decisions.

 ii

SYSTEM MODELING EXAMPLES USING HIGRAPH FORMALISMS

By

Jason E. Smith

Scholarly paper submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2007

Advisor:
Dr. Mark Austin

 iii

© Copyright by
Jason E. Smith

2007

 iv

Table of Contents

Introduction ...1
Disadvantages of existing languages..1
Higraph Basics..2
Higraphs as a system modeling language ..6
University Registration System Example ..9

System Organization ...9
Use Cases and Scenarios...10

High Level Use Case Example ..12
Mid Level Use Case Example..14
Low Level Use Case Example...17
Inclusive Use Case Higraph...19

System Requirements ...23
Smart Grouping ...25

System Structure...28
Class Diagram ...29

System Behavior ...36
Use Case Diagram ..37
Activity Diagram...37
Sequence Diagram..40

Conclusion ..42
Bibliography ..44

 1

Introduction

System engineers are constantly searching for the perfect modeling tool that

addresses every need: easy to use and understand, detailed, flexible, logical,

consistent, and verifiable. Although much research has gone into finding the

perfect tool even the most widely recognized modeling languages are routinely

criticized. The current leading language for visual modeling, Unified Modeling

Language (UML) and it’s domain specific systems engineering subset Systems

Modeling Language (SysML) are often attacked for being too large and complex,

utilize imprecise semantics, without specification, are inflexible to future change,

and lack the ability to display relationships among components and diagrams [6].

Kevin Fogarty’s master’s thesis titled System Modeling and Traceability

Application of the Higraph Formalism attempts to show how one criticism;

traceability can be eliminated with the use of a mathematical graph know as

higraphs [1]. As seen in his thesis and briefly in this paper, higraphs can help

provide a true unified system model with a rational and visible relationship

between components, requirements, and models themselves. They all but

eliminate traceability concerns. Although higraphs are not an independent

perfect solution, nor a self supporting modeling tool, they can dramatically

improve system modeling when incorporated with existing languages. This

paper is intended to address one area of future work in Fogarty’s thesis: to create

a complete system model using higraphs that includes the basic structure and

behavior models, as well as other lesser used models such as sequence

diagrams [1]. To complete this objective this paper provides some introductory

information on the weaknesses of current modeling languages, the basic theory

behind higraphs, and a detailed modeling and analysis example of a University

Registration System.

Disadvantages of existing languages

A visual modeling language is an artificial language comprised of a predefined

set of diagrams, notations, and principles used to increase the ease of

 2

understanding a system, similar to a blueprint for a construction engineer. These

languages are applied in various disciplines, including business process

modeling, computer science, information management, software engineering,

and systems engineering. Regardless of the application, they all have the ability

to be used to specify system requirements, structures and behaviors. The goal of

the language is to visually or textually represent a system so that throughout its

lifecycle, all stakeholders (i.e. customers, operators, analysts, and designers) can

better understand the system, its subsystem, and relationships among

subsystem entities. Although existing visual modeling languages such as UML

and SysML are detailed and comprehensive, they lack a true ability to display all

relationships among components within the model. A specific weakness is that

they rarely allow for flows of information between the diagrams. Without a visible

relationship, it is impossible to create an automated trace from a requirement, to

a component, to a behavior, to a test case. This results in separate disjointed

models and never a complete unified system.

Higraph Basics

Higraphs are a type of mathematical graph that combines depth and

orthogonality. The concept of higraphs as a graphical representation was first

introduced by David Harel in his 1988 ACM paper titled, On Visual Formalisms

[4]. In this paper he describes higraph as a formalism based on Euler circles and

Venn diagrams with connections. Harel starts with a traditional Venn diagram as

seen in Figure 1.

Figure 1: Simplistic Venn diagram

 3

In the Venn diagram the notation of enclosure, inclusion, and exclusion defines

the relationship between each set. Harel deviates from the standard Venn

diagram by creating a unique contour for every set, intersection of sets, and

exclusion of sets found in the Venn diagram [4]. When necessary, these unique

contours are grouped together to show enclosure or a hierarchy. These unique

contours, commonly referred to as “blobs”, are created to easily identify without

confusion or lengthy equations what is and what is not included in each entity [4].

For example the entity labeled B!C-A!B!C in the Venn diagram found in Figure

1 is represented simply as blob L in the higraph representation found in Figure 2.

The most low level blobs in a graph are known as an “atomic blob”. Atomic blobs

represent real identifiable sets containing no wholly enclosed blobs within them.

Any blob, other than an atomic blob, denotes the compound set consisting of the

union of all blobs that are totally enclosed within it [4]. The atomic blobs of

Figure 2 are G, H, I, J, K, L, and M. Although not all are at the same level they

all represent one distinct set. The remaining blobs in Figure 2, A, B, C, D, E, and

F are a compound set of other blobs and therefore not considered an atomic

blob.

Figure 2: Basic higraph

 4

The lack of an atomic blob within an intersection does not in itself have meaning.

In Figure 3, blob M (intersection of blob A and C less the intersection of blob A,

B, and C) from diagram 2 has been removed. This indicates that blob F

(intersection of blob A and blob C) now has the same meaning as blob G even

though blob F is physically extended further. Unless internal blobs are present

within an intersection, the junction is meaningless. The only assumption one

might draw is that blob F is a space saver for a blob that might be filled at some

time in the future.

