
ABSTRACT

Scholarly Paper: SYSTEMS ENGINEERING DESIGN

AND TRADEOFF ANALYSIS

WITH WEB TECHNOLOGY

Peter Joseph Linnehan, Master of Science, 2014

Directed by: Associate Professor Mark Austin
Department of Civil and Environmental Engineering
and ISR

Abstract. This project proposes a novel approach to the Home Theater Design
Problem previously discussed at the University of Maryland College Park. The
approach applies a web-based framework to handle the system design requirements,
data storage, component-selection, and system configuration.

Last Modified: April 30, 2014

SYSTEMS ENGINEERING DESIGN AND TRADEOFF

ANALYSIS WITH WEB TECHNOLOGY

by

Peter Joseph Linnehan

Scholarly Paper
Master of Science in Systems Engineering

2014

Advisory Committee:
Associate Professor Mark Austin, Chair/Advisor
Second Reader: Professor Ray Adomaitis

Table of Contents

List of Figures iv

1 Introduction 1

1.1 Problem Statement . 1
1.2 Current Practices and Common Issues 2
1.3 Project Problem . 2

1.3.1 Previous Work at UMCP . 3
1.4 Project Scope . 4

2 Technology Review and Proposed Architecture 6
2.1 Data . 6

2.1.1 eXtensible Markup Language 6
2.1.2 JavaScript Object Notation 7

2.2 Back-End Data Storage . 10
2.2.1 MongoDB . 10

2.3 User-Interface . 12
2.3.1 Modern Web Browser . 12
2.3.2 HyperText Markup Language (HTML) 12
2.3.3 Cascading Style Sheet (CSS) 13
2.3.4 Twitter Bootstrap [8] . 13

2.4 JavaScript . 13
2.4.1 jQuery . 14

2.5 Document Driven Design . 14

3 Home Theater Solution Implementation 16
3.1 Solution Overview . 16
3.2 Back-end Sytem Process . 17

3.2.1 Raw Data . 17
3.2.2 JSON Representation . 17

3.2.2.1 Television Component Data Structure 21
3.2.2.2 Amplifier Component Data Structure 24
3.2.2.3 Speaker Component Data Structure 25

3.2.3 MongoDB . 28
3.2.3.1 Schema Definition 28
3.2.3.2 Data Ingest . 29
3.2.3.3 Data Export . 30

3.3 Front-end System Process . 31
3.3.1 JavaScript Logic . 31
3.3.2 Web-page Layout . 35

4 Conclusions and Future Work 41
4.1 Conclusions . 41
4.2 Limitations and Future Work . 42

ii

Bibliography 44

Appendix A: Mongo Export to Flat File Script 46

iii

List of Figures

1.1 Schematic of the component selection design problem [1]. 3
1.2 Nassar’s software pipeline for the Home Theater Design Problem [22]. 4

2.1 Example XML syntax to encode a group of books [27]. 8
2.2 JSON representation vs. XML representation [17]. 9

3.1 Front- and Back-end software subsystems for Home Theater Design
Problem implementation. 16

3.2 Partial view of the user-interface. 36
3.3 Partial view of the user-interface table of designs. 37
3.4 Cost vs. Performance visualization 38
3.5 Cost vs. Reliability visualization . 39
3.6 Reliability vs. Performance visualization 40

iv

Chapter 1

Introduction

1.1 Problem Statement

The importance of systems engineering lies in its ability to take in the

functionality and design of the entire system, rather than focus on a specific domain

within that system. Systems engineers bridge the gap between technical and business

aspects of a project by taking both side’s concerns into account. Some typical design

side concerns are how well the system should perform, the cost of the system, and

how performance of the system will be verified and validated. Management is often

concerned with the process necessary to manage the development and how long it

will take for the design to reach the market [2]. A good systems engineering design is

one that puts both the engineers and the business as whole in a position to succeed.

As the role of software and the reliance on it increases, good software sys-

tems engineering designs will become more and more important [3]. This project

researches a web-based approach to software system design and the associated tech-

nologies. A sample problem is introduced and a demonstration of this approach is

implemented.

1

1.2 Current Practices and Common Issues

When systems engineering is used to implement a software solution, it is

equally as important to focus on the back-end system architecture, as it is to focus

on the front-end user experience. A well-designed back-end system aids in system

scaling, lowering maintenance costs, and making the software more flexible to change

with customer requirements, company direction, additional functionality, etc [4].

