
1	
 	

	

 ABSTRACT

Title of Document: Behavioral Designs Patterns and Agile Software
 Development

 John McGahagan IV, Master, 2013

Directed By: Associate Professor Mark Austin
Institute for Systems Research and the
Department of Civil and Environmental
Engineering

This paper will explore two areas, agile software development and behavioral design patterns. It

will explain the benefits of behavioral design patterns and provide rationale as to why agile

teams should incorporate behavioral design patterns into their systems architecture.

2	
 	

	

Behavioral Designs Patterns and Agile Software Development

By

John McGahagan IV

Scholarly Paper submitted to the Faculty of the Graduate School of the
 University of Maryland, College Park, in partial fulfillment of the

Requirements for the degree of
Master of Science in Systems Engineering 2013

Advisory Committee:
Associate Professor Mark Austin, Chair

3	
 	

	

Table of Contents
	

1. Motivation ..4

2. Introduction ..5

3. History of Agile Software Development ...6

4. Scope and Objectives ...7

5. Sources Review ..8

6. The Agile Approach to Design ..10

7. Abstract Classes and Interfaces ...12

8. Software Design Patterns ...15

9. What are Behavioral Design Patterns ..17

9.1 The Chain of Responsibility Design Pattern ..18

9.2 The Iterator Design Pattern ..20

9.3 The Observer Design Pattern ...22

9.4 The Strategy Design Pattern ..24

9.5 The Template Method Design Pattern ...26

9.6 The Visitor Design Pattern ...28

10. Why Agile Teams Should Use Behavioral Design Patterns ..30

11.Conclusions and Future Work ..32

12. Glossary ...33

13.Bibliography ...35	

	

	

4	
 	

	

1. Motivation

My experience with agile software development began in January 2011 as a software

engineer at a Fortune 500 consulting firm. The project to which I was assigned began embracing

an agile mindset which included a change in our development processes. We began working in

two week iterations, estimating using planning poker, and adopting several other agile practices.

Since we were no longer defining all aspects of our design and system behavior upfront, the need

to incorporate flexible design into our system emerged. I immediately began to see the potential

that agile holds for software development teams, but also the importance of design that can

change behavior.

Through my experiences I have discovered that there are a few agile methodologies and

frameworks that are widely embraced. As software engineer, it occurred to me that there may be

certain designs that can be agile as well, that is, can accommodate changes in behavior as design

emerges. Behavioral software design patterns fit this category. They are often used in design to

address common issues in software engineering and behaviors needed in software systems. This

paper will highlight and reinforce the need for these behavioral design patterns especially for

agile teams whose software systems are evolving in design and behavior. I assert that an

understanding of behavioral design patterns will greatly aid agile software development teams.

This is what ultimately led to the creation of this paper.

5	
 	

	

2. Introduction

Changing requirements for systems and new technologies emerging every year have

prompted the need to create software that is agile. In the past 25 years, two toolsets have been

developed to quicken and improve software development; software design patterns and agile

practices. The latter is a set of practices and frameworks that aim to make software development

better by allowing teams to adapt to change more easily. “Better” in this sense refers to the

elimination of wasted effort, the building of higher quality software, and the ability to meet

deadlines which are more likely to slip in waterfall type development environments. Both of

these toolsets have the primary goal of making software development better and producing more

robust software in a quicker fashion. Agile methodologies such as Scrum and XP exist to

accommodate change on teams, but are there any software design patterns that are more adept to

changes in the behavior of a software system? The answer is yes and they are called behavioral

design patterns. Before we delve into the behavioral design patterns, let’s look at the history of

agile and what that term really means.

6	
 	

	

3. History of Agile Software Development

 In 2001, seventeen individuals met to discuss better ways of developing software. From

this meeting, the Agile Manifesto was born.

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan”

The purpose of these four statements is to aid in the building of high quality software around

high performing teams and doing so as quickly as possible. From the Agile Manifesto came

several different agile frameworks and methods such as Scrum, Extreme Programming also

known as XP, and Feature Driven Development, just to name a few. These methodologies, when

followed with an agile mindset, facilitate the development of software that meets the business

value of the end user.