A second way to create independence between entities is by partitioning blobs

with dashed lines to crate an unordered and associative “orthogonal component”

[4]. This representation is no different than the contour of a blob in theory,

however it offers a different visual display that may prove beneficial in some

cases. An example utilizing orthogonal lines is presented in Figure 4.

Figure 3: Basic highraph with empty blobs

 5

Finally, edges are attached to the contour of any blob to define various

relationships (physical, logical, etc.) between blobs that can not be easily

visualized [4]. Edges can be directed or undirected, labeled or unlabeled, and

connect one blob to itself (self-directed), another, or many other blobs. An

example using edges is provided in Figure 5.

Much of the transformation from a traditional Venn diagram to higraph discussed

so far is concentrated on “smart grouping”. An additional benefit to higraphs is

their mathematical properties which are thoroughly defined in Harel’s follow on

paper titled On the Algorithmics of Higraphs. The basic mathematical definition

of a higraph can be summarized as follows [3]:

• B is the set of blobs [nodes], b, that make up a higraph

• E is the set of edges, e, that make up a higraph

Figure 5: Basic higraph with orthogonal lines and edges

Figure 4: Basic higraph with orthogonal lines (not representing blobs F and M)

 6

• " is the hierarchy function

• # is the orthogonality (or partitioning function)

• H is the highraph quadruple (B, E, ", #)

In Harel’s follow on paper, he describes in detail the syntax and semantics of

higraphs. By creating notations and mathematical tenets for higraph blobs,

edges, and orthogonal lines, all relationships such as generalization, hierarchy

and inheritance can be mathematically shown, even for the most complex

systems. These mathematical properties increase a highraph’s ability to logically

connect elements even further than its visual representation. One of the

greatest benefits of these mathematical properties is the ability for custom sets of

information to be logically ordered and queried.

These mathematical characteristics also enable higraphs to be easily used in

supporting software tools. The characteristics provide the ability to create,

display, and query general connectivity and organizational relationships.

Modeling software that utilizes higraphs is already available. Headway Software

has employed higraph modeling with their source code visualization tool, reView.

It’s promoted as the first visual tool to intelligently show all dependencies at all

levels of development including application, package, class, method, and data

members [5]. The use of this tool in software development shows promise for

the systems engineering field. Software tools like reView are proving that

higraph modeling is a great platform for visualizing and understanding the overall

system structure and hierarchy.

Higraphs as a system modeling language

For all the above mentioned reasons (visual representation, mathematical

properties, and software adaptability), higraphs can be useful in systems

modeling, particularly for traceability. In many respects the concept of higraphs

is the basis for statecharts and is currently used for modeling systems. In fact

 7

UML’s state diagram is the principal diagram used to define system behaviors.

Fogarty takes the concept one step further by adapting higraph’s in every aspect

of system modeling, thereby improving UML and SysML diagrams. They can

duplicate the graphical advantages of existing diagrams while providing

traceability. Additionally, they can be used to represent dynamic and static

systems as shown in Figure 6.

B&C

B&C

A

B

C

D

A

B

C

D

A

B

C

D

In brief and for the purposes of this paper, every object, even use cases within a

system have three elements; requirements, structure, and behavior. The details

that make up these elements often have relationships or connections within the

object/use case as well as within elements outside the object/use case.

Examples of relationships include associations, dependencies, extensions,

generalizations, includes, realizations, and transitions. Figure 7 shows the most

high level higraph representation of an object. In the figure the object itself is

Figure 6: Higraph representation of a finite state machine

 8

displayed as a blob with sub blobs representing the object’s elements. Elements

and details within the elements can overlap or be connected by an edge to show

a relationship, typically a commonality. In reality, even for simple systems there

could be thousands upon thousands of blobs all interconnected making for an

unusable graph. It is important to balance the amount of information that can be

put on the graph with the amount of information the user needs on the graph.

Generalizing diagrams with respect to the user’s view point by minimizing the

amount of sub-blobs is critical to creating an effective graph. The user should

realizes that further levels of detail exist which are either of no importance to their

viewpoint or can be queried if needed.

The remainder of this paper concentrates on an example used to identify and show the

potential advantages higraphs bring over traditional models. The example used is a

University Registration System and addresses the system’s three elements: requirements,

structure, and behavior.

Figure 7: Basic system engineering modeling using higraph

 9

University Registration System Example

The purpose of this chapter is to demonstrate how higraphs can be applied to the

representation and organization of system modeling elements. The ability for

higraphs to be used as a modeling tool is demonstrated through the detailed

modeling of an existing University Registration System. The first section of this

chapter concentrates on incorporating higraph concepts into use case

development and use case diagrams. The next three sections present the

system separately, modeling each entity independently, requirements, structure,

and behavior. The final section demonstrates how the higraph allows for flows of

information between the diagrams and entities.

System Organization

The example focuses on three high level university administrative use cases

including university application, course registration, and transcript request.

Actors in the system include students (future students, current students, and

alumni), instructors, coordinators, bursar, and registrar. As seen in Figure 8,

academic actors such as students, instructors, and coordinators fall under a

college/school and department while managerial actors such as bursar and

registrar fall under the administration. Other objects such as transcripts, courses,

and sections are represented in order to update, verify, or record information.

Detailed discussion on class diagrams and their higraph equivalent are provided

in the structure section of this chapter. Since the goal of this example is to

highlight the interconnectivity relationships and thoroughness higraphs have over

traditional modeling languages, some of the less relevant visual modeling

development processes, such as requirement generation and use case

description have been omitted.

