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Cost overruns on complex system-of-systems development programs frequently trace

back to problems with requirements. For increasingly complex systems, a key capa-

bility is the identification and management of requirements early in a system’s life

cycle, when errors are cheapest and easiest to correct. Significant work has been

done to apply natural language processing (NLP) to the domain of requirements

engineering. Recently, requirements engineering tools have been developed that use

NLP to leverage both domain ontologies and requirement templates, which define

acceptable sentence structures for requirements. Domain ontologies provide ter-

minology consistency, and enable rule-checking during the testing of requirements.

This thesis introduces FLOOR, a new software tool for requirements engineering

that leverages NLP. FLOOR not only integrates domain ontologies and requirement

templates, but also supports importing multiple external domain ontologies.
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Chapter 1: The Need for Model-based Systems Engineering

1.1 Problem Statement

This thesis describes a new approach to the interpretation, development, and

analysis of textual requirements, through the use of application-specific ontologies

and natural language processing. It builds upon our previous work in exploring ways

in which model-based systems engineering might benefit from techniques in natural

language processing [5, 6].

1.1.1 What is Model-based Systems Engineering

Model-based systems engineering (MBSE) is a system development approach

in which the focus and primary artifacts of development are models, as opposed to

documents [7, 9]. Maintaining a central system model supports error prevention,

error correction, reuse, and team-based development. As systems of interest have

become increasingly complex, a need has arisen for MBSE development tools with

enhanced automation capabilities.
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1.1.2 State-of-the-Art Model-based Systems Engineering

Most widely-used MBSE tools are focused on the development and decom-

position of system architecture, as opposed to requirements. Modern MBSE tools

(e.g., Rhapsody or MagicDraw) support the Systems Modeling Language (SysML),

and provide a framework for reuse and collaboration based on the development of

a single, central model. SysML does contain a Requirement Diagram (see Figure

1.1), which captures requirement text, and can link requirements to other system

objects, such as test cases. Plug-ins for SysML-based tools exist (e.g. DataHub)

that enable the integration of a requirements management database (e.g., DOORS)

with the system model [12]. Even so, current MBSE tools do not address the pro-

cess of requirements development and/or analysis. The underlying assumption is

that the text of each requirement is determined by a process external to the MBSE

development. No feedback addressing the quality of new requirements is presented

to the user while creating a Requirement Diagram. The critical capability to fully

develop requirements during early system life cycle phases, when it is cheapest and

easiest to correct errors, is largely overlooked by modern MBSE tools.

While engineers are looking for semi-formal and formal models to work with,

the reality remains that many large-scale projects begin with hundreds, or even

thousands, of pages of textual requirements. Initial requirements sets may be inad-

equate due to incompleteness, ambiguity, and/or several other factors. State-of-the

art practice (see Figure 1.2) involves the manual translation and decomposition

of text into a semi-formal format (suitable for representation in a requirements
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Figure 1.1: Pillars of SysML: structure, behavior, requirements and parametrics.

database) – a slow and error-prone process.

1.2 Project Objectives

This work is motivated by a strong need for computer processing tools that can

help requirements engineers overcome and manage these challenges. During the past

twenty years, significant work has been done to apply natural language processing

(NLP) to the domain of requirements engineering [3, 28, 29]. Applications range

from using NLP to extract ontologies from a requirements specification, to using

NLP to verify the consistency and/or completeness of a requirements specification.
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Simplified Model of RequirementsPages of Text

manual
translation

Figure 1.2: Manual translation of text into high-level textual requirements.
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Figure 1.3: Framework for automated transformation of text (documents) into tex-
tual requirements (semi-formal models).

Our near-term research objectives are to use modern natural language pro-

cessing (NLP) tools to ingest and tag a set of requirements, and to use the results

to offer support to systems engineers during their task of further decomposing the

initial requirements set. We propose applying NLP in two separate ways: require-

ment template matching, and ontology term matching. A requirement template is a

predetermined sentence structure that is deemed suitable for use in writing require-

ments [20]. Our goal is to inform the author whether a requirement, at the time of

writing, matches to a library of existing requirement templates. Leveraging NLP to

enforce the use of requirement templates can increase the clarity and testability of

requirements. An ontology is a set of concepts present in a particular domain, and
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the relationships between them [8]. Our goal is to inform the author of a require-

ment, at the time of writing, whether the author’s new requirement uses terminology

that is consistent with an existing ontology. Using NLP to match terms against an

existing ontology (or multiple ontologies) can address the completeness and ambigu-

ity of a requirement set [5]. We aim to apply each method not only during real-time

requirements development, but also during post-processing a requirement set, in the

form of requirements analysis reports.