Although agile commonly refers to a way of developing software, there is an importance

on the ability to create software that a team and or end user considers agile. Responding to

change is one of the four statements in the Agile Manifesto, thus it is important that agile teams

ensure that the software they build has an architecture that is flexible and can change behavior

and design. This paper will examine the commonly used behavioral design patterns and reinforce

why agile teams should incorporate these patterns in their design.

7	
 	

	

4. Scope and Objectives

This paper begins with a review of some of the referenced sources in this paper and the

sources consulted during the development of this paper. Following, is a summary of abstract

classes and interfaces which play a large role in the design patterns discussed in this paper. From

there, this paper will switch from the discussion of abstract classes and interfaces to a description

of behavioral design patterns and rationale behind their use in agile development teams. A

conclusion and mention of future work to be done in this field completes this paper.

8	
 	

	

5. Sources Review

My goal in performing the research that served as the basis for this paper was to become

more acquainted with behavioral design patterns and agile software development. Behavioral

design patterns provide solutions to common software engineering design issues. I believe that a

more in-depth understanding of behavioral design patterns will aid developers and engineers on

agile teams since they will better understand the direct benefits of incorporating behavioral

design patterns into their design and because of this understanding will be encouraged to do so.

Several sources were consulted to gain the knowledge required to do this. In particular, the books

in my research consisted of literature relating to Agile Software Development, Lean Concepts,

Data Structures and Design Patterns.

 Of all of the sources referenced and consulted, Mike Cohn’s Succeeding with Agile:

Software Development Using Scrum, User Stories Applied, and Agile Estimating and Planning

provided heavy influence on becoming familiar with agile software development. These sources

provided an insight into the current ways of performing agile development and helped me gain

an understanding of what it means to be agile. This understanding of agile helped form the basis

of qualifying design patterns as agile.

• Agile Estimating and Planning. by Mike Cohn

• Succeeding with Agile, Software Development Using Scrum. by Mike Cohn

• User Stories Applied. by Mike Cohn

 Although each book covers a slightly different aspect of agile software development, a

common theme is the fourth tenant of the agile manifesto “Responding to Change Over

Following a Plan.” One could speculate that this is because Mike Cohn authored all three of

these books, but instead of just showing a similar writing style, I believe Mr. Cohn is staying true

to the agile mindset which drives all of the processes and practices. Cohn uses each book to

explain practices, tools, and methods that allow teams to respond to change quickly and

effectively.

 Each of these books is complementary; however each can stand alone as a valuable

resource on agile software development. User Stories Applied covers writing and accepting user

stories, how the team should operate around user stories, and the product backlog of user stories.

9	
 	

	

Agile Estimating and Planning provides insight into estimating the size of user stories and tasks

on agile teams and also covers planning for releases and iterations. Succeeding with Agile:

Software Development Using Scrum discusses Scrum, the most popular agile framework, and

how it can be applied to teams and organizations. Scrum encompasses many, if not all of the

practices discussed in the other two Mike Cohn books. User Stories and Agile Estimating are

more in-depth books that cover implementing the practices while Scrum covers the general idea

of Scrum, the roles in Scrum, and other topics essential to a high level understanding of Scrum.

 All three of these books speak from Mr. Cohn’s the perspective and experience. The

practices and techniques discussed have been implemented in several organizations and

development teams (Cohn, 2010). Thus, they have been shown to work. Having experience on

the management side of software development, I can see value in the practices. This gives the

books not only credibility, but it allows the reader to relate and see the value in the techniques.

The situations discussed, such as schedule overrun (Moløkken-Østvold and Jørgensen, 2005), are

very real and are common in development teams and organizations. Although I trust Mr. Cohn’s

experience and have seen his techniques work in development teams, Mr. Cohn sticks to the

prescribed implementation of various practices. In other words, I did not find any instances in his

works where he suggests modifying a particular agile practice or framework, except regarding

distributed teams where face to face communication is not always possible. From my experience

I have learned that “If you believe there is one way to do agile, you are not agile.” My best guess

would be that Mr. Cohn has been in situations where some of the practices needed to be tweaked,

however it would be beneficial to the readers of his books to provide an example of this.