Unfortunately, some software solutions give preference to a fast time to mar-

ket and do not focus on a well-designed back-end system. This may work in the short

run, but often leads to the integration of heterogeneous technologies that increase

system complexity such as the use of multiple programming languages or software

packages that were not intended to work concurrently. The results are custom solu-

tions and other work-a-rounds that take the company additional time and effort to

develop and maintain. These features of system design represent unnecessary churn

and make system maintainability more difficult in the long run. A more effective

system design would leverage homogenous technologies and a common structure

wherever possible [4]. This is the basis of the software system design researched in

this project.

1.3 Project Problem

To demonstrate the advantages to the web-based system design, it will be ap-

plied to solve the Home Theater Design Problem. This problem was originally posed

2

by NASA Goddards David Everett and co-workers as an exercise in understanding

how requirements should be written and organized for the team-based development

of engineering systems. In this problem a customer is looking to buy a home the-

ater system consisting of three separate components: an amplifier, speakers, and a

television.

Figure 1.1: Schematic of the component selection design problem [1].

The primary objective in this problem is to create a library of components that can

be configured into different system design alternatives. The system design alter-

natives are based off of a predefined system-level architecture and additional user

requirements such as a maximum total cost. For the purposes of this problem, the

home theater system architecture is an amplifier, speaker set, and a television.

1.3.1 Previous Work at UMCP

The first major pieces of work done on the Home Theater Design Problem

were a series of papers written by Mark Austin, Vimal Mayank, and Natalya Shmu-

nis [7, 6, 5]. These papers were preliminary steps toward ontology-based computing

3

for the verification and validation purposes rather than a direct solution to the

posed problem. Its relevance to this project is primarily in providing background

and constraints.

A second paper was the Masters Thesis System Engineering Design and

Tradeoff Analysis with RDF [24] Graph Models by Nefretiti Nassar under the direc-

tion of Mark Austin [22, 23]. Although the author’s implementation was successful,

the solution required multiple programming languages and a series of data conver-

sions. Consequently a full-scale implementation of the proposed solution would be

difficult and impractical.

Figure 1.2: Nassar’s software pipeline for the Home Theater Design Problem [22].

1.4 Project Scope

This project begins with a technology review of the selected components for

the web-based system design, and some of the advantages of the proposed solution.

Next, the system design is applied to a manufactured data set of system components

4

to demonstrate the capabilities of the system design in practice. The actual imple-

mentation is meant to be more of a proof-of-concept than a full-scale solution, but

the advantages of the system design from a systems engineering and functionality

standpoint should be clear nonetheless.

5

Chapter 2

Technology Review and Proposed Architecture

This section discusses the selected technologies that will make up the web-

based system architecture, but is not, nor is it intended to be, a definitive claim

that the selected technology is superior to all others in all cases. Additionally, the

information presented is not exhaustive. The intention is to provide a brief overview

of the key features and some of their advantages over other approaches.

2.1 Data

Data are the building blocks of this project, therefore it is critical to choose

a data format that is flexible, easy to understand, and easy to work with. Given the

web-based nature of the system architecture, the two data models considered were

the eXtensible Markup Language (XML) [26] and the JavaScript Object Notation

(JSON) [12, 16].

2.1.1 eXtensible Markup Language

The eXtensible Markup Language (XML) is human-readable and machine-

readable way to encode data. These data can be extracted by parsing the XML

with a computer, which makes XML a useful data-interchange. Although XML is

6

a well-known and widely used format, there are some disadvantages that make it

impractical to use for the web-based home theater system architecture.

The first disadvantage associated with XML is its verbosity. Similar to

the Hypertext Markup Language (HTML), XML requires opening and closing tags

when defining an encoding as seen in Figure 2.1. These tags can quickly increase

the size of the document making it more difficult to read and harder to maintain. A

second disadvantage is XMLs lack of a well-defined data structure. XML provides

an open-ended tree structure that can represent data in a variety of ways. At times,

the open-ended data structure can be advantageous or even necessary; however it

can also lead to mismatched data structures between parties when they choose to

represent the data differently. Lastly, although XML is easy to parse, XML does

not map directly to most programming language variables. This further complicates

the process of using the data, and for these reasons, XML was not chosen for the

data encoding in this project.

2.1.2 JavaScript Object Notation

JSON is described as a lightweight data-interchange format that is easy

for humans to read and write as well as being easy for computers to parse and

generate. JSON is language independent much like XML, however the conventions

to store and organize the data model are familiar to programmers of the C-family of

languages. JSON is built on two structures that share a number of similarities with

the data structures used in dynamic programming languages. The first structure is

7

Figure 2.1: Example XML syntax to encode a group of books [27].

a collection of name/value pairs, which can equivalently be compared to an object,

record, struct, dictionary, hash table, keyed list, or associative. The second structure

is an ordered list of values, which can be equivalently compared to an array, vector,

list or sequence [16].

