
ABSTRACT

Title of thesis: SYSTEMS ENGINEERING DESIGN AND

TRADEOFF ANALYSIS WITH

RDF GRAPH MODELS

Nefretiti N. Nassar, Master of Science, 2012

Thesis directed by: Associate Professor Mark Austin
Department of Civil and Environmental Engineering
and ISR

As engineering systems become increasingly complex the need for automation arises.

This thesis proposes a multi-level framework for design of a home theater system

cast as a component-selection design problem. It explores the extent to which the re-

source description framework (RDF) and Python can be used in a software pipeline

for systems engineering design and trade-off analysis. The software pipeline models

and visualizes RDF graphs, implements inference rules for the step-by-step selec-

tion of design component combinations that satisfy system requirements, identifies

non-inferior Pareto-Optimal design solutions, and tracks the size of the RDF graphs

during execution of the pipeline. The use of RDF and Python for automation pro-

vides a simplified replacement for present-day Semantic Web tools and technologies.

Last Modified: November 30, 2012

SYSTEMS ENGINEERING DESIGN AND TRADEOFF

ANALYSIS WITH RDF GRAPH MODELS

by

Nefretiti N. Nassar

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science in Systems Engineering

2012

Advisory Committee:
Associate Professor Mark Austin, Chair/Advisor
Professor John Baras
Associate Professor Linda Schmidt

c© Copyright by

Nefretiti N. Nassar
2012

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible. I

would like to first thank my beautiful family including my mother, Shaba, and Ben

for their support – it has been overwhelming. I would like to thank my best friend,

Whitney Ford, for encouragement and teaching me concepts of computer science.

I would also like to thank my dearest friend, Richard Afoakwa, for enlightenment

and helping me regain my passion for engineering. Finally, I would like to express

my deep gratitude to my advisor, Dr. Mark Austin, for facilitating this learning

experience and challenging me to become a better engineer.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Literature Review . 3

1.2.1 Top-Down and Bottom-Up Approaches to Design 3
1.2.2 Component Selection Design Problem 6
1.2.3 Graph-Based Modeling and Design of Systems 11

1.3 Systems Engineering and the Semantic Web 12
1.3.1 Semantic Web Vision . 13
1.3.2 Technical Infrastructure . 13
1.3.3 Framework for Ontology-Enabled Development 17

1.4 Preliminary Work at UMCP . 18
1.5 Scope and Objectives . 20

2 The Home Theater Design Problem 24
2.1 Design Requirements . 25
2.2 Selection of Components for the Home Theater System 30
2.3 Requirement Attributes . 31
2.4 Design Component Library . 33

3 Design Methodology and Implementation 37
3.1 Methodology . 37
3.2 Modeling and Visualization of RDF Graphs with Python and PyDot 39

3.2.1 Modeling RDF Graphs with Python 39
3.2.2 Visualing RDF Graphs with PyDot 43

3.3 Modeling Requirements with RDF . 45
3.3.1 Modeling Level 1 and 2 Requirements 48
3.3.2 Modeling Level 3 Requirements 49

3.4 Modeling Design Components with RDF 52
3.4.1 Modeling TV Components . 57
3.4.2 Modeling Amplifier and Speaker Components 60

3.5 Transformation of Objects to RDF Graphs 64
3.6 Querying RDF Graphs . 72
3.7 Inference Rules for Design . 75

4 Synthesis of Pareto Optimal Design Alternatives 77
4.1 Methodology and Definition . 77
4.2 Computation of Pareto-Optimal Design Alternativess 79
4.3 Trade-Space Visualization with Python 92
4.4 Numerical Experiments . 93

iii

5 Home Theater Design and TradeOff Analysis 98
5.1 Problem Statement and Solution Procedure 98
5.2 Initializing the Design Problem . 101
5.3 System-Level Architecture . 102
5.4 Synthesis of Feasible System Configurations 104
5.5 Quantitative Evaluation of Requirements 113
5.6 Synthesis of System-Level Design Alternatives 117
5.7 Trade-Space Evaluation and Exploration 122