Figure 1.3 shows the framework for automated transformation of text (doc-

uments) into textual requirements (semi-formal models) described in this paper.

NLP techniques are applied to textual requirements, and the analyzed text is then

compared against a library of requirement templates, and a library of ontolgies.

Multiple ontologies can be used, perhaps for different levels of a system’s hierarchy.

Ontologies may be domain-specific, or interdisciplinary (e.g., an ontology of physical

units).

1.3 Contributions and Organization

The contributions of this work are as follows:

1. A prototype software tool for requirements engineering that provides real-time

feedback to the user regarding the quality of newly written requirements. Sim-

ilar tools do exist, but we provide a novel implementation.

2. The capability to use multiple ontologies during requirements development.

To our knowledge, this is a new accomplishment in the field of requirements
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engineering.

3. An analysis of the utility of the new tool based on a case study containing real

requirements provided from an industry partner.

This thesis is organized as follows: Chapter 2 presents an overview of related work

in the areas of natural language processing and requirements engineering. Chapter

3 describes the design and implementation of FLOOR. Chapter 4 walks through a

typical use case for FLOOR, and provides an analysis of FLOOR’s utility based on

a case study of industry-provided requirements. Chapter 5 summarizes our contri-

butions and suggests opportunities for future growth.

6



Chapter 2: Related Work

2.1 Natural Language Processing

Natural language processing (NLP) is a field of computer science and linguis-

tics primarily focused on developing automated techniques for parsing and interpret-

ing standard text. Since the 1980s, most NLP frameworks incorporate statistical

and machine-learning methodologies to analyze textual corpora. Depending on the

ultimate goal of the processing, an NLP sequence features different steps. For the

purposes of term and sentence structure matching, a typical NLP workflow features

the following steps: tokenization, part-of-speech tagging, and chunking. Tokeniza-

tion is the deconstruction of text into individual elements, based on a predetermined

set of delimiters. Often, the delimiters are simply a combination of white space and

punctuation marks. Part-of-speech tagging (POS-tagging) ingests tokenized text as

an input, and outputs the sequence of part-of-speech tags corresponding to each

input token. Chunking uses the tags to determine whether adjacent tokens belong

to the same phrase, or chunk.

7



2.1.1 Natural Language Processing Techniques

Tokenization. Tokenization is the deconstruction of text into individual elements,

or tokens, based on a predetermined set of delimiters. An example delimiter is

white space. Periods, commas, and other punctuation marks are frequently used

as well [2]. In general, any character can be used as a delimiter between tokens.

Tokenization is a well-understood problem, but challenges still exist. In English,

for example, a tokenizer must address contractions, hyphenated words, and unusual

symbols. Depending on the end goal of the NLP, different rules may be desirable

for such corner cases.

Part-of-Speech Tagging. Part-of-speech tagging labels each individual token with

its particular part-of-speech. Most modern POS-tagging algorithms rely on a model

that is trained in advance on representative corpora. A POS-tag consists of one,

two, or three characters – a label that corresponds to a specific part-of-speech. An

example of a POS-tag is JJ, which the Penn Treebank Project uses for denoting an

adjective [30]. In fact, the Penn Treebank tag-set has become the de-facto standard

for POS-tagging. It consists of 48 POS-tags in total, including several representing

punctuation marks (not typically thought of as parts-of-speech, but certainly valid

pieces of text that must be addressed).

Chunking. Chunking is the process by which POS-tagged tokens are segmented

and labeled into phrases, or chunks. As an example, consider the sentence: “Sys-

tems engineers shall work.” In this sentence, “systems engineers” is one chunk, – a

8



noun phrase. The other chunk, “shall work,” is a verb phrase. In order to accom-

plish chunking, a particular grammar can be defined [5]. More commonly, chunker

algorithms rely on a trained model, similar to most POS-taggers.

Automatic Term Recognition and Automatic Indexing. Strategies for auto-

matic term recognition and automatic indexing fall into the general area of compu-

tational linguistics [22]. Algorithms for single-term indexing date back to the 1950s,

and for indexing two or more words to the 1970s [13]. Modern techniques for multi-

word automatic term recognition are mostly empirical, and employ combinations of

linguistic information (e.g., POS-tagging) and statistical information acquired from

the frequency of usage of terms in candidate documents [4, 18]. The resulting terms

can be useful in more complex tasks such as semantic search, question-answering,

identification of technical terminology, automated construction of glossaries for a

technical domain, and ontology construction [16, 21, 24].

A Simple Example. Consider the test sentence:

"When I work as a senior systems engineer, I truly enjoy my work."