 Cohn’s User Stories Applied, Agile Planning and Estimating, and Succeeding with Agile:

Software Development Using Scrum, embrace the agile mindset and manifesto through

implementation, suggested practices, and frameworks. Each book provides a better

understanding of how to think with agility, what it means to be agile, and what sort of

characteristics are important to agile development teams.

10	
 	

	

6. The Agile Approach to Design

 A common misconception when individuals think of agile is that agile teams do not

design. This misconception comes from the fact that agile teams do not follow the typical

waterfall development cycle shown below in Figure 1. That is, agile teams do not define all of

the requirements and design upfront. Agile teams do design, however the question that agile

teams are concerned with is “when” the team should design instead of “if” the team should

design. Agile teams follow a more iterative approach to design and system delivery by designing

whenever changes need to be made as a result of changes in priorities or refactoring. As a result,

design in agile teams is often referred to as “emergent.” Emergent design in software

incorporates three disciplines; using the thought process of design patterns to create application

architectures that are resilient and flexible, limiting the implementation of design patterns to only

those features that are current, and writing automated acceptance and unit tests before writing

code to improve the thought process and to create a test harness. (Shalloway, 2010) In other

words, the architecture should be flexible enough to be changed should a new priority emerge.

	

	
 Maintenance

	
 Requirements

	
 Design

	
 Implementation

	
 Verification

Figure 1: Traditional Waterfall
Approach to Software

11	
 	

	

During each sprint or iteration, agile teams select which user story(ies) they are going to

complete. Stories only represent a business need or requirement and do not mention design. It is

expected that during the fixed time period known as the sprint that the team will design for the

new functionality and incorporate the design into the current design. Sometimes it is not clear as

to which technical direction to take so agile teams perform a spike during the beginning of the

sprint to aid in design.

Changes in design occur on three specific cases in agile development – a new user story

(agile form of requirements) needs to be developed, feedback from a demo requests that system

behavior change, or from code refactoring which is the changing of code without changing

behavior. Agile teams are continuously evaluating their design and redesigning and these three

events are always taking place. Thus, it is important to ensure that all design is able to change

without too much rework.

12	
 	

	

7. Abstract Classes and Interfaces

 The behavioral design patterns discussed in this paper make use of two abstract data

types within object oriented programming; abstract classes and interfaces. The defining features

of each are described below.

Abstract Classes (Wolfgang and Koffman, 2005)

• Allowed to have instance variables and methods

• Allowed to define default values for variables and default implementation for

methods

• Cannot be instantiated, only can come into play when an object extending the

abstract class is instantiated

Abstract classes provide an abstract view of a real-world entity or concept. They are an ideal

mechanism when you want to create something for objects that are closely related in hierarchy,

yet distinct. For example, two classes that share some core functionality and store properties and

methods common to all extensions of the abstract class, but also have unique instances or

methods. The abstract class serves as a good base to start the design. A good example of a

possible abstract class and two subclasses which inherit from the abstract class would be a ball as

the abstract class, a football as a subclass and a basketball as the other subclass.

Figure 2:
Abstract Class

Example

13	
 	

	

Both subclasses are balls and share some functionality; however a football and a basketball are

quite different in many regards such as the way you play with them, their shape, and their

material. The difference here could be how you define a method play() which is defined in the

abstract class ball but is overridden in the child class football and basketball. Abstract classes

help enable design agility in that they can be used to easily extend functionality of a generic class

or category and they also limit other developers from instantiating illogical classes. For example,

let’s consider another example in a software application for a pet store. In the design of this

application there exists an abstract class “Dog” that has a few instance variables and the methods

Bark() and WagTail(). If a developer wanted to create the class Retriever, which is inherently a

Dog and will need to extend the Dog class, the developer cannot possibly create a Retriever that

cannot Bark() or WagTail(). The only way of doing so would be to not extend from the Dog

class, which would not make it through any code reviews by other members of the team. This is

an example how an abstract class can prevent developers from creating any illogical classes.

Interfaces (Wolfgang and Koffman, 2005)

• Define method prototypes

• Must be implemented by another class see 5th bullet

• Cannot have instance variables

• Cannot define default functionality for methods

• Each class implementing the interface must provide implementation for the

methods defined in the interface

Interfaces are the mechanism by which components describe what they do (or provide in terms

of functionality and/or services). Unlike abstract classes, interface abstractions are appropriate

for collections of objects that provide common functionality, but are otherwise unrelated. A

software interface defines a set of methods without providing an implementation for them. An

interface does not have a constructor – therefore, it cannot be instantiated as a concrete object.