 10

University

College/School Administration

Department

Person Course

Perspective Current Alumni

RegistrarBursar

Person

StudentInstructor

Section

Coordinator

Transcript

Use Cases and Scenarios

One of the first steps in modeling a system is to generate use case diagrams,

use cases, and textual scenarios. The use case diagram is a simple graphical

model for representing the primary relationships within a system. It is used to

identify the primary entities (people and things that achieve results) and

processes that form the system. The primary entities that interact with the system

are termed "actors" and the processes or functions are called "use cases." The

use case diagram shows which actors interact with what use case. Complex

engineering systems are often described with families of use case diagrams. A

specific use case diagram might represent system functionality from a specific

viewpoint or interest. Of course, these viewpoints will be linked. Any provision

needs to be made for extension of functionality and proper treatment of irregular

functionality (when something goes wrong). To handle these relations, UML

specifies three types of relationships between use cases. The three relationship

(include, extend, and generalization) are defined as follows;

Figure 8: Preliminary concept hierarchy for the University Registration System

 11

• the included use case is one step of the initial use case

• the extended use case is the next step after the initial use case

• generalized use case is a specialized form or sub-class of the initial use

case

In an actual model each use case and scenario would be defined with text in finer

detail. Since this process is not improved or simplified by the use of hiraphs, it is

omitted from this paper.

As shown in the examples below, higraphs can be used to represent use cases.

Higraphs ability to provide an unambiguous graphical representation and logical

traceability significantly improves the traditional UML use case diagram. The

following figures show the transformation from use case diagram to higraph at

three distinct levels within the system. The first set of use case diagrams and

higrahps represent the complete system at its highest level where the second

and third set of use case diagrams and higraphs represent one use case from

the previous level (mid level: course registration and low level: enroll student).

At each level a UML use cases diagram is juxtaposed with a highraph equivalent

containing the same information. Figure 9 graphically shows how the use case

diagrams and higrahps are presented. Once all three levels are discussed an

inclusive use case higraph is presented to truly demonstrate how higraphs can

significantly improve use case diagram’s visual and traceability characteristics.

High Level

Low Level

Mid Level

Complete

System

Course

Registration

Enroll

Student
UML

Use

Case

Diagram

Figure 9

Initial

Use

Case

Highgraph

Figure 10

Final

Use

Case

Highgraph

Figure 11

UML

Use

Case
Diagram

Figure 12

Initial

Use

Case
Highgraph

Figure 13

Final

Use

Case
Highgraph

Figure 14

UML
Use

Case

Diagram

Figure 15

Final
Use

Case

Highgraph

Figure 16

 12

High Level Use Case Example

The use case examples are first presented from a high level complete system

perspective. At this level, Figure 10 shows the traditional UML approach to

visually modeling use cases.

Student

Instructor

Submitt Application

Course Registration

Update Grade

Request Transcript

Coordinator

Process Invoice

Bursar

<<includes>>

<<includes>>

The two higraph equivalents shown in Figure 11 and 12, display the evolution in

higraph form. The first higraph (Figure 11) looks and feels very much like a use

case diagram with higraph aspects and the second higraph (Figure 12) looks and

feels like a true higraph.

Figure 9: Graphical representation of how use case diagrams and use case
higraphs are presented in this section.

Figure 10: UML high level use case diagram representing the complete system

 13

Actor

Student

Instructor

Coordinator

Scenarios

Submit

Application

Request

Transcript

Course

Registration

Update

Grade

Process

InvoiceBursar

One flaw with the initial use case higraph is that use case relationships such as

included, extended, or generalized are not properly represented. For example, in

both the UML use case diagram (Figure 10) and initial use case higraph (Figure

11), the student is shown to interact with all scenarios. In fact the student does

interact with all scenarios but not all parts of all scenarios. Using higraphs to

represent use cases can provide the ability to employ sub blobs that clearly

illustrate the relationships between and within objects and scenarios. As shown

in the high level final use case higraph (Figure 12), sub blobs can be successfully

used to avoid this common confusion and create a logical and traceable

graphical representation.

Figure 11: Initial high level use case higraph representing the complete system

 14

Mid Level Use Case Example

The next set of use case examples are presented from a mid level perspective

representing the course registration scenario. Again the example begins with the

traditional UML use case diagram shown in Figure 13.

Figure 12: Advanced high level use case higraph representing the complete
system

 15

Student

Instructor

Log In

Verify Student

Authorized

Prepare Course

Registration

Enroll Student

Coordinator

Request Course

Bursar

Process Invoice

Update Grade

<<includes>>

<<includes>>

<<includes>>

As illustrated in the high level example, the higraph equivalents are shown in two

figures to display the evolution from use case diagram to use case higraph. The

first higraphs in Figure 14 are extremely similar to their use case diagram

counterpart. The reason for two higraphs in Figure 14 is to show the benefits of

properly utilizing blob hierarchy in all aspects of the higraph. The left hand

higraph is clearly more difficult to follow when compared to the right hand

higraph. The right hand higraph was easily simplified by generating a blob titled

Figure 13: UML mid level use case diagram representing the “course registration” use
case

 16

“course preparation team” which eliminated two unnecessary edges. This type of

effective hierarchy management significantly improves the overall quality and

usability of any higraph.