6 Conclusions and Future Work 125
6.1 Summary and Conclusions . 125
6.2 Future Work . 127

Bibliography 129

A Python GUI and Trade-Space Visualization Code 132

B Television Component 140

C Amplifier Component 144

D Speaker Component 147

E System Requirement 150

F Generate Component CSV file 153

G Generate Requirement CSV file 156

iv

List of Figures

1.1 Development process and key issues in the team-based development
of engineering systems. 2

1.2 Top-down decomposition of systems. 4
1.3 Bottom-up composition of systems. 4
1.4 V model of system development – top-down decomposition (design)

followed by bottom-up composition (implementation). 5
1.5 Schematic of the component-selection design problem. 6
1.6 Trial-and-error approach to component selection. 9
1.7 Casting the component selection as a multi-objective tradeoff problem. 9
1.8 Layers of abstraction and technology in the Semantic Web. 14
1.9 Example of RDF triple where node A is a subject, predicate is a verb,

and node B is an object. 15
1.10 An RDF graph of relationships important to Spiderman. 16
1.11 Framework for ontology-enabled development. 18
1.12 Simplified model for connectivity of stereo components. 19
1.13 Stereo system ontology modeling in Protege 19
1.14 Flowchart for systems modeling with Java and Python. 22

2.1 Flowdown of requirements to a detailed system architecture description. 26
2.2 Assembly of the system architecture. Choosing the amplifier. 32
2.3 Assembly of the system architecture. Choosing the speakers. 32

3.1 Example of a PyDot visualization of a RDF Graph. 45
3.2 System architecture of the requirements class and associated driver. . 45
3.3 A RDF graph model for Requirement 1. Visualized using PyDot. . . 50
3.4 A RDF graph model for Requirement 8 using the simple approach.

Visualized using PyDot. 51
3.5 A RDF graph model for Requirement 8 using the complex approach.

Visualized using PyDot. 51
3.6 Component software implementation for Driver.Java 52
3.7 Modeling the RDF graph of LG Television using PyDot. 61
3.8 Modeling the RDF graph of Bose Amplifier using PyDot. 62
3.9 Modeling the RDF graph of Polk Speaker using PyDot. 63
3.10 Software transformation from Java objects to Python RDF graphs . . 64
3.11 Snapshot of the television CSV file in Excel. 67
3.12 Snapshot of the requirement CSV file in Excel. 70

4.1 Test shape A trade-off analysis GUI of minimizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal point. 94

4.2 Test shape A rade-off analysis GUI of minimizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal point. 94

4.3 Test shape A trade-off analysis GUI of maximizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal point. 95

v

4.4 Test shape A trade-off analysis GUI of maximizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal point. 95

4.5 Test shape B trade-off analysis GUI of minimizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal points. 96

4.6 Test shape B rade-off analysis GUI of minimizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal points. 96

4.7 Test shape B trade-off analysis GUI of maximizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal points. 97

4.8 Test shape B trade-off analysis GUI of maximizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal points. 97

5.1 Flowchart for home theater design and tradeoff analysis. 99
5.2 Requirement Hierarchy. 99
5.3 Modeling the design component RDF graph using PyDot. 108
5.4 Trade-off analysis GUI of minimizing cost and maximizing perfor-

mance with a starred Pareto optimal point. 123
5.5 Trade-off analysis GUI of minimizing cost and maximizing reliability

with a starred Pareto optimal point. 123
5.6 Trade-off analysis GUI of maximizing reliability and maximizing per-

formance with a starred Pareto optimal point. 124

vi

Chapter 1

Introduction

1.1 Problem Statement

Modern-day system designs are undergoing a series of radical transforma-

tions to meet performance, quality, and cost constraints. To keep the complexity

of technical concerns in check, system-level design methodologies are striving to or-

thogonalize concerns (i.e., achieve separation of various aspects of design to allow

more efficient exploration of the space of potential design alternatives), improve

economics through reuse at all levels of abstraction, and employ formal design rep-

resentations that enable early detection of errors and multi-disciplinary design rule

checking.