Tokenizing the sentence gives:

[ ( ’When’, ’WRB’), (’I’, ’PRP’), (’work’, ’VBP’), (’as’, ’RB’), (’a’, ’DT’),

(’senior’, ’JJ’), (’systems’, ’NNS’), (’engineer’, ’NN’), (’,’, ’,’),

(’I’, ’PRP’), (’truly’, ’RB’), (’enjoy’, ’VBP’), (’my’, ’PRP$’),

(’work’, ’NN’), (’.’, ’.’) ]

The first thing to notice from the output is that the tags are two or three letter codes.

Each one represents a lexical category or part of speech. For instance, WRB stands

for Wh-adverb, including how, where, why, etc. PRP stands for Personal pronoun;

9



Figure 2.1: Output from first step on building chunking grammar. Purpose: Simply pick nouns from test sentence.

Figure 2.2: Output from second step on building chunking grammar. Purpose: Identify noun phrases.

Figure 2.3: Output from third step on building chunking grammar. Purpose: Form noun phrases.

Figure 2.4: Output from fourth step on building chunking grammar. Purpose: Identify the adjective preceding the first noun
phrase.
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RB for Adverb; JJ for Adjective, VBP for Present verb tense, and so forth [30].

These categories are more detailed than presented in [19], but they can all be traced

back to those ten major categories. It is important to note the possibility of one-

to-many relationships between a word and the possible tags. For our test example,

the word work is first classified as a verb, and then at the end of the sentence, is

classified as a noun, as expected. Moreover, we found two nouns (i.e., objects), so

we can affirm that the text is saying something about systems, an engineer and

a work. But we know more than that. We are not only referring to an engineer,

but to a systems engineer, and not only a systems engineer, but a senior systems

engineer. This is our entity and we need to recognize it from the text. To do this, we

need to somehow tag groups of words that represent an entity (e.g., sets of nouns

that appear in succession: (’systems’, ’NNS’), (’engineer’, ’NN’)). Modern NLP

tools offer regular expression processing support for identifying groups of tokens,

specifically noun phrases, in the text.

Figures 2.1 through 2.4 illustrate the progressive refinement of our test sentence

by the chunking parser. The purpose of the first pass is to simply pick the nouns from

our test sentence. Figure 2.1 is a graphical representation of the results Subsequent

analyses identify the presences of plural nouns (NNS), form single noun phrases,

and identify situations where words are located between adjectives and nouns. The

latter steps identify two entities, senior systems engineer and work, and that is

precisely what we want.

11



2.1.2 Natural Language Processing Tools

NLP has benefited greatly from the open-source era, as many prolific NLP

packages are available on a variety of platforms. One popular NLP tool is General

Architecture for Text Engineering (GATE), a Java-based NLP suite containing an

integrated GUI. OpenNLP is another Java library for performing NLP, distributed

by Apache. The Natural Language Toolkit (NLTK), written in Python is yet another

mature NLP tool [26]. All of these tools contain libraries that support tokenization,

POS-tagging, and chunking, as well as several other NLP functions. We have men-

tioned only a few packages of particular interest here, but for a more thorough survey

of modern NLP tools, see [25].

2.2 Requirements Engineering

Requirements engineering is the process by which system requirements are cre-

ated, decomposed, and maintained. Requirements engineering is a critical discipline

for complex systems development, as failures in requirements can very easily have

long-lasting, costly impacts on future system development. It is therefore critical

that system requirements be written and decomposed effectively. The quality of re-

quirements can be measured in many ways. According to the International Council

on Systems Engineering (INCOSE), characteristics of a high-quality requirement set

include, but are not limited to: completeness, containing requirements describing

all desired capabilities; consistency, the absence of requirements that contradict one

another; singularity, containing requirements that each describe exactly one capa-
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bility; testability, containing requirements that can each be individually verified;

and unambiguity, the absence of requirements that have multiple interpretations

[27]. We contend that in providing feedback regarding requirement templates and

ontology term matching, FLOOR assists systems engineers in writing requirements

that achieve these five criteria.

2.2.1 Requirement Templates

Requirement templates, or boilerplates, were introduced by Dick, Hull, Jack-

son [20] in 2002. The concept is to maintain a repository of acceptable sentence

structures to be used for writing requirements. Requirements can then be written

in a clear and consistent manner, thereby improving singularity, testability, and un-

ambiguity. An example of a requirement template and a corresponding requirement

is given below in 2.5. In the example, the underlined instance phrases correspond to

the angle-bracketed place-holders in the preceding requirement template. Require-

ment templates may be added as necessary, and many requirements may be written

based on the same template.

Figure 2.5: Example requirement template and instance.