These two structures provide two distinct benefits when defining a data

model. First, JSON provides a more natural data model for programmers and engi-

neers to map new objects to because the data model is one they are already familiar

with. Similarly, this structure also helps programmers and engineers work with the

data directly with minimal processing. In fact, the close similarities between JSON

representations and JavaScript objects enable a near seamless transition between

the two technologies. This ease of use is one of the primary drivers for choosing

JSON in this system design.

8

Figure 2.2: JSON representation vs. XML representation [17].

9

2.2 Back-End Data Storage

The Home Theater system architecture requires a back-end storage system

to house the different types of speakers, amplifiers, and televisions. This back-end

data store corresponds to the library of components that was indicated in Figure

1.1.

The conventional choice for a back-end database for a web-based system

design would be a relational database such as Oracle’s MySQL database [21]. Some

of the benefits of using MySQL are the extensive user base, the open-source code,

and the high performance and stability it offers. MySQL would be a reasonable

choice as the back-end solution. However given the choice of JSON as the data

structure, an alternate database was chosen.

2.2.1 MongoDB

The back-end database for this system design is the document database

MongoDB [19]. MongoDB is what is currently defined as a NoSQL database [18, 20].

At a basic level, NoSQL databases are non-relational databases that are distributed

on a cluster of machines rather than on a single machine and work well with large-

scale data processing. MongoDB offers a dynamic data structure, as opposed to the

more rigid data structure of a relational database, as well as powerful querying and

other useful features such as direct mapping to the JSON data format.

MongoDB uses a JSON style data structure named Binary JSON (BSON),

10

which works in much the same way as JSON. The ability to define home theater

components in the same format that they will be stored in is a major advantage

for this system design. First, the similar structures help simplify the process of

adding new components into the existing library of components. Loading JSON

representations of the components into MongoDB requires almost no preprocessing

of the raw data. Additionally, pulling data out of MongoDB also requires minimal

processing as BSON data structure works well with the JavaScript scripting language

and modern Internet web browsers that are used for implementing the systems

business logic and user-interface respectively.

MongoDBs dynamic, document-based, data storage also plays a key role

in the system design as it allows for the back-end data structure to change with

minimal refactoring. Home theater components are stored in a MongoDB collection

that allows the user to define whatever attributes per component they require. This

is important because as technology advances and new components become available,

components will have different attributes that arent captured in the current data

model or older attributes that are no longer captured. This flexibility helps lower

maintenance costs and allows the system design to scale more easily.

11

2.3 User-Interface

2.3.1 Modern Web Browser

The system design for the home theater solution requires a user interface for

the user to set system requirements and to render resulting designs. A modern web

browser is a software application for retrieving, presenting, and traversing informa-

tion resource on the World Wide Web [25]. The web browser has become ubiquitous

in our everyday lives so it offers a great setting for both the front-end user and the

back-end developer. For the purposes of this project, a modern web browser would

be Mozilla’s Firefox, Google’s Chromium, Apple’s Safari, Opera, and Microsoft’s

Internet Explorer 9.

2.3.2 HyperText Markup Language (HTML)

In addition to the web-browser, the system design requires a web page

which the user will see and interact with. The web page that the web browser

renders is defined using the HyperText Markup Language (HTML). HTML is the

core language of nearly all web content. Most of what is shown on the screen in

a browser is described, fundamentally, using HTML. More precisely, HTML is the

language that describes the structure and the semantic content of a web document.

Content within a Web page is tagged with HTML elements [13].

12

2.3.3 Cascading Style Sheet (CSS)

CSS is a style sheet language used to describe the presentation of a docu-

ment written in HTML or XML. CSS describes how the structure element must be

rendered on screen. CSS is what is used to provide style (fonts, color, backgrounds,

etc.) to a web application such as the one in this project [10]. Although CSS does

not provide any functionality to the system design, it is important nonetheless to

make the solution user friendly and aesthetically pleasing.

2.3.4 Twitter Bootstrap [8]

Bootstrap is a free collection of tools for creating websites and web appli-

cations. It contains HTML and CSS-based design templates for typography, forms,

buttons, navigation and other interface components, as well as optional JavaScript

extensions [9]. Bootstrap was leveraged in this project to help design the layout of

the user-interface.

2.4 JavaScript

JavaScript is a dynamic computer programming language and is most com-

monly used as part of web browsers. JavaScript can be used to interact with the user,

control the browser, communicate asynchronously, alter the document, and function

as a server-side programming language [15]. As of 2012 all modern browsers fully

support ECMAScript (the scripting language that forms the basis of JavaScript)

13

[14].