Solutions to these challenges are hindered by the multi-disciplinary nature of

team-based systems and the diverse needs of professional systems engineers. Figure

1.1 shows, for example, a hypothetical situation where high-level project require-

ments are organized for team development, and project requirements are imported

from external sources, in this case, the Environmental Protection Agency (EPA).

Throughout the development process, teams need to maintain a shared view of the

project objectives, and at the same time, focus on specific tasks. It is the respon-

sibility of the systems engineer to gather and integrate subsystems and to ensure

1

criteria.

��
Trade studies to balance
competing design and market

Re−allocation and trade−off of
system resource and performance

Subsystem 2 Subsystem 3Subsystem 1

EPA

Specification 1 Specification 2 Specification 3

Systems Integration

Working System

and Test.

Team 1 Team 2

Requirements
Project

..... Team 3

Req 3 / Spec. 3Req 2 / Spec. 2Req 1 / Spec. 1

Development Process

Viewpoints

Coordination of activities.
team development.
Separation of concerns for

Test Req.EPA Test

Verification
Validation and

Issues

Integration of team efforts

Abstractions

criteria.

Figure 1.1: Development process and key issues in the team-based development of
engineering systems.

ensure that every project engineer is working from a consistent set of project as-

sumptions. This requires an awareness of the set of interfaces and facilities to which

the system will be exposed. Systems engineers are responsible for trade studies to

find a good balance in competing (design and business) criteria. These studies will

be based on measures of effectiveness for system performance and market needs.

Constraints will be derived from requirements. Together the measures of effective-

ness and constraints will establish a solution space within which trade studies can

be conducted.

As engineering systems become increasingly complex the need for automa-

2

tion arises, as a means of maintaining designer productivity and ensuring timely

development of systems. Two key elements of required capability are an ability

to: (1) Identify and manage requirements during the early phases of the system

design process, where errors are cheapest and easiest to correct, and (2) Automat-

ically synthesize large systems from smaller (simpler) systems. A central tenet of

our work is that methodologies for strategic approaches to design will employ se-

mantic descriptions of application domains, and use ontologies to enable validation

of requirements problem domains, and communication (or mappings) among mul-

tiple disciplines. Present-day systems engineering methodologies and tools are not

designed to handle projects in this way.

1.2 Literature Review

The proposed research is targeted towards the formal representation and

management of requirements, and automated selection of components. We assume

a component specification method has been chosen and a component library has

been designed and built. Previous mathematical models utilize mathematical logic

and techniques for system verification [8]. However, we seek to describe models in

a formal way at a high level that we believe will lead to automation.

1.2.1 Top-Down and Bottom-Up Approaches to Design

Systems engineering methodologies are the confluence of top-down and

bottom-up approaches to system development.

3

Figure 1.2: Top-down decomposition of systems.

Figure 1.3: Bottom-up composition of systems.

Top-down design (decomposition). In a top-down strategy of development, a

new design problem is simplified by decomposing it into a network of simpler sub-

problems. See Figure 1.2. Top-down strategies of development allow for customized

solutions – that is, you can create a system containing only the features that are

needed. The main disadvantages of top-down development are increased develop-

ment time and increased need for testing of new sub-systems. Also, the result of a

top-down design is modules that are of a one-time-only form – they are not as easily

reused because they were components without a preconceived vision of their future

use.

Bottom-up development (synthesis). In a bottom-up strategy of development,

4

Figure 1.4: V model of system development – top-down decomposition (design)
followed by bottom-up composition (implementation).

new design solutions (higher-level entities) are created through the synthesis (or

composition) of independent modules. See Figure 1.3. The benefits of reuse include

reduced development costs, improved quality (because components have already

been tested), and shortened time-to-market. The main disadvantage of bottom-up

development is that the system may contain many features not needed to solve a

specific task.