Requirement templates have been integrated into several NLP-based require-

ments engineering tools, most recently by DODT [14]. DODT’s implementation

supports the combination of multiple requirement templates when creating a new

13



Figure 2.6: Simple ontology, rules, and event-driven evolution of semantic graphs.

requirement. This method keeps the number requirement templates relatively small,

while still allowing for sufficient complexity. There is no standard format for re-

quirement templates, and finding an existing set of requirement templates remains

a challenge.

2.2.2 Ontologies

A domain ontology describes the concepts related to a specific domain, the

relationships among those concepts, and the attributes of data needed to describe

individuals (or instances) of the concepts. These notions are not unlike a class

hierarchy and data attributes one finds in object-oriented design methods. Instances

of ontologies are modeled as graphs that can be instantiated with data, and can

respond - dynamically evolve - to external events. From a requirements engineering

perspective, domain ontology integration is implemented by DODT [31].
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Figure 2.6 shows, for example, the relationship among classes and properties

in a simplified family ontology. A person has properties: hasAge, hasWeight and

hasBirthdate. Male and Female are subclasses of the class Person and, as such, will

inherit all of the properties associated with Person Boy is a specialization of Male.

A Child is a Person who may (or may not) attend Preschool. The upper left-hand

side of Figure 2.6 shows one fact and three rules. Sam is a boy born on October 1,

2007. Given a birthdate and a current time, a built-in function getAge() computes

Sams age. Further rules can be defined for when a person is child and when they

attend preschool. Some of the data (e.g., Sams date of birth) remains constant over

time. Other data is dynamic and is controlled by the family rules.

Pathway to Ontology-Enabled Traceability for System Design and Man-

agement. From a systems engineering standpoint, this simple scenario is appealing

because it suggests an opportunity for modeling requirements, system structure,

and system behavior with semantic graphs that dynamically evolve in response to

events [8].

The systems architecture for state-of-the-art requirements traceability and its

connection into the proposed model is shown in the upper and lower sections of

Figure 2.7.

In state-of-the-art traceability mechanisms, design requirements are connected

directly to design solutions (e.g. objects in the engineering model). Our contention

is that even in the earliest stages of system development, a better approach is to

develop requirements by asking the question: What concepts (or group of design

15



Figure 2.7: Schematic for state-of-the-art traceability and ontology-enabled trace-
ability for system design and management.

concepts) will I need to apply to create (and later on, satisfy) a requirement? Design

solutions are the instantiation/implementation of these concepts.

In the lower half of Figure 2.7, textual requirements, ontology models, and

engineering models provide distinct views of design:

1. Requirements are a statement of what is required,

2. Engineering models - not within the scope of this paper - are a statement of

how the required functionality and performance might be achieved, and

3. Ontologies and their associated rules are a statement of concepts justifying a

tentative solution.

During design, mathematical and logical rules are derived from textual requirements,

which in turn, are connected to elements in an engineering model. A key benefit of

the proposed approach is that design rule checking can be applied at the earliest state

16



possible - as long as data is available for the evaluation of rules, rule checking can

commence; the textual requirements and engineering models need not be complete

[11]. During the system operation, traceability links enable the evaluation of cause-

and-effect relationships between changes (events) at the system/component level and

their effects on stakeholder requirements [10]. Present-day system methodologies

and tools are not designed to handle projects in this way.

Reasoner
Properties

Instances

Data
Requirement
Individual

verify

Textual Requirements
define

Classes

Relationships

Ontologies and ModelsDesign Rules and Reasoner

Design Rules

Engineering Model

System Structure

System Behavior

Remarks

System structures are 
modeled as networks
and composite hierarchies
of components.

differential equations.
represented by partial

state machines.
modeled with finite 
Discrete behavior will be

associated with components.
Behaviors will be

a c d

b

Continuous behavior will be

Figure 2.8: Connecting textual requirements to semantic models of system structure
and behavior.

Figure 2.8 pulls together the different pieces of the proposed architecture shown

in Figure 2.7. A subset of the textual requirements will be described in terms of

mathematical and logical expressions for design rule checking. The pathway from en-

gineering models of system structure and behavior back to individual requirements,

with the data associated with ontology instances being used to verify whether a

requirement is currently satisfied [11, 10].

Our contention is that in the earliest stages of system development, strategic

approaches to the development of textual requirements will benefit from constant

feedback on the relationship of concepts expressed in the text and the concepts,

17



data, and rules defined in the associated ontologies. Specifically, when writing re-

quirements, using terminology taken directly from a domain ontology can greatly

improve consistency.