Actor

Course

Preparation

Team

Student

Coordinator

Course Registration

Log In

Verify Student

Authorized

Instructor

Bursar
Enroll Student

Update

Grade

Process
Invoice

Request

Course

Prepare

Course

Registration

Actor

Student

Coordinator

Course Registration

Log In

Verify Student

Authorized

Instructor

Bursar

Enroll Student

Update
Grade

Process

Invoice

Request

Course

Prepare
Course

Registration

Once again the initial higraph representation does not properly represent the use

case relationships. For example, in Figure 13 and 14, the student is shown to

interact with the “request course” use case but it is difficult to determine if the

student interacts with the included “prepare course registration” use case. In

reality, it is the coordinator and instructor who prepare the course registration, not

the student. To avoid this confusion, the final higraph in Figure 15 utilizes sub

blobs to more accurately represent exactly what part of the use case the user

interacts with.

Figure 14: Initial mid level use case higraph representing the “course registration” use
case

 17

Low Level Use Case Example

The final set of use case examples are presented from a low level perspective

representing the enroll student scenario from the course registration use case.

As with the two previous use case examples, the enroll student example begins

with a traditional UML use case diagram shown in Figure 16.

Figure 15: Advanced mid level use case higraph representing the “course
registration” use case

 18

Instructor

Update student

transcript

Bursar

Process Invoice

Update section

student size

End Request

Update Grade

Unlike the high and mid level examples, the enroll student example is especially

straightforward. Due to this simplicity, there is little change between the use

case diagram in Figure 16 and the final use case higraph in Figure 17. For this

reason an initial use case higraph and discussion regarding the evolution

between the two higraphs is not necessary.

Actor

Bursar

Enroll Student

Update

section

student size

Instructor

Process

Invoice

Update

student

transcript

Update

Grade

End Request

Figure 16: UML low level use case diagram representing the “course registration”
“enroll student” use case

 19

The advantages of use case higraphs are apparent: by organizing both actors

and use cases into a hierarchy of higraphs, the number of relationships can be

compressed and simplified, without compromising meaning in the diagram. This

presentation is considerably more logical, effective, and useful.

Inclusive Use Case Higraph

The last several examples have shown how higraphs can effectively and clearly

visualize all relationships within a use case. The next step in the development of

use case higraphs is to demonstrate that all relationships throughout different

use case higraphs can be represented in one master higraph. This master

higraph can be thought of as an inclusive use case higraph.

Based on higraph theory and its application for systems engineering models, a

blob describes particulars of an object or use case at a particular level of detail.

As discussed above, a blob is considered atomic if it does not contain any sub

blobs within it. Like most blobs, use case blobs can always be subdivided into an

almost infinite number of lower levels, eventually reaching a scenario or literal

atomic level. For instance, the left hand higraph in Figure 18 the use case

course registration includes many steps, each at differing levels of detail;

beginning with turning on the computer to how to type in individual characters on

the keyboard. Use case blobs can overlap or use edges to indicate

commonalities. It is important to note that use case blobs are not necessarily

listed sequentially, although in particular situations order may make the graph

easier to read. When order is necessary, use of edges is recommended over

overlap to indicate commonalities. The right hand higraph in Figure 18 displays

the use of edges to simplify use case blobs.

Figure 17: Final low level use case higraph representing the “course registration”
“enroll student” use case

 20

COURSE REGISTRATION

LOG IN

TURN ON COMPUTER

OPEN WEB BROWSER

TYPE URL

ENTER PASSWORD

RIGHT CLICK ON

PASSWORD BOX

TYPE PASSWORD

PRESS KEY ON

KEYBOARD MATCHING

EACH ORDERED

CHARACTER

...

...

...

...
* Blobs with “…” indicate et cetera

RIGHT CLICK ON URL BOX

TYPE URL

PRESS KEY ON

KEYBOARD MATCHING

EACH ORDERED

CHARACTER

...

...

COURSE REGISTRATION

LOG IN

TURN ON COMPUTER

OPEN WEB BROWSER

TYPE URL

ENTER PASSWORD

RIGHT CLICK ON

PASSWORD BOX

TYPE PASSWORD

...

...

...

...

RIGHT CLICK ON URL BOX

TYPE URL

PRESS KEY ON

KEYBOARD MATCHING

EACH ORDERED

CHARACTER

...

Utilizing this concept, one can create an inclusive use case higraph to represent

all levels of interactions between every actor and use case within a system.

Figure 19 represents an inclusive use case higraph for the University

Registration System at the predefined high, mid, and low levels.

Figure 18: Complex and simplified representation of use case higraph

 21

As discussed earlier in this paper, it is important to balance the amount of

information that can be put on the graph with the amount of information the user

needs on the graph. Providing too much information can quickly turn an effective

Figure 19: Inclusive use case higraph representing the complete University
Registration System

 22

graph, particularly a large graph such as an inclusive use case higraph,

ineffective. To avoid this pitfall, inclusive use case higraphs can and should be

shaped to fit the user’s viewpoint by eliminating unnecessary information.

Viewpoints can be made from one or many actor perspectives, one or many use

case perspectives, or some combination of the two. Figure 20 shows how a

simplified inclusive use case higraph might look from the student perspective.

This type of use case representation has utility beyond the traditional use case

diagram and in some respects resembles activity and sequence diagrams

without decision nodes. This characteristic provides initial proof that higraphs

possess the ability to display relationships among components and diagrams. In

any case, the concept may be useful but its details require further study.