In addition to working well with the web browser, JavaScript has a nat-

ural mapping to the JavaScript Object Notation data structure and the Binary

JavaScript Object Notation of MongoDB. The ability of JavaScript to work well with

the front-end user interface, the back-end database, and the home theater compo-

nent data is a major advantage. Leveraging JavaScript as the primary programming

language for each step in our system design process streamlines the software pipeline

and helps abstract out a lot of potential complexity.

2.4.1 jQuery

jQuery is an open source JavaScript library that simplifies interacting with

the web-browser. It is used to expand the functionality of the webpage and Twitter

Bootstrap requires jQuery to be loaded.

2.5 Document Driven Design

The final piece of technology in the system design is a way to graphically

compare different designs on the web page. There are many options for web visu-

alizations such as Google Visualizations, Highcharts JS, Chart.js, and Document-

Driven Design (D3). For the purposes of this project, the system designs will be

rendered using D3, which is a JavaScript library for manipulating documents based

on data that was written by Mike Bostock.

14

D3 helps bring data to life using HTML, Scalable Vector Graphics (SVG),

and CSS. D3s emphasis on web standards gives you the full capabilities of modern

browsers without tying yourself to a proprietary framework, combing powerful visu-

alization components and data-driven approach to Document Object Model (DOM)

manipulation [11]. Additionally, D3 works well with JSON formatted data and the

SVGs build visualizations that automatically grow with the data. This is an im-

portant as it enables the Home Theater application to grow as more components

are added without having to refactor the initial design. Minimizing the amount of

maintenance is a key concern in establishing the system design.

15

Chapter 3

Home Theater Solution Implementation

In order to prototype the proposed system design, the technologies discussed

in chapter two were applied to solve the Home Theater Design Problem. The overall

purpose of this problem was to use a library of components and a set of home theater

system requirements to configure possible designs.

3.1 Solution Overview

The proposed solution is broken into two subsystems: back-end and front-

end. The back-end subsystem handles the data structure and data storage, where as

the front-end subsystem handles the home theater system configurations and data

rendering. The complete process pipeline can be seen in Figure 3.1.

Figure 3.1: Front- and Back-end software subsystems for Home Theater Design
Problem implementation.

16

3.2 Back-end Sytem Process

This section focuses on the three main processes of the back-end subsystem,

and illustrated on the left-hand side of Figure 3.1.

3.2.1 Raw Data

The first step in building out the solution was to collect raw data about

the system components. For this project, the component data came from Nassar’s

Masters Thesis [22]. Data for the television, amplifier and speaker components is

shown in Tables 3.1 through 3.3, respectively.

There are three of each type of component for a total of nine components.

Each component is associated with a price and other various attributes. This demon-

stration focuses on cost, performance, and reliability.

3.2.2 JSON Representation

The next step in our system solution was to convert the raw component data

into a JSON representation. The JSON representation chosen for this demonstration

was one of many possible representations. It may not be the optimal representation

for every circumstance, however it worked well for the purposes of the demonstration.

17

Table 3.1: Generation of television design components for the television library. Legend: P = performance, R = reliability.

18

Table 3.2: Generation of amplifier design components for the amplifier library.

19

Table 3.3: Generation of speaker design components for the speaker library.

20

3.2.2.1 Television Component Data Structure

The data structure for the television component is shown in Tables 3.4 and

3.5. Table 3.4 is a conceptual representation of the television component broken

into its subsequent key : value pairs. The ’Value’ columns represent the data type

associated with each ’Key’ column, or, in the case of the television inputs and

outputs, represent the special situation of embedded data. The television inputs

and outputs themselves can be represented uniquely as objects; therefore to capture

all the different types, the television inputs value and outputs value is actually a

container array of their respective objects.

Table 3.5 is a direct mapping of the raw LG brand television data to JSON.

This table represents a single JSON object with two embedded arrays of objects for

the television’s inputs and outputs.

21

Key Value Key Value

Component String

Brand String

Cost Integer

Performance Integer

Reliability Integer Fraction

Height Integer Fraction

Width Integer Fraction

Thickness Integer Fraction

Weight Integer Fraction

Inputs Array:

Type String

Quantitity Integer

Outputs Array:

Type String

Quantitity Integer

Table 3.4: Key-Value pairs of the JSON television representation

22

{

"component" : "television",

"brand" : "lg",

"cost" : 1300,

"performance" : 5,

"reliability" : 0.7,

"height" : 30.8,

"width" : 50.6,

"thickness" : 1.2,

"weight" : 48.7,

"inputs" : [

{

"type" : "ac power",

"quantity" : 1

},

{

"type" : "hdmi",

"quantity" : 1

},

{

"type" : "video",

"quantity" : 1

}

],

"outputs" : [

{

"type" : "audio-l",

"quantity" : 1

},

{

"type" : "audio-r",

"quantity" : 1

},

{

"type" : "headphones",

"quantity" : 1

}

]

}

Table 3.5: Sample television component in JSON format

23

3.2.2.2 Amplifier Component Data Structure

The data structure for the amplifier component is shown in Tables 3.6 and

3.7. Like the television component data tables, Table 3.6 is a conceptual repre-

sentation of the amplifier component broken into its subsequent key : value pairs.