2.2.3 Requirements Engineering Tools

The application of NLP to requirements engineering is not a new idea [17],

[23], [29]. In fact, there are many commerically available requirements engineering

tools that integrate NLP in some way. Some existing tools use NLP to analyze

requirements for specific characteristics, like the presence of the word shall. Such

tools include DESIRE, Qualicen Scout, and QVscribe. Other tools, such as RETA

and Semios, support requirement templates as well. A few tools support both re-

quirement templates and term matching - the two key features of FLOOR. These

tools include Lexior, the Requirements Authoring Tool (RAT), and the Domain On-

tology Design Tool (DODT). For a more thorough survey of NLP-based tools for

requirements engineering, see [32].

Out of all available NLP-based requirements engineering tools, DODT is the

most prolific. DODT uses NLP to leverage both requirement templates and domain

ontologies, in a similar fashion to FLOOR [14], [15]. DODT has been utilized in

an industry setting on “real” requirements, with promising results [31]. There are

some key differences between DODT and FLOOR. First, DODT is a dual-purpose

tool: it features editors for both requirements and domain ontologies (as the name

suggests). There are advantages and disadvantages to this approach. One advantage

18



is direct access to the domain ontology while editing requirements, which allows for

immediate insertion of terms into the domain ontology if deemed necessary. The

downside is that the requirements and domain ontology become coupled potentially

limiting the reusability of the domain ontology across separate development efforts.

Also, DODT requires exactly one domain ontology. As we demonstrate in Chapter

4, FLOOR allows the requirements engineer to import multiple external domain

ontologies, enabling extensibility and reusability across multiple domains involved

in team development of complex engineering systems.
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Chapter 3: FLOOR Software Architecture

3.1 FLOOR Overview

We began the design of FLOOR with the mission of providing real-time feed-

back to the user regarding a new requirement’s applicability to requirement tem-

plates, and its terminological consistency with loaded ontologies. This goal led to

two central questions during the development of FLOOR:

1. What is a logical methodology for using NLP to extract the information we

need about requirement text?

2. What is a logical methodology displaying the feedback to the user?

The answer to the former is described in the following sections. As for displaying

feedback, requirement templates and ontology terms each required a user interface

decision. For displaying matching requirement templates, we chose a pop-up context

menu. The pop-up automatically updates based on new text entered by the user. For

displaying matching ontology terms, we elected to alter the font color of matching

(or non-matching) terms. Matching terms take on a green font color, and non-

matching terms assume a red font color. The font color for individual words also

automatically based on new text entered by the user. Figure 3.1 illustrates the
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Figure 3.1: Real-time feedback: user interface.

various feedback elements. In Section 4.1, 4.2 figure illustrates the feedback user

interfaces during a real example.

3.2 Class Hierarchy

FLOOR is written in Java, and runs as a standalone JavaFX application. From

a structural perspective, the FLOOR project contains three packages: FLOOR, Re-

qTemps, and TemplateChunk. The FLOOR package contains all logic for controlling

the GUI. The ReqTemps package, short for Requirements and Templates, contains

a set of classes that serve as the data model for the objects operated on by the

FLOOR package. TemplateChunk, contains enumerations referenced by templates

instances. This layer is what enables FLOOR to interpret the NLP-processed re-

quirement text, i.e., how sentence fragments are mapped to potential requirement
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templates.

Before delving into the correlation of partial sentences and matching require-

ment templates, we must first understand the data model. ReqTemps contains a

Requirement class and a Template class. Requirement has the properties “ID,” a

string, and “text,” also a string. The Template class is more interesting - it contains

a name, again just a string, and an ArrayList of type Attribute.

Figure 3.2 is a high-level class diagram depicting the FLOOR architecture.

Attribute is an interface class that allows a Template to contain components that

have different characteristics. Following that direction, AbstractAttribute is an ab-

stract class that implements the Attribute interface. AbstractAttribute contains and

AttributeType (enumeration) called “type,” and a string called “text.” Individual

Attributes that extend AbstractAttribute include Condition, Article, Subsystem,

Modal, Action, Entity, and Constraint. These are the elements of a Template.

A Condition represents a conditional phrase, like “upon mouse movement.” An

Article is either “A,” “An,” or “The.” A Subsystem is the subject of a requirement.

A Modal is either “Will,” “Must,” or “Shall.” An Action is the function called

for by a requirement. An Entity is the object acted on by a requirements action.

(“Object” is not used because it is a reserved keyword in Java.) A Constraint places

a condition on an Action. These Attributes are the building blocks of a Template.

By construction, some Attributes of a Template may only originate from

chunks of text with a certain type. For example, a Subsystem is always present

in a noun phrase chunk. We enforce this in our implementation by providing public

enumerations for each AttributeType. These enumerations are contained in sepa-
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Figure 3.2: FLOOR: class diagram.

rate package, TemplateChunk. Each Attribute has an AttributeType enumerated

in the TemplateChunk package.