Figure 20: Inclusive use case higraph from student perspective

 23

System Requirements

With the system use cases in place, designers then need to define details of the

functionality specified in the desired use cases. Typically this functionality is

referred to as the system’s functional requirements. These functional

requirements specify the internal workings and particular behaviors of the system

such as the calculations, technical details, data manipulation, and processing.

Functional requirements are supported by non-functional requirements, which

impose limitations on the design or implementation. Non-functional

requirements, also know as constraints, specify the overall characteristics or

performance requirements such as cost, reliability, security, quality standards,

and design constraints. In general terms they can be thought of as adjectives

used to describe the behaviors of functions specified by the functional

requirements. All requirements have similar relationships as use cases and

objects. For example, requirements can be “a part of” or “the same as” another

requirement or “inherited by” or “dependant on” an object or use case. Figure 21

shows a generalized description of how these relationships can be represented

in higraph form. In the figure a non-functional requirement is associated with a

functional requirement which is associated with a use case.

Figure 21: Generalization of requirement relationships in higraph form.

 24

In addition to the text of a requirement such as “must be in English and Spanish”,

requirements must contain a unique name, number, and rationale. This

information is used to help the reader understand why the requirement is

needed, and to track the requirement through the development of the system.

Without these details, requirements can not be validated or verified nor could

current and future designers be able to determine why a particular requirement

exist or if it is even necessary.

Based on this brief requirement introduction, tracking requirements is the key to

an effective system. UML does not provide for requirements diagrams, and often

creates rather antiquated requirements lists or databases with little or no visual

representation or relationship links as shown in Figure 22.

Figure 22: Simplistic requirements list showing relationship links

 25

Smart Grouping

A coherent higraph requirement representation can be easily visualized using the

same “smart grouping” techniques employed to create the use case graphs.

Requirements graph’s improvements over the requirements list are apparent.

The graph logically shows relationships between requirements and objects

constrained by the requirement. Derived and generalized requirements as well

as details regarding who owns or is impacted by the requirement are represented

by hierarchies and edges. The following two Figures 23 and 24, demonstrate

how requirements from the University Registration System example can be more

efficiently displayed as higraphs. The first example, Figure 23 illustrates how the

requirement “common web browsers shall include Explorer, Firefox, Safari,

Opera, and Netscape” is common or “same as” for both system and user

requirements. This relationship is quickly made apparent by the use of an edge.

The second example, Figure 23 illustrates how the requirements “non work days

are days other than work days”, “work days include any Monday through Friday

except authorized holidays”, and “holidays are defined as any nationally

recognized holidays” are related. These requirements take on either “same as”

or “inherited by” relationships between other requirements within the system

Figure 23: Higraph Requirement Diagram showing commonalities
between client requirements and system requirements

 26

requirements. The relationships would not be apparent without the use of edges.

This type of visual representation in Figures 23 and 24 clearly indicates to the

reader that changes made to any requirement with edges will effect other

requirements which are linked.

Unlike UML, SysML contains a requirements diagram, as shown in Figure 25,

which effectively displays requirements hierarchy and can create trace

relationships between requirements and other elements. The requirements

diagram in Figure 25 illustrates how the University Registration System’s

Figure 24: Higraph Requirement Diagram showing commonalities
between student requirements and employee requirements

 27

requirement for client ID numbers would be represent in SysML. This type of

requirements modeling provides the additional benefit of traceability and provides

the purpose for each requirement.

{{ requirement }}

system shall require

client username for
log in.

6.1

{{ requirement }}

system username

shall be the client 's
full ID number

6.1.2

{{
tr

a
c
e
}}

{{ requirement }}

Student

Log In

{{ requirement }}

All clients shall have

an ID number

1

{{trace}}

{{trace}}

This advantage makes SysML’s requirement diagram a better model for a

requirement higraph. Using the same example as Figure 25, Figure 26

demonstrates how a requirements diagram can be modeled using higraph

formalisms. This inclusive requirement graph again shows smart grouping

techniques within the requirements themselves. The use of edges indicates their

relationship to or inheritance from use cases. The use of higraphs for

requirement modeling again proves that higraphs can best represent all

relationships among components within the system.

Figure 25: Sample SysML Requirements Diagram

 28

System Structure

The next step in system development is to specify how the system will

accomplish its purpose. The system structure corresponds to collections of

interconnected objects and subsystems, constrained by the environment within

which the system must exist. The nature of each object/subsystem will be

captured by its attributes and operations. The purpose of structure diagrams is to

show the static structure of the system being modeled. UML and SysML

structure diagrams include the class or static structure, component, composite

structure, deployment, object and package diagrams. For the purpose of this

Figure 26: Requirement Higraph showing commonalities within system requirements

 29

paper we will concentrate on the class/static structure diagrams since they form

the foundation of object-oriented analysis and design.

Class Diagram

From a top-down development perspective, system-level models begin to take

shape by identifying the system structure with the use of UML use cases or

SysML static structure diagrams. In the same style of previously discussed

diagrams, the class diagram describes the structure of the system by showing

the classes of the system, the relationships between classes (both instance level

and class level), and the operations and attributes of the classes. In class

diagrams, instance level relationships are in most cases synonymous with

thephrase “has a” and includes association, aggregation, and composition.