The ’Value’ columns represent the data type associated with each ’Key’ column, or,

in the case of the amplifier inputs and outputs, represent the special situation of

embedded data. The amplifier inputs and outputs themselves can be represented

uniquely as objects; therefore to capture all the different types, the amplifier inputs

value and outputs value is actually a container array of their respective objects.

Table 3.7 is a direct mapping of the raw Bose brand amplifier data to JSON.

This table represents a single JSON object with two embedded arrays of objects for

the amplifier’s inputs and outputs.

24

Key Value Key Value

Component String

Brand String

Cost Integer

Performance Integer

Reliability Integer Fraction

Power Handling Integer

Inputs Array:

Type String

Quantitity Integer

Outputs Array:

Type String

Quantitity Integer

Table 3.6: Key-Value pairs of the JSON amplifier representation

3.2.2.3 Speaker Component Data Structure

The data structure for the speaker component is shown in Tables 3.8 and

3.9. Like the other component data tables, Table 3.8 is a conceptual representation

of the speaker component broken into its subsequent key : value pairs. The ’Value’

columns represent the data type associated with each ’Key’ column, or, in the case

of the speaker Inputs, represent the special situation of embedded data. The speaker

inputs themselves can be represented uniquely as objects; therefore to capture all

the different types, the speaker inputs value is actually a container array of its

respective objects.

Table 3.9 is a direct mapping of the raw Klipsch brand speaker data to JSON.

This table represents a single JSON object with one embedded array of objects for

25

{

"component" : "amplifier",

"brand" : "bose",

"cost" : 300,

"performance" : 10,

"reliability" : 0.8,

"power_handling" : 100,

"inputs" : [

{

"type" : "ac power",

"quantity" : 1

},

{

"type" : "audio-l",

"quantity" : 1

},

{

"type" : "audio-r",

"quantity" : 1

}

],

"outputs" : [

{

"type" : "speaker-l",

"quantity" : 1

},

{

"type" : "speaker-r",

"quantity" : 1

}

]

}

Table 3.7: Sample amplifier component in JSON format

26

the speaker’s inputs.

Key Value Key Value

Component String

Brand String

Cost Integer

Performance Integer

Reliability Integer Fraction

Power Handling Min Integer

Power Handling Max Integer

Inputs Array:

Type String

Quantitity Integer

Table 3.8: Key-Value pairs of the JSON speaker representation

27

{

"component" : "speaker",

"brand" : "klipsch",

"cost" : 300,

"performance" : 5,

"reliability" : 0.7,

"power_handling_min" : 5,

"power_handling_max" : 85,

"inputs" : [

{

"type" : "speaker-r",

"quantity" : 1

},

{

"type" : "speaker-l",

"quantity" : 1

}

],

"outputs" : []

}

Table 3.9: Sample speaker component in JSON format

3.2.3 MongoDB

3.2.3.1 Schema Definition

With the component data defined as JSON, the next step was to create a

BSON schema representation in MongoDB. Once again, the schema chosen for this

demonstration was just one of many possible representations.

Defining a schema in MongoDB is a straightforward process once the data

have been defined in JSON. The one significant change made to the component

JSON representations was that each component was stored in a single array. Thus,

28

instead of having nine separate components, there was one array with nine indices,

each of which is assigned to a component. This was necessary because the component

array now represents a MongoDB collection. A MongoDB collection is synonymous

with a table in a relational database. The collection is what stores each instance of

a particular object. The complete MongoDB schema for the system is:

• Database Name: homeTheater

– Collection Name: components

∗ Objects: Each of the nine components

3.2.3.2 Data Ingest

Once the database and collection are defined, the next step was to import

the JSON component representations directly into MongoDB. MongoDB does not

require the user to define a schema prior to import because the schema will be in-

ferred from how the components are represented in JSON. This makes the importing

process extremely easy requiring only one command from the command line:

$ mongoimport \

--db homeTheaterComponents \

--collection components \

--type json \

--jsonArray \

--file homeTheaterSystemComponents.json

Table 3.10: Command line tool for importing data to MongoDB

29

MongoImport is a tool provided with the MongoDB installation. The db

option selects the database to import to, collection indicates the collection in that

database, type is the type of data thats being imported, jsonArray is an option

indicating that the data are in an array, and the file option points to the raw JSON

representation. After running this command a successful importation will look like

the following:

connected to: 127.0.0.1

Sun Apr 20 15:52:56.983 imported 9 objects

Table 3.11: Ouput after successfully importing JSON data

3.2.3.3 Data Export

In order for the front-end to work with the data, it needs to have access

to the data from the database. For the purposes of this demonstration, the data

was exported into a JSON flat file, which was used for the Representational State

Transfer (REST) calls from the front-end.

Exporting the data is also a straightforward process with MongoDB:

$ mongo localhost/homeTheaterComponents mongoScript.js >> test.json

Table 3.12: Command line statement to export a JSON flat file

30

This command runs a JavaScript script file, mongoScript (Appendix A), on

the database homeTheaterComponents that is running locally on localhost. Mongo-

Script queries the database collection components and returns each component in

the collection as a JSON array.

3.3 Front-end System Process

As illustrated on the right-hand side of Figure 3.1, the front-end system

design corresponds to a three-stage process: (1) JavaScript Configuration, (2) D3

Visualization and (3) HTML/CSV Browser. For this demonstration, the home the-

ater system design was assumed to be one of each of the three types of components.

There were no additional user parameters such as max cost or additional design

parameter such as compatibility checks between components.

3.3.1 JavaScript Logic

The first step of the front-end process was to access the available components

from the component library and configure the possible designs. JavaScript was used

to implement all the business logic associated with grabbing the component library,

parsing through each component, and configuring the possible designs.

JavaScript and jQuery were used to access the exported JSON file from

the MongoDB library of components. Three container arrays were defined to hold

each type of component: televisions, amplifiers, and speakers. JavaScript looped

31

through each JSON object in the components array assigning each component to

its associated container array. The code in Table 3.13 performed this process and

created JavaScript objects for each component with associated properties taken from

the component library.

Once JavaScript has completed parsing the component library, it passes the

three component container arrays to a function that configures the possible designs.

The system configuration was implemented using a series of for-loops that go through

each container array adding a component, calculating the associated properties, and

pushing the system design object into a system design container array. Table 3.14

is the excerpt of code that performs this process.

32

/*

JQuery function that goes to the URL in the first argument and

returns the json data

*/

$.getJSON("data/homeTheaterSystemComponents.json", function(data) {

var televisions = []; // Holds information on each television

var speakers = []; // Holds information on each speaker

var amplifiers = []; // Holds information on each amplifier

/*

cycles though each json object

*/

$.each(data, function(key, val) {

/*

"if" statements assigns each component’s information

into its respective container array

*/

if (val.component == "television") { televisions.push(

{

"brand" : val.brand,

"cost" : val.cost,

"performance" : val.performance,

"reliability" : val.reliability

}

);

};

if (val.component == "speaker") { speakers.push(

{

"brand" : val.brand,

"cost" : val.cost,

"performance" : val.performance,

"reliability" : val.reliability

}

);

};

if (val.component == "amplifier") {amplifiers.push(

{

"brand" : val.brand,

"cost" : val.cost,

"performance" : val.performance,

"reliability" : val.reliability

}

);

};

});

Table 3.13: JavaScript logic for parsing throught the exported JSON flat file.

33

function buildSystems(televisions, amplifiers, speakers) {

var sum = 0; // Total system design cost

var performance = 0; // Total system performance

var reliability = 0; // Total system reliability

var counter = 1; // Used to label design names

for (var i = televisions.length - 1; i >= 0; i--) { // Loop through television container array

for (var j = amplifiers.length - 1; j >= 0; j--) { // Loop through amplifier container array

for (var k = speakers.length - 1; k >= 0; k--) { // Loop through speaker container array

sum = televisions[i].cost + amplifiers[j].cost + speakers[k].cost;

performance = (televisions[i].performance + amplifiers[j].performance + speakers[k].performance) / 3;

reliability = (televisions[i].reliability + amplifiers[j].reliability + speakers[k].reliability) / 3;

systemDesigns.push(// Add system design object to system design container array

{

"name" : "design " + counter,

"cost" : sum,

"performance" : performance,

"reliability" : reliability,

"television" : televisions[i].brand,

"amplifier" : amplifiers[j].brand,

"speaker" : speakers[k].brand

}

);

counter++;

};

};

};

};

Table 3.14: JavaScript logic for configuring system designs.