Balancing top-down and bottom-up development concerns. An engineer

should never set out to build a system without first considering available modules

and/or components. Conversely, designers never create an engineering system with-

out a preconceived vision of its future use. A balance of these criteria is usually

needed and desirable. Figure 1.4 shows the role of top-down decomposition and

5

bottom-up synthesis of components in a V-Model of system development. If com-

ponents can be described by a formal specification, then in principle, an engineer

ought to be able to examine the specification to see if it is capable of satisfying the

design requirements.

1.2.2 Component Selection Design Problem

The component selection design problem can be stated as follows: We wish

to choose a subset of components from a library of components to satisfy the re-

quirements of a pre-specified system architecture, and component- and system-level

requirements. As illustrated in Figures 1.4 and 1.5, we will assume that a represen-

tation for component specification exists, and that a component library has been

designed an built.

2

Environmental Model

User Requirements

Configurator

System−Level Architecture Library of Components

System Design Alternatives

Add new components
to library.

Select
components

Figure 1.5: Schematic of the component-selection design problem.

Generally speaking, two outcomes to the component selection problem are possible.

The first possibility is that a search procedure will find one or more combinations

of components that satisfy all of the architectural, functionality and performance

6

requirements. In such cases, we will choose a subset of feasible designs that maximize

performance, minimize cost, and so forth. The second class of outcomes occurs

when the design requirements are stated in such a way that no feasible designs

exist. This problem can be solved by either relaxing the requirements (i.e., values

on the inequality constraints representing the requirements), or by developing new

components that will have superior performance and/or extended functionality.

Relationship to Assignment-Type Problem. Component selection is a specific

example of the assignment-type problem (ATP). That is, given N items and M

resources, devise an assignment of items to resources such that a given cost function

is optimized and ”K” restrictions are satisfied [11]. The mathematical representation

of ATPs is:

Minimize Objective F (x) (1.1)

subject to
∑

j∈Jj

xij = 1, 1 ≤ i ≤ N, (1.2)

Gk(x) <= 0, 1 ≤ k ≤ K, (1.3)

where

xij =

1 if item i is assigned to resource j,

0 otherwise.

(1.4)

and Jj = {1, 2, ...M} is the set of admissible/allowable resources for item i, 1 ≤

7

i ≤ N. The family of functions G(x) are the imposed constraints. Together the

assignment constraints and decision variable constraints indicate that item i has

to be assigned to exactly one resource j. The objective function and inequality

constraints do not need to follow a special format, other than being calculatable.

Procedures for Component Selection. The design of efficient strategies for

component selection is an active area of research [5, 6, 11, 14]. Outstanding problems

include:

1. The design of algorithms to satisfy families of requirements with a minimal

number of components (i.e., implying an integrated systems solution) and,

2. The design of algorithms to find approximate, but good, solutions to the com-

ponent selection problem when exhaustive search of the design space is com-

putationally infeasible.

Our research objective is to devise strategies for component selection during the

early stages of design, where the number of components is unlikely to be excessively

large. Figure 1.6 illustrates the essential features of a trial-and-error approach to

component selection, where components are selected from a database for the imple-

mention of a system architecture. For the purposes of illustration, let us assume

that the system architecture requires three types of components: solid rectangles,

hashed rectangles, and circles. Within the database, variations in the details of com-

ponent implementation (e.g., size of the rectangle) will lead to variations in system

performance and cost. Key points in the trial-and-error procedure are as follows:

8

solutions

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

System Architecture

Set of noninferior
design objectives.

database.
alternatives from
Selection of

D
es

ig
n

O
bj

ec
tiv

e
2

Design Objective 1

Database of components

Infeasible design

Figure 1.6: Trial-and-error approach to component selection.