Alternatively, a class level relationship is synonymous with the phrase “is a” and

includes generalization (14). Another distinction found on a class diagram is that

instance level relationships may also detail the number of instances or objects

that participate in the relationship. This concept is known as multiplicity and is

typically categorized into one of the following types;

0...1 No instances, or one instance

1 Exactly one instance

0...* Zero or more instances

1…* One or more instances

A very basic class diagram for concepts in the University Registration System

was presented earlier in this paper, Figure 8. We now expand it in Figure 27 to

include additional class attributes, operations, and instance level relationships.

 30

-Name

-President

Univeristy

-Name

-Dean

College /School

-Name

Department

Administration

-Name

-University ID

-E -Mail

-Password

-DOB

Person

+updateCourse ()

Coordinator

+ addGrade()

+ requestCourseUpdate ()

-Courses Teaching

-Students Advising

Instructor
-Year Entered

-Advisor

-Completed Courses

-Transcript

Student

-Code

-Title

-Description

-Prerequisite

Course

+reviewApplication ()

+maintainsRecords ()

Registrar-Name

-University ID

-E -Mail

-Password

-DOB

Person

+requestPayment ()

+collectPayment ()

+updatesPaymentStatus ()

Bursar

+requestTranscript ()

-Graduation Date

Alumni

«signal» -apply()

-Application Status

Prespective

+courseRegistration ()

+requestTranscript ()

+payTuition ()

-Current Courses

Current

-Time /Date

-Semester

-Location

-Instructor

-Capacity

-Student

Section

-Course

-Grade

Transcript

-Payment Status

Student Record

1

1..*

manages

manages

1

1..*

1

1..*

te
a
c

h
e

s

1..*

1

updates

1..*

1..*

ta
k
e

s

11
requests for

*

1

*

1

u
p
d

a
te

s

m
a

in
ta

in
s

 31

In Figure 28, the same diagram was updated to focus on those classes that are

directly related to the Universal Registration System. In this last update,

unnecessary classes were eliminated.

+updateCourse()

Coordinator

+addGrade()

+requestCourseUpdate ()

-Courses Teaching

-Students Advising

Instructor

-Year Entered

-Advisor

-Completed Courses

-Transcript

Student

-Code

-Title

-Description

-Prerequisite

Course

+requestPayment ()

+collectPayment ()

+updatesPaymentStatus ()

Bursar

+courseRegistration ()

+requestTranscript ()

+payTuition ()

-Current Courses

Current

-Time /Date

-Semester

-Location

-Professor

-Capacity

-Student

Section

1..*

1..*

1

1..*

takes

teaches

1..*
1

*

1

u
p
d

a
te

s

u
p

d
a
te

s

-Course

-Grade

Transcript

-Payment Status

Student Record

+reviewApplication ()

+maintainsRecords ()

Registrar

1

1..*

manages

11

requests for

*

1

m
a
in

ta
in

s

1

1..*
manages

The characteristics of higraphs make it easy to transform from a class diagram to

a structure higraph. The same progression made with the class diagrams above

are made with structure higraphs in Figures 29, 30, and 31. Starting with Figure

29, a higraph representation of the simplistic class diagram (Figure 8) shows in

many respects the communicative and logical advantages of a structure higraph.

Figure 28: UML Class Diagram with unnecessary classes eliminated

Figure 27: UML Class Diagram with attributes, operations, and instance level
relationships. Classes in the University Registration System are shown in the context
of the university system, college/schools, and administrative services.

 32

University

College/School Administration

Department

Course

Person

Bursar

Registrar

Person

Coordinator

Instructor

Student

Perspective

Current

Alumni

Instructor

Attributes

-Courses Teaching

-Students Advising

Operations

+addGrade()

+requestCourseUpdate()

Section

Student

Record

Transcript

The structure higraph in Figure 30 demonstrates how additional class details

(attributes, operations, and instance level relationships) can be added without

loosing the higraph’s visual advantages. When compared to its structure

diagram counter part in Figure 27, Figure 30 is visually more comprehensible.

Figure 29: Simplistic Structure Higraph

 33

University

College/School Administration

Department

Course

Person

Bursar

Registrar

Person

Instructor

Student

Perspective

Current

Alumni

Attributes
- Courses Teaching

- Students Advising

Operations
+addGrade ()

+requestCourseUpdate ()

Attributes

- Name
- President

Attributes

-Name

-Dean

Attributes

-Name

Attributes

- Code

- Title
- Description

- Prerequisite

Attributes

- Name

- University ID

- E- Mail
- Password

- DOB

Attributes

- Year Entered

- Advisor

- Completed Courses
- Transcript

Operations

Operations

Operations

Operations

Operations
Operations

Operations

Operations

+apply ()

Operations

+courseRegistration ()

+requestTranscript ()

+payTuition ()

Operations

+requestTranscrip ()

Student Record

Transcript

Attributes

Attributes

-Payment Status

Attributes

-Course

-Grade

Attributes

Attributes

Operations

Operations

+ requestPayment ()
+ collectPayment ()

+ updatePaymentStatus ()

Operations

+ reviewApplication ()

+ maintainRecords ()

Operations

Operations

Attributes

-Name

-University ID

-E-Mail
-Password

-DOB

Attributes

-Application Status

Attributes

-Current Courses

Attributes

-Graduation Date

m
a

n
a

g
e

s

Section

Attributes

- Time /Date

- Semester
- Location

- Instructor

- Capacity

- Student

Operations

Coordinator

Attributes Operations

+updateCourse ()

te
a

c
h

e
s

up dates

requests for

ta
k

e
s

m
a

in
ta

in
su

p
d

a
te

s

In this last transformation the structure higraph, shown in Figure 31, is resized to

illustrate only those classes link to the University Registration System. This new

Figure 30: Structure Higraph with attributes, operations, and instance level
relationships

 34

structure higraph is more communicative than its structure diagram equivalent in

Figure 28 and now more succinct than its predecessor in Figure 30.