3.3 NLP Libraries

To perform the NLP required to analyze requirements, FLOOR uses OpenNLP,

an the open-source NLP library written in Java, and made available by Apache [2].

Specifically, FLOOR employs the tokenizer, POS-tagger, and chunker utilities pro-

vided by OpenNLP. The POS-tagger tags tokenized text according to the Penn

Treebank tag-set, and the chunker accepts the same tags as input. Both the POS-

tagger and chunker are pre-trained on English language corpora.
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Chapter 4: Requirements Engineering with FLOOR

4.1 Working with FLOOR

In this section, we present the steps taken in the typical use case for FLOOR.

First, the user selects supporting CSV files to load, containing requirements, re-

quirement templates, and ontology terms. Next, the user begins to type a new

requirement into the editor. Real-time feedback appears for requirement template

and ontology term matching. After all new requirements have been entered, the

user can generate reports to analyze the new requirements set. Once all new re-

quirements have been entered, the user may then export the new requirements set

to a CSV (comma separated variable) file.

4.1.1 Loading Existing Files

Figure 4.1 shows FLOOR’s File Menu. The Import menu option allows the

user to select CSV files containing existing requirements, requirement templates, and

ontologies. If multiple ontology files are imported, FLOOR matches terms against

each one. The user may select an option from the View Menu at any point, to

examine the current requirements set (and editor), the loaded set of requirement
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Figure 4.1: Import options on the FLOOR File Menu.

templates, or the loaded set of ontologies.

4.1.2 Requirement Template Matching

Figure 4.2 shows the real-time feedback provided when a user begins typing

a new requirement. The first few words of the new requirement match to multiple

requirement templates, which are displayed via a context menu. When new text is

added to the requirement, the context menu containing requirement templates auto-

matically updates. When the user is satisfied with the content of a new requirement,

pressing Enter adds the new requirement to the bottom of the Requirement Table.

Matching to a requirement template is not strictly enforced – it is ultimately the

user’s decision whether a requirement is complete.

4.1.3 Ontology Term Matching

Also notice that in Figure 4.2, the word windshield has a green font color, and

the word multiply has a red font color. Changes in font color occur automatically,

based on ontology term matching. When the user types a word that matches a

term in a loaded ontology, it automatically shows up in green. Likewise, if a noun,
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Figure 4.2: Real-time feedback: matching requirement templates and ontology
terms.

verb, or adjective does not match a term in a loaded ontology, its font color is

automatically changed to red. Non-matching terms are limited to certain parts of

speech to prevent overwhelming the user with many subordinating words showing

up in red.

4.1.4 Generating Analysis Reports

The Reports Menu allows the user to generate reports for two metrics: com-

pleteness and testability. The Completeness Report analyzes whether each term in

the loaded ontologies appears at least once in any single requirement. The Testa-

bility Report analyses whether each requirement matches to one of the loaded re-

quirement templates. We argue that the Testability Report indirectly addresses

both unambiguity and singularity, as long as all loaded requirement templates pro-
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Figure 4.3: Example Testability Report.

mote both of these qualities. Each report provides a result for each requirement

(or domain ontology term), as well as the total number of requirements (or domain

ontology terms) satisfying the report metric.

An example screenshot of the testability report is shown below in Figure 4.3.

In the figure, three out of four requirements match to requirement templates. The

fourth requirement contains the phrase shall not, which does not match to a loaded

requirement template. The reporting feature of FLOOR gives the requirements

engineer a second line of defense (the first being the real-time feedback from the

Requirement Editor) for requirements analysis.

4.1.5 Exporting Requirements

The File Menu contains an Export option 4.1. The Export option prompts

the user to specify a location and file name for a CSV file. The generated CSV file
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contains the current content of the Requirement Table, as seen in the Requirements

View.
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Chapter 5: Case Study Problems

5.1 Case Study 1: Simple Requirement Template Matching

As a precursor to a full use case for FLOOR, we first demonstrate the func-

tionality provided by the subordinate ReqTemps package. ReqTemp’s main method

creates several requirements and requirement templates, and then matches them

accordingly. In the following subsections, we include figure depicting the output of

each step, and a brief description.

5.1.1 Creating and Printing Requirements and Requirement Tem-

plates

Part 1 instantiates several requirements, and Part 2 instantiates several templates.

The requirements are shown below in Figure 5.1. Figure 5.2 shows the requirement

templates.
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Figure 5.1: Simple template matching: Create and print requirements.