34

With this function complete, the array of system design objects is now

available to be passed to the web page and rendered to the user through the browser.

3.3.2 Web-page Layout

A sample of the web-page layout for this demonstration can be seen in Figure

3.2. The layout follows a simple design and provides two primary functions. The first

is to display a table of all the possible design alternatives including the associated

television, speaker, amplifier, cost, performance, and reliability. A sample of this

table is shown in Figure 3.3. The second function of the web is to display graphical

representations of the design alternatives.

The graphical representations were rendered using D3. D3 was passed the

array of system design objects created by the JavaScript logic. When the Graph It!

button is clicked, D3 creates a scatter plot based on the x and y variables the user

selects. The user can select between the following choices (or their inverses):

• Cost Vs. Performance - See Figure 3.4.

• Cost Vs. Reliability - See Figure 3.5.

• Reliability Vs. Performance - See Figure 3.6.

The user has the freedom to adjust the x and y parameters freely to see if any designs

are superior to all others. To determine which design belongs to which point, the

user must only hover over that point and the associated design will appear.

35

Figure 3.2: Partial view of the user-interface.

36

Figure 3.3: Partial view of the user-interface table of designs.

37

Figure 3.4: Cost vs. Performance visualization

38

Figure 3.5: Cost vs. Reliability visualization

39

Figure 3.6: Reliability vs. Performance visualization

40

Chapter 4

Conclusions and Future Work

4.1 Conclusions

Although this solution is not yet a full-scale solution, the proposed system

design is a major step forward for the Home Theater Design and other similiar

problems. The system design proposed lays the ground-work for creating a soft-

ware solution capable of dealing with organizing and executing system requirements.

Some of the major benefits of this system design are as follows:

• The back-end data and data storage provide the front-end developer with a

familiar data structure that integrates well with the front-end user interface

• The JavaScript language and system design object representations make it

easy to apply additional logic to meet expanding customer requirements

• The front-end provides a familiar user-interface and easy customization de-

pending on user requirements. Additionally, the browser effectively hides all

the computation and complexity from the end-user making for a better expe-

rience

• The system design is scalable. Adding additional components only requires

a JSON representation; then those components can be added directly to the

database.

41

• The system design is done primarily in JavaScript or a variant of JavaScript.

Thus simplifying development and maintenance

4.2 Limitations and Future Work

The proposed system design and implementation provides an effective proof-

of-concept towards creating a production quality solution for the Home Theater

System Design Problem. The following list are some of limitations associated with

the current solution and potential for future improvements:

• Exporting a JSON file of components from MongoDB is not a practical or

realistic solution.

– Instead, another system deisgn layer should be implemented in between

the front-end and back-end subsystems. This layer should allow the front-

end to query and retrieve data from the back-end database directly.

• The raw data does not accurately represent available data about actual home

theater components.

– To make the raw data more realistic, the raw data should be adjusted

to model actual speaker, television and amplifier models. Also, a more

defined process to determine attribute scores should also be a focus for

improving the raw data.

• The solution and user-interface would be more realistic if it allowed for user

to set parameters based on their own preferences. Additionally, compatability

42

checks between components also needs to be a point of focus.

– This could be achieved by adding more user controls to the solution web-

page. These controls could set additional parameters on viable system

designs. The additional parameters could correspond to system design

attributes that could be evaluated using JavaScript.

• The table and graph visualizations are useful, but not ideal for helping the

user determine the best solution.

– Introducing a sortable and searchable table of designs would be an easy

way to create a better experience for the user. In addition to the graphs,

JavaScript could also be used to automatically list out the best design(s)

for the user.

• Using a local version of this solution also is not optimal given its compatability

with the Internet.

– Hosting the solution online would be a major step towards a full-scale

solution.

• The brute force logic for configuring the system designs is not a scaleable

solution.

– Some research could be done into more efficient algorithms or ways of

making the process more efficient, such as cacheing system designs rather

than having them repeatedly calculated every time web-page is refreshed.

43

Bibliography

[1] Austin M.A. Component Selection Design Process with Tradeoff Analysis. Read-
ing from Lecture Notes for ENSE622/ENPM642 Information-Centric Systems
Engineering, Institute for Systems Research, University of Maryland, College
Park, MD 20742, 2012.

[2] Austin M.A. Our Definition of Systems Engineering. Reading from Lecture
Notes for ENSE621/ENPM641 Systems Concepts, Issues and Processes, Insti-
tute for Systems Research, University of Maryland, College Park, MD 20742,
2012.