Course

Bursar

Registrar

Instructor

Student

Current

Attributes

-Courses Teaching

-Students Advising

Operations

+addGrade ()

+requestCourseUpdate ()

Attributes
-Code

-Title

-Description

-Prerequisite

Attributes

-Year Entered

-Advisor
-Completed Courses

-Transcript

Operations

Operations

Operations

+courseRegistration ()
+requestTranscript ()

+payTuition ()

Student Record

Transcript

Attributes
-Payment Status

Attributes

-Course

-Grade

Attributes

Attributes Operations
+requestPayment ()

+collectPayment ()

+updatePaymentStatus ()

Operations

+reviewApplication ()

+maintainRecords ()

Operations

Operations

Attributes

-Current Courses

m
a

na
g

e
s

Section

Attributes
-Time /Date

-Semester

-Location

-Instructor

-Capacity
-Student

Operations

Coordinator

Attributes Operations

+updateCourse ()

te
a

c
h

e
s

upda tes

req uests for

ta
k

es

m
a

in
ta

in
su

p
d

a
te

s

A structure higraph’s ability to visually depict all relationships in a communicative

and logical form is not found with traditional UML or SysML diagrams. A

particular strength of the structure higraph is its representation of class level

relationships. The graph representation clearly visualizes the delineation of

classes and offers more definition. Figure 32 illustrates the class level

advantages that structure higraphs offer over class diagrams. In these Figures

the distinction between male/female, professors/students/coordinators/

unclassified, and university/non-university classes is apparent. It is easy to see

all the class combinations that exist. For example, all professors are grouped in

blob Q which consists of all male professors (blob U) and all female professors

(blob V). The atomic blobs A, B, C, and D are the lowest level blobs representing

professors and define whether or not the professor is a male or female, and

whether that professor is part of the university system or is external to the

university system. As mentioned previously, the lack of an atomic blob within an

Figure 31: Structure Higraph with unnecessary classes eliminated

 35

intersection does not in itself have meaning. The fact that blob R (all students)

intersects with blob W (all non-university) on both sides of the graph but has no

blobs contained within the intersections, indicates that there are no personnel

representing this classification; students not internal to the university. Similarly,

blob S (all coordinators) and blob W (all non-university) do not intersect on either

side of the graph which also indicates that there are no personnel representing

this classification; coordinators not internal to the university.

Figure 32: Higraph representing class level relationships

 36

List and description of atomic classes

A all male instructors not part of the university system (ie. guest lecturers,

visiting professors, etc)

B all male instructors part of the university system

C all female instructors not part of the university system (ie. guest lecturers,

visiting instructors, etc)

D all female professors part of the university system

E all male students part of the university system

F all female students part of the university system

G all male coordinators part of the university system

H all female coordinators part of the university system

I all male personnel not elsewhere classified which are part of the university

system (ie. janitors, human resource personnel, sports director, etc.)

J all male personnel not elsewhere classified which are not part of the

university system (ie contract workers)

K all female personnel not elsewhere classified which are part of the

university system (ie. janitors, human resource personnel, sports director,

etc.)

L all female personnel not elsewhere classified which are not part of the

university system (i.e. contract workers)

System Behavior

System behavior specifies what the system will actually do by showing the

dynamic behavior between objects in the system. Usually, behavior can be

represented as hierarchies or networks of tasks, functions and processes.

Behavior is evaluated via attributes of performance. The most common behavior

diagrams include the use case diagram, activity diagram, and sequence diagram.

All three are addressed in this paper using higraphs. Like requirements and

structure, system behaviors can be easily represented in higraphs with

advantage over current modeling tools.

 37

Use Case Diagram

As seen earlier in this paper, the use case diagram provides a high-level

description of the system functionality. Use cases describe behavior in terms of

the high level functionality and uses of a system, that are further specified in the

other behavioral diagrams referred to above. Use cases are often considered

the most critical diagram and therefore often one of the first diagrams used to

model a system. It is for this reason that use case diagrams and their higraph

equivalent were covered in depth earlier in this paper.

Activity Diagram

The activity diagram represents the step-by-step flow of data and control

between activities within a system. Activity diagrams detail a use case’s

activities (nodes), transitions (arcs), decision elements, and parallel behaviors.

Figure 33 models a course registration use case (excluding update grades) using

a UML activity diagram.

 38

Course Open

Submit add /drop request

Search for clientLog in with username & PIN

Semester Registration Open

Verify PIN

/ No

/ Yes

Complete online add /drop information

Verify prerequisites met

Verify student in acceptable department

Verify section not full

Search for course

/ No
Still want a course ?

Update section student size

Update student transcript

Is student authorized ?

/ Yes

Is the username and PIN correct ?