Any concrete class that implements the interface must provide implementations for all of the

methods listed in the interface. Interfaces are used to create loosely coupled software, to create

pluggable software, to allow objects to interact with ease, to hide implementation details and to

maintain uniformity in design. All of goals of interfaces support building software that is easy to

14	
 	

	

manage (self-explanatory code, little duplication), well organized with an easy to follow

hierarchical structure.

15	
 	

	

8. Software Design Patterns

Software design patterns provide solutions to common problems introduced in software

engineering and design. A design pattern names, abstracts, and identifies the key aspects of a

common design structure that make it useful for creating a reusable object-oriented design. The

design pattern identifies the participating classes and instances, their roles and collaborations,

and the distribution of responsibility (Gamma. et al, 1995). Design patterns have been created

through experience with object oriented design that have been proven to address common design

scenarios.

There are three main types of design patterns.

• Behavioral - Behavioral patterns are concerned with algorithms and the assignment of

responsibilities between objects. These patterns describe not just patterns of objects or

classes but also the patterns of communication between them. Behavioral patterns

characterize complex control flow that’s difficult to follow at run time (Gamma. et al, 1995).

Behavioral patterns use inheritance and composition to distribute behavior between classes as

well as encapsulation to delegate behavior to objects. The behavioral design patterns we will

evaluate are discussed in the next section.

• Structural - Structural patterns are concerned with how classes and objects are composed to

form larger structures. Inheritance is used to compose interfaces and implementations

(Gamma et al, 1995). These patterns are typically useful for making a group of classes work

together. Structural patterns are also useful for determining ways to compose objects and

create new functionality.

• Creational - Creational design patterns abstract the instantiation process. They make a

system independent of how its object are created, composed, and represented (Gamma. et al,

1995). These patterns use inheritance to change the instantiated class. As systems grow there

becomes a greater emphasis on allowing the variation of objects and hardcoding pre-

determined properties of the objects becomes less desirable. There are two recurring themes

in the creational patterns. First, all of the creational patterns encapsulate knowledge about

which concrete classes the system uses. Second, they hide how instances of the objects are

created and assembled (Gamma. et al, 1995). Creational patterns provide a mechanism to

control and manage this creation and reduce the complexity.

16	
 	

	

This paper will set aside structural and creational design patterns and focus on behavioral design

patterns. As mentioned earlier, a primary reason for agile teams to change software is based on

customer feedback. Customers do not have knowledge into the architecture of the product such

as the management of object creation (creational design patterns) and the composition of

structures (structural design patterns). Customers are only concerned with how the product

behaves and thus how they interact with it. Of the three design patterns, customers will see and

provide feedback on characteristics of the software defined by its behavior, hence behavioral

design patterns.

17	
 	

	

9. What are Behavioral Design Patterns?

Behavioral design patterns are concerned with algorithms and the assignment of

responsibilities between objects. These patterns describe not just patterns of objects or classes

but also the patterns of communication between them. Behavioral patterns characterize complex

control flow that’s difficult to follow at run time (Gamma. et al, 1995). Behavioral patterns use

inheritance to distribute behavior between classes as well as encapsulation to delegate behavior

to objects. There are two main types of behavior design patterns – behavioral object patterns and

behavioral class patterns.

Class patterns use inheritance to distribute behavior between classes (Gamma. et al,

1995). This is exemplified by the Template Method design pattern shown later in this paper.

Object patterns use object composition rather than inheritance to distribute behavior (Gamma. et

al 1995). However, with object patterns, the separate objects need to know of the other objects

and managing this becomes an issue as it increases coupling. Some object patterns are concerned

about encapsulating object behavior inside of an object. An example which of this is the Iterator

design pattern which determines the way aggregated objects are traversed.