[3] Austin M.A. Large Computer Programs. Reading from Lecture Notes for ENCE
688R: Engineering Software Development in Java, Department of Civil and
Environmental Engineering, University of Maryland, College Park, MD 20742,
2013.

[4] Austin M.A. Orchestration of Good Design Solutions. Reading from Lecture
Notes for ENCE 688R: Engineering Software Development in Java, Department
of Civil and Environmental Engineering, University of Maryland, College Park,
MD 20742, 2013.

[5] Austin M.A., Mayank V., and Shmunis N. Paladin Software Toolset.
Institute for Systems Research, 2003. For more information, see
http://www.isr.umd.edu/paladin/.

[6] Austin M.A., Mayank V., and Shmunis N. Ontology-Based Validation of Con-
nectivity Relationships in a Home Theater System. International Journal of
Intelligent Systems, 21(10):1111–1125, October 2006.

[7] Austin M.A., Mayank V., and Shmunis N. PaladinRM: Graph-Based Visualiza-
tion of Requirements Organized for Team-Based Design. Systems Engineering:
The Journal of the International Council on Systems Engineering, 9(2):129–
145, May 2006.

[8] Twitter Bootstrap – Twitter Inc., See http://getbootstrap.com/, (Accessed
April 24, 2014).

[9] About Twitter Bootstrap – Wikipedia Foundation, See
http://en.wikipedia.org/wiki/Bootstrap(frontendframework), (Accessed
April 24, 2014).

[10] Cascading Style Sheet – Mozilla Developer Network, See
https://developer.mozilla.org/en-US/docs/Web/CSS, (Accessed April 24,
2014).

[11] Document Driven Design – Mike Bostock, See hhttp://d3js.org/, (Accessed
April 24, 2014).

[12] ECMA International. Standard ECMA-404 The JSON Data Interchange For-
mat. ECMA International, Rue du Rhone 114 CH-1204 Geneva, 2013.

[13] HyperText Markup Language – Mozilla Developer Network, See
https://developer.mozilla.org/en-US/docs/Web/HTML, (Accessed April
24, 2014).

44

[14] JavaScript – Mozilla Developer Network, See https://developer.mozilla.org/en-
US/docs/Web/JavaScript, (Accessed April 24, 2014).

[15] About JavaScript – Wikipedia Foundation, See
http://en.wikipedia.org/wiki/JavaScript, (Accessed April 24, 2014).

[16] Introducing JSON. See http://www.json.org, (Accessed April 24, 2014).

[17] JSON syntax vs. XML syntax. See http://www.auroraedialliance.com/Portals/
126065/images/JsonXmlResults.png, (Accessed April 24, 2014).

[18] NoSQL Databases Explained – MongoDB, Inc. See
http://www.mongodb.com/nosql-explained, (Accessed April 24, 2014).

[19] Introduction to MongoDB – MongoDB, Inc., See
http://www.mongodb.org/about/introduction/, (Accessed April 24, 2014).

[20] MongoDB, Inc. Top 5 Considerations When Evaluating NoSQL Databases.
MongoDB, Inc., 2013.

[21] MySQL Relational Databse – Oracle. See http://www.mysql.com/why-mysql/,
(Accessed April 24, 2014).

[22] Nassar N. Systems Engineering Design and Tradeoff Analysis with RDF Graph
Models. Masters Thesis in Systems Engineering, Institute for Systems Research,
University of Maryland, College Park, MD 20742, 2012.

[23] Nassar N. and Austin M.A. Model-Based Systems Engineering Design and
Trade-Off Analysis with RDF Graphs. In Conference on Systems Engineering
Research (CSER ’13’), pages 216–225. Procedia Computer Science, 2013.

[24] An Introduction to RDF and the Jena RDF API, Apache Jena – The Apache
Software Foundation, (Accessed April 3, 2014).

[25] Internet Web Browser – Wikipedia Foundation, See
http://en.wikipedia.org/wiki/WebBrowser, (Accessed April 24, 2014).

[26] eXtensible Markup Language (XML). See http://www.w3.org/XML. 2004.

[27] Example XML code. See http://www.kirupa.com/, (Accessed April 24, 2014).

45

Appendix A: Mongo Export to Flat File Script

This appendix contains the JavaScript code for exporting Mongo data to a JSON
flat file.

/*

mongoScript.js

*/

var x = db.components.find(); // Returns an iterator of components

print(’[’); // Start JSON array

while (x.hasNext()) { // Loop through the results

x.forEach(function(doc) { // For each result:

doc._id=doc._id.valueOf(); // Convert the BSON ID to a String

print(tojson(doc)); // Print as JSON

print(",") // Appnd with a comma

});

}

print(’]’); // Close the JSON array

46