Figure 5.2: Simple template matching: Create and print templates.
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5.1.2 Tokenization and POS-Tagging

Part 3 uses OpenNLP’s “SimpleTokenizer” to parse the set of input requirements

into individual words. Then, OpenNLP’s POS-tagger labels each token with a part-

of-speech. The result are shown below in Figure 5.3.

Figure 5.3: Simple template matching: Tokenization and POS tagging.

5.1.3 Matching Requirements with Requirement Templates

Part 4 processes the tagged tokens to match them to requirement templates, and

prints the resulting HashMap. The final processing is based on the location of the

modal (will, must, or shall) in the tokenized requirement, as well as knowledge

of how the templates are constructed. With this information, ReqTemps works

backwards to uncover the matching template, as shown in Figure 5.4. ReqTemps

does not explicitly use the results of the POS-tagger – that piece of functionality is

left to FLOOR.
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Figure 5.4: Simple template matching: Textual requirements matched with tem-
plates.
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5.2 Case Study 2: Working with Requirements from NASA Goddard

The utility of FLOOR will ultimately be determined by systems engineers in

industry performing requirements engineering tasks every day. That said, it is still

interesting to use FLOOR to retroactively analyze a requirements set, assuming

some default set of requirement templates and ontologies. Although the FLOOR’s

benefits during initial requirement creation will not be observed by this method, the

reporting features can at least be studied.

5.2.1 Import Data

For this case study, we obtained a requirement set consisting of 14 require-

ments written for NASA’s Global Precipitation Mission (GPM) Project. The test

requirements are listed in Table 5.1. In the absence of any requirement templates

actually used during the requirements’ creation, we chose a default set of eight fairly

simple templates listed in Table 5.2. We also worked backwards to create ontolo-

gies, one for acronyms found in the requirements, and one for physical units. The

following tables contain case study the requirements, requirement templates, and

ontologies.
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ID Requirement Text

1 The GPM shall make measurements that enable the determination
of rainfall mean drop size, encompassing mean drop sizes ranging
from 0.5 to 3 mm.

2 The PIS shall include a DFPR.
3 The CSB shall be capable of ingesting an average rate of 95 kbps

continuously from the PR-U, and 95 kbps continuously from the
PR-A.

4 The spacecraft bus shall provide position information from the GPS
receiver to the DPR.

5 The CS shall use a GPS receiver for orbit position information and
time determination.

6 The CS shall accommodate the PIS with technical resources (mass,
power, FOV, command and data, etc.) and operating environment
(pointing, thermal control, etc.)

7 The CS shall provide structural support for the PR-U, PR-A, GMI,
and auxiliary instruments, with a total mass of up to 1027 kg.

8 The CSB shall provide orientation and clear Field-of-View for each
instrument in accordance with the instrument mechanical ICDs.

9 The CS shall provide the PR-U, PR-A, GMI, and auxiliary instru-
ments with DC unregulated power up to 896 watts steady state at
beginning of life and 796 W end of life.

10 The CSB shall be capable of ingesting an average rate of 20 kbps
continuously from the GMI, with no more than 1 kbps of that as
housekeeping data.

11 The CS shall provide structural support and stability sufficient to
maintain coalignment among the various instruments’ mechanical
reference surfaces to within 0.1 deg (3 sigma) per axis.

12 The DPR and CS design shall overlap the PR-A and PR-U beams
sufficiently (no more than 0.3 degrees apart) that drop-size distri-
bution can be determined.

13 If aligning the DPR radar beams so that they both sample the same
volume proves to be sufficiently difficult such that the instrument
cannot measure accurate drop size distribution; then GPM may not
meet one of its Level 1 requirements.

14 The DPR shall make measurements in both Ku and Ka frequency
bands.

Table 5.1: Case study requirement set (Source: NASA’s GPM Project).
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ID Requirement Template

1 〈article〉 〈subsystem〉 〈modal〉 〈action〉
2 〈article〉 〈subsystem〉 〈modal〉 〈action〉 〈entity〉
3 〈article〉 〈subsystem〉 〈modal〉 〈action〉 〈constraint〉
4 〈article〉 〈subsystem〉 〈modal〉 〈action〉 〈entity〉 〈constraint〉
5 〈condition〉 〈article〉 〈subsystem〉 〈modal〉 〈action〉
6 〈condition〉 〈article〉 〈subsystem〉 〈modal〉 〈action〉 〈entity〉
7 〈condition〉 〈article〉 〈subsystem〉 〈modal〉 〈action〉 〈constraint〉
8 〈condition〉 〈article〉 〈subsystem〉 〈modal〉 〈action〉 〈entity〉

〈constraint〉

Table 5.2: Case study requirement templates.