18	
 	

	

9.1 The Chain of Responsibility Design Pattern

Description: The Chain of Responsibility design pattern was intended to avoid coupling the

sender of a request to its receiver by giving more than one object a chance to handle the request

(Gamma. et al, 1995). As illustrated in Figure 3, the Chain of Responsibility has several

participants – a Handler, and Concrete Handler, and a Client. The Handler defines an interface to

handle request. The ConcreteHandler handles the requests it is responsible for and can access its

successor, and occasionally forwards the request if it cannot to someone who can process the

request. Each object has an implicit receiver which handles each request. Each receiver either

handles the request or forwards it to a class that can handle the request. The Client initiates the

request to a ConcreteHandler on the chain of communication. Each object on the chain shares an

interface for handling requests and determining the successor on the chain.

Benefits:

• Reduces Coupling – Objects do not need to know who handles the request and only that

the request will be handled. Objects also do not need to know about the chain’s structure.

• Ability to assign responsibility to objects – In the Chain of Responsibility, a developer or

engineer can distribute the responsibility or action among various objects in any fashion

that they choose. Responsibilities for handling a request can be changed at run time

Figure 3: Relationship among
classes in the Chain of

Responsibility design pattern

implements

<<interface>>
Uses

(Gamma, Erich et al 1995). 	

19	
 	

	

meaning that based on the message received; the object can send the request or result of

the request to the appropriate chain.

Example Use Case:

The Chain of Responsibility design pattern is used often in user interface development. When a

user clicks on a button or widget, a corresponding method or function is called to handle the

request. Typically, this will hand off the request to another function and so on until the correct

data is returned to the widget or display. Once data is returned from some method in the chain (it

is not necessary that the button or widget have knowledge of the entire chain) the widget is

updated and the user sees the result.

20	
 	

	

9.2 The Iterator Design Pattern

Description: The motivation for the Iterator design patterns was to be able to iterate through an

aggregate without exposing the underlying details of the aggregate. The Iterator defines various

ways of traversing the aggregate. The Iterator design pattern defines four participants – the

Iterator, the ConcreteIterator, the Aggregate, and the ConcreteAggregate. The Iterator is an

interface for accessing and traversing elements. The ConreteIterator actually implements the

iterator interface and keeps track of the current position of traversal in the aggregate. The

Aggregate is an interface that is defined for creating an Iterator object. The ConcreteAgrregate

implements the Iterator creation interface and returns the correct instance of the ConcreteIterator.

Typically, an iterator of a data structure class will contain the methods Next() and First(). Figure

4 below shows an example of the Iterator design pattern.

Benefits:

• Supports traversals of various aggregates – Different aggregates have different traversal

algorithms. For example, a tree is traversed differently than a list. Different iterators for

handling these types of traversals can be defined and used.

• Supports various traversals of aggregates – Iterators allow the developer to change the

traversal style by changing the type of iterator.

Uses Uses

implements implements

<<interface>>
<<interface>>

Figure 4: Relationship among
classes in the Iterator design

pattern

(Gamma, Erich et al 1995). 	

21	
 	

	

• Using more than one traversal on an aggregate - An iterator keeps track of its own state in

the traversal and this allows for more than one traversal to occur at the same time.

Example Use Case:

The Iterator design pattern is implemented in various data structures and can be implemented for

data structures with difficult traversals (such as a tree) or custom data structures created by a

developer.

22	
 	

	

9.3 The Observer Design Pattern

Description: The Observer design pattern was created to address the need of changing various

objects’ states based on the state of another common object. This pattern defines a one-to-many

dependency between objects. When the one object changes, the many are notified and they

change as well. This pattern is useful when a change to one object requires changes to a number

of objects and the one object does not know how many other objects need to change. This pattern

is also useful when one object needs to notify other objects and does not need to know of the

other objects. There are four participants in the observer design pattern – The Subject, the

Observer, the ConcreteSubject, and the ConcreteObserver. The Subject is an interface that knows

who its observers (an Observer object) are and provides an interface for attaching and detaching

Observer objects. The Observer is an abstract class that should define an interface to be notified

with changes in the Subject. The ConcreteSubject implements the Subject interface and stores

the value that is of interest to the Observer objects and sends a notification to the Observer

objects when this state changes. The ConcreteObserver implements the Observer interface and

keeps a reference to the ConcreteSubject object and stores the value of interest with the subject.

Figure 5 shows the structure of the Observer design pattern.

implements

extends

Figure 5: Relationship among
classes in the Observer design

pattern
(Gamma, Erich et al 1995). 	