System Architecture

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

Set of noninferior
design objectives.

database.
alternatives from
Selection of

Design Objective 1

Database of components

Multi−Objective Trade−Off Formulation

−− Constraints on atttribute values

system structure....
Description of the

Multi−Objective Trade−off Problem

−− Objective 1, Objective 2

−− Constraints on component selection

Figure 1.7: Casting the component selection as a multi-objective tradeoff problem.

9

1. Components are selected from the database and assigned to required elements

of the system architecture.

2. The system is evaluated in terms of objectives 1 and 2. Each combination of

components will result in one data point shown in the plot of design objectives.

3. We assume that while each component has good component-level performance

and satisfies all component-level requirements, the integration of components

into a system architecture will be subject to additional system-level con-

straints. Some of the design solutions will satisfy all of the system-level con-

straints and some will not. The former group are called feasible designs. The

latter group are called infeasible designs.

4. We seek designs (possibly a family of designs) that are feasible, and maximize

to the extent possible, one or more design objective values.

For problems containing many constraints and design parameters, the trial-and-error

approach may be very inefficient, requiring treatment for an unnecessarily large num-

ber of trial solutions. One way of overcoming this problem, as illustrated in Figure

1.7, is to cast the component selection problem as a multi-objective tradeoff problem

involving design objectives, and equality and inequality constraints on the attribute

values, compatibility of components, and component- and system-level performance.

Sequences of point solutions to the trade-off formulation can be programmed and

computed with the ILOG solver [17].

A second solution approach comes about by the viewing design process as

10

sequence of decision making problems – the challenge is to determine a sequence the

decisions to efficiently resolve the value of free variables in the overall design problem

while satisfying the design constraints. Rather than use ILOG, we explore the

feasibility of solving the design problem through the representation of requirements

and components in an RDF format, followed by their processing through sequences

of inference rule application and graph queries.

1.2.3 Graph-Based Modeling and Design of Systems

Graph theory dates back to the Swiss mathematician Leonard Euler (1707-

1783). From a mathematical standpoint, we denote a graph G by G(V, E) where

V is a set of vertices and E is a set of edges. The edges have no points in com-

mon except those contained in V. A directed graph is one in which the edges have

direction – directed edges are called arcs (e.g., transitions in statechart diagrams).

An edge sequence between vertices v1 and v2 is a finite set of adjacent and not

necessarily distinct edges that are traversed in going from vertex v1 to vertex v2. A

large number of mathematical algorithms have been developed to traverse graphs

and trees and answer specific questions about their contents (e.g., find a specific

node in the tree/graph; determine if the graph is circuit-free; find all of the paths,

including the shortest path; compute flows of traffic between two vertices; compute

the intersection and union of graphs).

Graph Structures in Systems Engineering. When requirements are organized

into levels for team development, graph structures are needed to describe the com-

11

ply and define relationships among requirements (terminology such as incoming and

outgoing requirements is sometime used). A parent requirement may have “N” de-

rived children requirements, and a derived child requirement may have “M” parents.

Individual requirements are linked together using graph structures. Depending on

the requirements context, they need to support the allocation of requirements onto

a number of other system modeling entities like parts (components), functions and

interfaces.

Sometimes instances of requirements that come from diverse members of

the design team and/or external influences (see Figure 1.1) will combine to over-

constrain certain variables, causing inconsistency. Theories have been developed

to analyze graph topologies, identifying systems that are possibly over- or under-

constrained (i.e., instances of over-constraint occur within segments of a graph con-

taining circuits). Analysis of computational properties can lead to the identification

of variables having the freedom to participate in tradeoff studies [12].

1.3 Systems Engineering and the Semantic Web

The Semantic Web is important to the Systems Engineering community

because it provides formalisms (i.e., models and tools) for sharing and reasoning

with data on the Web. As companies move toward the team-based development of

projects and products, having Web access to design specifications and component

specifications adds value to business operations.