Process invoice

/ No

End Request

/ Yes

The transition between activity diagram and activity higraph is particularly natural

Activity diagram’s nodes and arcs can be equally represented in a higraph as

blobs and edges. Decision elements and parallel behaviors would be supported

by orthogonally divided activities. Orthogonal lines for decision elements are

labeled as “or”, and orthogonal lines for parallel/concurrent behaviors are labeled

as “and”. Like all other higraphs, activity higraphs use hierarchies to represent

different levels of behavior.

Figure 33: UML Activity Diagram representing a course registration use case

 39

Request course

Request Course

Log in

Log in with

username &

PIN

Search for

client
Verify PIN

Complete

online add /drop

information

Submit add /

drop request

Update course

attributes

Open course

Verify student authorized

Verify

prerequisites

met

Verify student

in acceptable

department

Verify section

not full

Student authorized status

Student authorized

Student not authorized

Enroll student

Update section

student size

Update student

transcript
Update grade End request

Student

wants

another

course

Student

does not

want

another

course

Username & PIN verification status

Username & PIN

verified

Username or PIN not

verified

User

name

not

valid

PIN

not

valid

Process invoice

Figure 34: Activity Higraph representing a course registration use case

 40

Sequence Diagram

The UML sequence diagram represents the interaction between objects of a

system over time. These interactions are know as messages which when

combined to create a sequence describe the behavior of the system, subsystem,

activity, or use case. A sequence diagram detailing the University Registration

System’s request transcript use case is provide in Figure 35. As shown Figure

35, arrowed lines from one object, object A, to a second object, object B, are

used to illustrate an outgoing message for object A and an incoming message for

object B. A sequence is modeled by connecting the messages to the border of

the objects

 41

Student Bursar Student Database

Request transcript

Update payment status

Search for outstanding payments

Notify payment status updated ()

Notify transcript sent

Notify transcript not sent due to outstanding payments

Clear outstanding payment

Notify outstanding payment cleared ()

Request transcript

Log in

Verify username & PIN ()

Notify PIN incorrect ()

Log in

Verify username & PIN

Notify login successful ()

Search for outstanding payments

Search for student transcript ()

A sequence diagram is easily transformed into a sequence higraph as shown in

Figure 36. In sequence higraphs, a message is represented by a combination of

edges and (time) blobs. The originating edge of a message begins at the

sending object (ie. student, bursar, student database), then passes through the

message time blob (possibly with an attribute counting time), and ends with an

originating message edge at the receiving object.

Figure 35: UML Sequence Diagram representing the request transcript use case

 42

Student Bursar
Student

Database

Time 1: Log in

Time 16: Search for student transcript

Time 11 : Update payment statusTime 10: Clear outstanding payments

Time 15: Search for outstanding payments

Time 9: Notify transcript not sent due to outstanding payments

Time 7: Request transcripts

Time 17: Notify transcript sent

Time 2: Search username & PIN

Time 6: Notify login successful

Time 4: Log in

Time 5: Search username & PIN

Time 3: Notify PIN incorrect

Time 12 : Notify payment status updatedTime 13: Notify outstanding payments cleared

Time 14: Request transcripts

Time 8: Search for outstanding payments

Conclusion

Based on existing uses for higraphs, theories presented in Fogarty’s thesis, and

examples in this paper, higraphs have the potential to be a useful tool for

complete system modeling. They are detailed and logical to follow, while filling

the traceability gap often identified with existing modeling tools. Higraph’s

underlying properties create and display general connectivity and organizational

relationships among components (behavior and structure) and requirements.

Due to these characteristics they are able to accurately and comprehensively

classify components within a system. The example presented demonstrates how

higraphs can clearly represent all required information and formally show all

relationships in the model through hierarchies, edges, and orthogonalities.

Higraph’s properties allow for a smart model that is visually logical, can be

queried for custom sets, and has the potential to be easily adapted for software

use. When presented to the systems engineer, higraphs substantially aid in

engineering decisions. Although this paper graphically illustrates how higraphs

can be used as a system modeling tool, it is important to note that in no way can

Figure 36: Sequence Higraph representing the request transcript use case

 43

it be used as an independent modeling language. It is a tool to complement

existing languages such as UML and SysML. The incorporation of these

techniques can overcome some of UML and SysML’s existing criticisms. It

therefore seems reasonable that higraph representations can compliment, and

perhaps even co-exist, with UML and SysML representations of systems [1].

Higraphs offer the ability to connect domain models of behavior to viewpoints of

the system design. This, in turn, allows for early validation of system behavior

models [1].

 44

Bibliography

1. Fogarty, Kevin. System Modeling and Traceability. Diss. The Institute for
Systems Research, Univ. of Maryland At College Park, 2006.

2. Friedenthal, Stanford INCOSE 2004 Symposium Paper “SysML
Overview; Extending UML to Support a Systems Modeling Language”

3. Grossman, Ornit. Harel, David. .On the Algorithmics of Higraphs..
Technical Report CS97-15, The Weizmann Institute of Science, Rehovot,
Israel, 1997

4. Harel, David. .On Visual Formalisms.. Communications of the ACM 31
(1988): 514-530.

5. “News” Headway Software, Inc. 11 Jul. 2007
http://headwaysoftware.com/about/customers.php

6. "Unified Modeling Language." Wikipedia. 23 Apr. 2007. 24 Apr. 2007

<http://en.wikipedia.org/wiki/Unified_Modeling_Language>.