23	
 	

	

Benefits:

• Decoupling of the Subject and Observer – The subject has no knowledge of the

individual observers and only knows that it has observers that implement the Observer

class.

• Broadcast messages and communication – This design pattern allows for the

communication to a broad number of receivers. The Subject does not need to know of the

details of its observers but yet can communicate with several very simply.

Example Use Case:

The Observer design pattern is ideal for any system where changes to a specific component need

to be communicated to various components. For example, consider an HVAC system where the

temperature can be set using various widgets. A change to one of the widgets would impact a

central controller which would need to notify all of the widgets of the change so the appropriate

heating or cooling action can be taken.

24	
 	

	

9.4 The Strategy Design Pattern

Description: The Strategy design pattern was created to enable execution of various algorithms

at run time. This algorithm is used when various related classes differ only in their behavior or

when you need variations of an algorithm. This pattern can also get rid of overuse of conditional

statements used within one algorithm in that the algorithm can be split into different classes. The

Strategy design pattern has three participants – A Strategy, the ConcreteStrategy, and the

Context. The Strategy is an interface common to all variations of the algorithm. The

ConcreteStrategy is the implementation of the algorithm and implements the Strategy Interface.

The Context keeps a reference to a Strategy object and has a ConcreteStrategy object.

Benefits:

• Allows for the creation of related algorithms – Based on the variations of algorithms,

hierarchies of algorithms can form and can eliminate having too many unique strategies.

• Reduces code complexity by removing conditionals – Conditional statements are

common in algorithms however if the algorithm becomes laden with too many

conditionals, we can break the algorithm into strategies.

• Variation of implementations – The strategies can implement the same behavior but in

different ways. This could become useful given resource constraints of the system at a

particular time.

<<interface>>

implements

Figure 6: Relationship among classes in
the Strategy design pattern (Gamma, Erich et al 1995). 	

25	
 	

	

Example Use Case:

This design pattern can be used for sorting algorithms on lists and tables. For example, consider

a software system that has some sort of internal data structure that can be sorted in various ways.

Instead of using conditionals to determine which type of sort to use, the system can be broken

down into different strategies which each represent a different version of the sort algorithm.

26	
 	

	

9.5 The Template Method Design Pattern

Description: The Template Method design pattern was intended to allow the developer to

change the steps in an algorithm by deferring pieces of the algorithm to subclasses where the

implementation is different. This pattern is used to implement distinct parts of an algorithm once

then leave it to the subclasses to define the exact behavior. There are two participants in the

Template Method pattern – the AbstractClass and the ConcreteClass. The AbstractClass defines

the skeleton of the algorithm and abstract methods that represent steps in the algorithm that will

be defined in the concrete subclasses. The ConcreteClass implements the methods or operations

needed to carry out the specific steps of the algorithm. The structure of the Template Method

Design Patten is shown below in Figure 7.

Benefits:

• Fundamental for code reuse which is crucial in software development.

Example Use Case:

Consider an algorithm that compares two objects. Assume this algorithm performs a “less than”

calculation on two objects as part of its compare. If the object is simply an Integer, just compare

the Integers, however if the object contains various fields, a custom compare will need to be

implemented which requires a more involved compare which may involved a different “less

extends

Figure 7: Relationship among
classes in the Template Method

design pattern
(Gamma, Erich et al 1995). 	

27	
 	

	

than” calculation. These two variations of the primitive “less than” operation can be in their own

classes.

28	
 	

	

9.6 The Visitor Design Pattern

Description: The Visitor design pattern allows one to define a new operation on an object

without changing the classes of that object. The Visitor design pattern defines five participants as

shown in Figure 8 – The Visitor, the ConcreteVisitor, the Element, the ConcreteElement, and the

ObjectStructure. The Visitor declares a Visit operation for each class of the ConcreteElement in

the Object Structure (Gamma. et al, 1995). The operation has a name and signature that identifies

the class that sends the Visit request to the Visitor. This allows the visitor to know the concrete

class of the element that is being visited. The visitor can then access the element directly through

this particular interface. The ConcreteVisitor implements the Visitor interface. Each operation in

the ConcreteVisitor is defined. This class also provides the context of the algorithm and the state.