12

1.3.1 Semantic Web Vision

In his original vision for the World Wide Web, Tim Berners-Lee described

two key objectives [7]: (1) To make the Web a collaborative medium, and (2) To

make the Web understandable and, thus, processable by machines. During the

past twenty years the first part of this vision has come to pass – today’s Web

provides a medium for presentation of data/content to humans. Machines are used

primarily to retrieve and render information. Humans are expected to interpret

and understand the meaning of the content. The Semantic Web aims to produce

a semantic data structure which allows machines to access and share information,

thus constituting a communication of knowledge between machines, and automated

discovery of new knowledge [13, 26]. Realization of this goal will require mechanisms

(i.e., markup languages) that will enable the introduction, coordination, and sharing

of the formal semantics of data, as well as an ability to reason and draw conclusions

(i.e., inference) from semantic data obtained by following hyperlinks to definitions

of problem domains (i.e., so-called ontologies).

1.3.2 Technical Infrastructure

Figure 1.8 illustrates the technical infrastructure that supports the Semantic

Web vision. Each new layer builds on the layers of technology below it. The bottom

layer is constructed of Universal Resource Identifiers (URI) and Unicode. URIs

are a generalized mechanism for specifying a unique address for an item on the

web. The eXtensible Markup Language (XML) provides the fundamental layer for

13

Unifying Logic

Trust

Proof

Rules: RIFOntology: OWL

RDFS

Data Interchange: RDF

XML

URIUnicode

E
nc

ry
pt

io
n

Applications and Interfaces

layers
Representation / syntax

Ontology and reasoning
layers

Applications

Data layers

Layers of Abstraction Semantic Web Technology Stack

Figure 1.8: Layers of abstraction and technology in the Semantic Web.

representation and management of data on the Web. XML technology has two

aspects. First, it is an open standard which describes how to declare and use simple

tree-based data structures within a plain text file (human readable format). XML

is a meta-language (or set of rules) for defining domain- or industry-specific markup

languages. Within the systems engineering community, for example, XML is being

used in the implementation of AP233, a standard for exchange of systems engineering

data among tools [24]. A second key benefit in representing data in XML is that

we can filter, sort and re-purpose the data for different devices using the Extensible

Stylesheet Language Transformation (XSLT) [27, 29].

Limitations of XML. Need for the RDF Layer. While XML provides support

for the portable encoding of data, it is limited to information that can organized

14

within hierarchical relationships. As illustrated in Figure 1.1, a common engineer-

ing task is the synthesis information from multiple data sources. This can be a

problematic situation for XML as a synthesized object may or may not fit into a hi-

erarchical (tree) model. A graph, however, can, and thus we introduce the Resource

Description Framework (RDF).

RDF is a graph-based assertional data model for describing the relationships

between objects and classes (i.e., data and metadata) in a general but simple way,

and for designating at least one understanding of a schema that is sharable and

understandable. The graph-based nature of RDF means that it can resolve circular

references, an inherent problem of the hierarchical structure of XML. An assertion

is the smallest expression of useful information. RDF captures assertions made in

simple sentences by connecting a subject to an object and a verb, as shown in Figure

1.9.

Figure 1.9: Example of RDF triple where node A is a subject, predicate is a verb,
and node B is an object.

In practical terms, English statements are transformed into RDF triples consisting

of a subject (this is the entity the statement is about), a predicate (this is the named

attribute, or property, of the subject) and an object (the value of the named at-

tribute). Subjects are denoted by a URI. Each property will have a specific meaning

and may define its permitted values, the types of resources it can describe, and its

15

Figure 1.10: An RDF graph of relationships important to Spiderman.

relationship with other properties. Objects are denoted by a “string” or URI. The

latter can be web resources such as requirements documents, other Web pages or,

more generally, any resource that can be referenced using a URI (e.g., an application

program or service program).