ID Term

CS Core Spacecraft
CSB Core Spacecraft Bus
DFPR Dual Frequency Precipitation Radar
DPR Dual Precipitation Radar
FOV Field of View
GMI GPM Microwave Imager
GPM Global Precipitation Mission
GPS Global Positioning System
ICD Interface Control Document
PIS Primary Instrument Suite
PR-A Precipitation Radar A
PR-U Precipitation Radar U

Table 5.3: Case study acronym ontology.

Term Definition

deg degrees
Ka 26.5 to 40 GHz
Ku 12 to 18 GHz
kbps kilobits per second
kg kilograms
mm millimeters
W watts

Table 5.4: Case study units ontology.
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5.2.2 Results

We found that only 5 out of the 14 requirements matched to one of our eight re-

quirement templates. The reasons for certain requirements’ failures to match were

interesting. One requirement contained hyphenated terms that caused problems

for the chunker, consequently the requirement was not adequately processed. In

another case, a seemingly well-constructed requirement did not match any require-

ment templates because we did not load any requirement templates that contained

a constraint followed by a condition.

5.3 Case Study 3: Scalability Analysis

This section discusses the scalability of FLOOR as related to large require-

ment sets and ontologies. It is important for FLOOR to be usable for both the re-

quirements development and requirements analysis of large requirement sets and/or

ontologies. To test the scalability of FLOOR, we measured the response time of the

Requirements View after importing requirement sets of varying sizes. The require-

ment sets were sized as follows: 100, 500, 1000, 5000, and 10000 requirements. For

each case, we imported an ontologies containing 100 and 1000 terms, and also timed

the report generation. FLOOR successfully loaded the Requirements View for each

set, and averaged required approximately 4 seconds of loading time for every 1000

requirements. We also note that the rate was similar for report generation, and was

unaffected by the size and number of loaded ontologies.

We considered this load rate to be satisfactorily scalable, given that upwards
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of 7000 requirements would require just a 30-second wait time. However, the case

could be made that the current implementation is not quite robust enough to han-

dle requirement sets containing 15000 or more requirements, since a full minute

of wait time might be unacceptable. From this standpoint, FLOOR’s handling of

requirement sets could be further optimized, but it is not a critical need at this time.
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Chapter 6: Conclusions and Future Work

6.1 Conclusions

This thesis introduces FLOOR, a new tool for requirements engineering that

provides real-time feedback to the user regarding the quality of new requirements.

FLOOR leverages NLP to match new requirement text to potential requirement tem-

plates, and to alert the user of terminological consistency with existing ontologies.

A critical feature of FLOOR is ability to load and match against multiple ontolo-

gies – a new development in the requirements engineering field. We see FLOOR as

a building block towards the next generation of model-based systems engineering

tools with enhanced automation, enabling systems engineers to recognize and solve

problems as early in the system life cycle as soon as possible.

6.2 Future Work

Looking to the future, we envision several improvements to FLOOR. The

prototype introduced in this thesis is mainly concerned with the creation of new

requirements, as opposed to the editing and maintenance of existing requirements.

To that end, FLOOR could be equipped with the capability of selecting and editing
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existing requirements. Another limitation of FLOOR is the treatment of ontologies

as only lists of terms.

Digital Receiver

Sensitivity

Requirements Editor Digital Receiver Ontology

hasRange hasSensitivity

Receiver

Detection Range

subclass

Concept Match

Template
Match

Figure 6.1: FLOOR: Requirement template and domain ontology match.

As illustrated in Figure 6.1, further integration with mainstream ontology formats,

like OWL, and semantic modeling software tools, like Jena, would enable FLOOR

to use the conceptual information contained within ontologies [1, 33].

Longer-term opportunities for future work include:

1. Distributing FLOOR to corporations in the systems engineering industry, with

the goal of obtaining user accounts on the tool’s utility, and desired improve-

ments. FLOOR has been presented to Northrop Grumman at two internal

symposia, and a beta version will soon be made available to the company.

2. Increasing the number of reporting options. Additional reporting options could

include ambiguity, consistency, and singularity, as well as other quality metrics.

3. Using of several large requirements sets as training corpora for the POS-tagging

and chunking models used by FLOOR. In this way, FLOOR could become
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more tailored to the specific textual patterns that frequently arise in require-

ment text.

4. Integrating of FLOOR as a plug-in for a requirements database, e.g., DOORS.

Using this approach, existing requirements management practices could be

augmented with FLOOR’s enhancements for requirements development and

analysis.
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Appendix A: RichTextFX License Agreement

Copyright (c) 2013-2017, Tomas Mikula and contributors

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
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CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CON-

TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-

CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-

WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact GitHub API Training Shop Blog About

2017 GitHub, Inc. Terms Privacy Security Status Help
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