The Element is an interface that defines an Accept operation that takes a visitor for an argument.

The ConcreteElement implements the Element interface and defined the accept operation that

takes a visitor as an argument. The ObjectStructure is a composite or an aggregate that has

various Elements. It also provides a high level interface to allow the visitor to visit its elements.

Uses
<<interface>>

<<interface>>

implements

implements

Figure 8: Relationship among
classes in the Visitor design pattern (Gamma, Erich et al 1995). 	

29	
 	

	

Benefits:

• Allows adding of new operations – The Visitor allows for the addition of new behavior to

an object. To add additional behavior, all that one needs to do is add a new visitor.

• Related behavior is grouped together – In this design pattern, related behavior is localized

in a visitor.

Example Use Case:

The Visitor design pattern can be used in many cases however it is particularly useful for

handling unanticipated use cases. A well-known example of this is with an abstract syntax tree

(see glossary) which is used often in compilers. Depending on the type of node, which represents

a construct, visited in the tree, the compiler will need to perform a different operation. By

implementing the Visitor design pattern, this outcome can be achieved.

30	
 	

	

10. Why Agile Teams Should Use Behavioral Design Patterns

 So why should agile teams incorporate these design patterns into their architecture? Agile

teams create software with “emergent” design. As a reminder, software built by an agile team is

not completely defined upfront. The design evolves as new needs i.e. user stories are written.

Agile teams also demo software at the end of every iteration or sprint. The feedback gained from

these demos is often incorporated into the software systems. However, it is common that the user

may request the software to behave differently. Thus agile teams need design that can change

behavior without too much rework. The following is a summary of the benefits of using the

behavioral design patterns and why these patterns are especially important for agile teams.

• Distributing Behavior Amongst Objects - Distributing behavior amongst objects

modularizes the behavior of the system or part of the system. This is useful to agile teams

in that if behavior needs to be changed, changes only need to be made to the part of the

code where the behavior lies as opposed to across the system.

• Extending Object Behavior - Since agile teams use frequent customer feedback to guide

design decisions, it is very likely that a customer will ask for an extension of current

functionality. For example, if a software system has a sort by name feature for a table, the

customer may also want to sort by some numerical field. Having the ability to extend

object behavior becomes very useful in situations such as this and thus is another reason

why agile teams should incorporate behavioral designs patterns in software design.

• Hiding Access to Internals of a Class – Hiding the internals of a class is a good

practice, especially for agile teams. Since code is collectively owned (Beck, 2005),

meaning that the team owns the code and not just one individual, it is very possible that

another team member will change code they did not originally write. Therefore it is very

important to make sure the internals of certain classes are hidden but have points of

access, such as iterators, clearly defined when needed.

• Reducing Code Complexity - Maintaining complicated code is not easy. It is especially

not easy for agile teams to are constantly refactoring, testing, and re-designing their code.

Hence the less complicated the code, the better for the agile team in that maintaining the

code base through these frequent changes becomes less of an issue.

31	
 	

	

• Reducing Code Redundancy – Redundant code comes from a lack of separating useful

functionality into modules within software design. When there is a lack of useful

modules, it becomes difficult to add to the software architecture. Agile teams often add

functionality to software systems based on new customer needs and feedback from

demonstrations and redundant code would make this occurring activity cumbersome.

Thus agile teams would benefit from using behavioral design patterns as code

redundancy is reduced.

• Reducing Coupling - Coupling is the degree to which two modules within a software

system rely on each other. High coupling implies that changes made to one module need

to be made to another as well. In addition to changes to system architecture and behavior,

agile teams refactor code very often, that is, they make it more efficient in performance

and design without changing overall behavioral. By having a low degree of coupling

within the software system, agile teams need to spend less time making sure modules are

in sync as they are not coupled.

32	
 	

	

11. Conclusions and Future Work

 Agile software development requires that teams continuously reassess and change aspects

of their design. If this is not done carefully, the software system will become unwieldy and

difficult to maintain and improve. However, there is a solution in that behavioral design patterns

can be incorporated into the design of agile development teams. This will allow the system

design to emerge with requirements, user interaction the system, and refactoring. This paper has

reinforced and elucidated the direct benefits of using behavioral design patterns in agile software

development teams. By using these patterns, agile teams can best prepare their software design to

change.