A set of related statements constitute an RDF graph. RDF graphs can

be used to model relationships among friends, location data, business data, and

show information about a restaurant and a movie [26]. Figure 1.10 illustrates, for

example, a graph model of relationships relevant to Spiderman.

Ontology, Logic, Proof and Trust Layers. Hendler [15] describes an ontol-

ogy as “a set of knowledge terms, including the vocabulary, the semantic intercon-

nections, and some simple rules of inference and logic for some particular topic.”

Ontologies are needed to facilitate communication among people, among machines,

and between humans and machines. To provide a formal conceptualization within a

16

particular domain, ontologies need to accomplish three things: (1) Provide a seman-

tic representation of each entity and its relationships to other entities; (2) Provide

constraints and rules that permit reasoning within the ontology, and (3) Describes

behavior associated with stated or inferred facts. Ontologies that will enable appli-

cation interoperability by resolving semantic clashes between application domains

and standards/design codes are currently in development [10, 19].

The ontology, logic, proof and trust layers introduce vocabularies, logical

reasoning, establishment of consistency and correctness, and evidence of trustwor-

thiness into the Semantic Web framework. Class relationships and statements about

a problem domain can be expressed in the Web Ontology Language (OWL) [28].

Recently, rule languages such as SWRL (Semantic Web Rule Language) have been

developed to provide designers with mechanisms to reason with data and class re-

lationships [16].

1.3.3 Framework for Ontology-Enabled Development

Figure 1.11 shows two pathways for ontology-to-reasoning capability. In the

upper schematic, Jena is a Java framework for the development of applications for

the the Semantic Web. It provides interfaces and classes for the manipulation of

RDf repositories and OWL-based ontologies. And because OWL is an extension of

RDF, OWL related classes and interfaces are extensions of those used in the RDF

API. One way of implementing the Jena framework is as a plugin to the Protege

Ontology Editor. The lower schematic shows a graph of dependencies for reasoning

17

Protege Ontology Editor

OWL
−− Ontology

Facts in Jess

Reasoning with Ontologies and Rules

Jena

Jess Rule Engine

−− Rules
SWRL

−− Knowledge base

Add inferred facts to knowledge base

Problem

Design

Rules in Jess

OWL format

Save

RDF

Jess

−− Inferred knowledge base

plugin

Basic Reasoning Capability

depends on ..

OWL

Ontology−enabled
Application

Figure 1.11: Framework for ontology-enabled development.

with ontologies and rules, enabled by the translation of an OWL knowledge base

and SWRL rules into a format that can be handled by the Jess Reasoning Engine

[18]. The result is a rules-based system that uses rules to reach conclusions from a

set of premises about a system.

1.4 Preliminary Work at UMCP

In preliminary work conducted by researchers at the University of Mary-

land during 2005-2008, ontology models and models of component connetivity were

formulated for the architectural synthesis of home stereo systems from pre-defined

electronic components [3, 22]. Figure 1.12 shows a simplified port-connectivity-cable

model. And Figure 1.13 shows an ontology for the stereo system modeled in the Pro-

18

Amplifier − Speaker − Cable Connectivity

Port

Port
Connection

Cable

SpeakerSpeaker

Amplifier

Port−Connection−Cable Model

Figure 1.12: Simplified model for connectivity of stereo components.

Figure 1.13: Stereo system ontology modeling in Protege

19

tege Ontology Editor [25]. Class relationships and the domain restriction between

the Port and Connection specify what kinds of connections are permitted and what

kinds of connections are prohibited. The automatic generation of design alternatives

is established through configuration modeling, and the translation of ontologies and

SWRL rules into a format that can be handled by the Jess Reasoning Engine [18].