The concepts in this paper can be extended to include other design patterns not covered in

this paper such as the creational and the structural design patterns. It would be useful to call to

attention how using creational and structural design patterns within agile development teams can

positively impact the design. It may also be a worthwhile endeavor to gather and record

statistical data to determine if agile development teams are actually using the behavioral design

patterns referenced in this paper and attempt to quantify the benefits in terms of a metric such as

time.

33	
 	

	

12. Glossary

Abstract Class – A class in object oriented programming that is meant to be extended by a

subclass. An abstract class defines methods and instances of a class.

Abstract Syntax Tree – Tree representation of the syntactic structure of source code. Each node

in the tree represents a construct occurring in the source code such as “if”, “while”, and “return”.

Aggregate – A data structure in object oriented programming consisting of many objects.

Examples are lists and trees.

Class Diagram – A standard UML diagram shows the relationships between different classes in a

system.

Class – A class represents an object in object oriented programming.

Constructor – A method contained in every object in object oriented programming. This method

is responsible for the creation of the object.

Estimation – A tactic used in agile software development to determine the size of a user story or

a task. Estimates for user stories are typically in story points while estimates for tasks are

normally in ideal time.

Extreme Programming (XP) - Extreme Programming is a discipline of software development that

is based on four values; simplicity, communication, feedback, and courage. Extreme

programming implements several agile practices such as iteration planning and pair

programming.

Ideal Time – The time it takes to complete an activity with no interruptions.

Interface – A class in object oriented programming that provides method definitions. An

interface can be implemented by other classes which means that the implementing class must

define all methods in the interface.

Iterations and Sprints – The timeboxed period in which agile teams perform work. Agile teams

typically work in 2 to 4 week time periods.

34	
 	

	

Lean - Lean Software Development is an extension of Lean Manufacturing that focuses on

translating Lean Manufacturing principles into the software development environment.

Planning Poker – An activity used to perform estimation. During this activity, each member of a

team has a group of cards that represent estimates.

Release – Designates a version of a software system. In agile development, a release represents a

system that encompasses several user stories which have a similar or common theme. A release

usually makes up several iterations or sprints.

Scrum – An agile software development methodology. In Scrum, teams work in short iterations

or sprints that range from 2 weeks to 4 week. There are three primary roles in Scrum; the Product

Owner, the Scrum Master, and the Development Team.

Spike – A short experiment to determine the team’s direction going forward. An example spike

could be a design, analysis of technologies, etc.

Story point – Unit to measure the size of a user story. Size is a combination of time, complexity,

risk, and testing requirements.

Timeboxing – A timebox allocates a fixed time period for a particular activity. Iterations and

sprints are timeboxed. If the activity is not finished by the expiration of the timebox, that activity

is stopped and may be resumed in another iteration or sprint.

UML – (Unified Modeling Language) is an object-oriented design language. There are several

types of diagrams in UML which all show various views of a system.

User stories – The agile form of requirements, typically written by a user of a software system or

a Product Owner. Used to capture the business need behind a software feature.

35	
 	

	

13. Bibliography

1. Cohn, Mike. Agile Estimating and Planning. Pearson Education Inc, 2006

2. Cohn, Mike. Succeeding with Agile, Software Development Using Scrum. Pearson

Education Inc, 2010.

3. Cohn, Mike. User Stories Applied. Pearson Education Inc, 2004

4. Shalloway, Alan and Guy Beaver and Trott, James R. Lean-Agile Software Development

Pearson Education Inc, 2010

5. Beck, Kent et al Extreme Programming Explained. Pearson Education Inc, 2005

6. Shore, James and Shane Warden. The Art of Agile Development. O’Reilly Media Inc,

2008.

7. Wolfgang, Paul and Elliot Koffman. Objects, Abstractions, Data Structures and Design

Using Java. John Wiley and Sons Inc, 2005.

8. Moløkken-Østvold; Kjetil and Magne Jørgensen Comparison of Software Project

Overruns-Flexible versus Sequential Development Models. IEEE Vol 31, NO. 9, 2005

9. Gamma, Erich et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995

10. Manning James, Lean Software Development. University of Wisconsin – Platteville