To see how this works in practice, consider the fragment of code written in SWRL:

AMP(?a) ^ hasPrice(?a, ?p1) ^ DVD(?d) ^ hasPrice(?d, ?p2) ^

swrlb:add(?s, ?p1, ?p2) ^ swrlb:lessThan(?s, 600.0) -> hasCheapSystem(?a, ?d)

The problem definition in English is as follows: (1) I have m amps and n dvds, (2)

My system should include a dvd and a amp and a price has to be less than $600,

(3) Do I have such a system? The Jess reasoner searches through the design space

and prints out all combinations of suitable dvd/amp/price. Since new (or derived)

information will be fed back into the design problem description, design is inherently

an evolutionary and iterative process.

1.5 Scope and Objectives

Looking forward, many opportunities for improvements to the way in which

computers are used to provide assistance in system development seem possible.

We observe, for example, that today the vast majority of modern computer-based

tools for engineering analysis focus on simulation-based performance assessment

of detailed designs. This practice ignores the fact that by the time the detailed

design is obtained, most of the important decisions (and commitments to resources)

20

have already been made. This deficiency points to a strong need for computer

assistance during the conceptual/early stages of development where the formulation

and management of design constraints and identification of potentially good design

solutions and trade-offs is of paramount importance.

Mitigating this deficiency will require formal representations for require-

ments and their associated constraints, as well as new algorithms and computational

support for the automated synthesis, assessment and ranking of design alternatives.

As a starting point, one approach would be to consider solutions based upon the

collection of technologies described in Sections 1.3.3 and 1.4. This idea is less than

ideal because any implementation would be complicated by the need to work with

a multitude of languages (RDF, OWL, SWRL), transformations (SWRL to Jess;

OWL to Jess), and tools (Protege, Jess, SWRL bridge, Jena). These tools are also

in various stages of development and working order, but need to work together if

we are to move forward.

In an effort to streamline and simplify computational support for design, the

purposes of this research project are to explore whether or not it is possible to use

RDF and Python as a replacement for RDF, OWL, Jess, Jena, Protege, and SWRL.

We will develop RDF graph representations for requirements and their properties

(no ontologies), and use Python for the implementation of logical reasoning and

inferencing mechanisms. From the outset it is evident that models of requirements

can cover a range of abstractions (i.e., levels of detail). This, in turn, will affect

the types of inferencing mechanisms that can be developed in Python and the types

21

Figure 1.14: Flowchart for systems modeling with Java and Python.

of systems validation that will be possible. At this time we do not understand the

model-inferencing-validation trade-space. Longer-term concerns of interest include:

What are we giving up by throwing OWL/SWRL out of the picture? To what extent

can a Python implementation of inference be fully automated? Can you do things

in Python that are very difficult achieve in OWL and SWRL?

Since we are aiming for simplicity we do not use URIs – instead, we use

strings to label each node within the RDF graph. For larger applications URIs

would be neccessary to identify each node for distinctiveness [26]. We focus on merg-

ing RDF graphs to develop relationships between design requirements and design

components and the design of sequences of inference rules that will systematically

transform and filter the RDF graph into representations for ensembles of Pareto op-

timal design options. We hope to identify good design solutions of a system, upon

which the application of tradeoff analysis will determine the best feasible design

solution.

22

The scope of work and procedure of investigation is as illustrated in Figure

1.14. In Chapter 2 we develop requirements and propose a multi-level framework

for design of a home theater system cast as a component selection design prob-

lem. Chapter 3 focuses on development of a methodology for systems modeling and

trade space-analysis with RDF, Python, and Java. Important tasks include: (1)

the recognition and formulation constraints. (2) the generation of plausible design

alternatives, (3) identification and exploration of the boundaries of a design space,

and (4) preliminary evaluation of system performance and cost in order to identify

the most promising candidates for detailed design, further analysis and refinement.

An algorithm and software for the computation Pareto-Optimal designs is devel-

oped in Chapter 4. In Chapter 5, we apply this framework and methodology to

the home theater design and tradeoff analysis – the objective is to select television,

speaker, and amplifier compatible combinations that cost less than USD $2,100,

and then through the application of tradeoff analysis identify the best feasible home

theater design combination. Chapter 6 presents a summary of the work along with

conclusions and suggestions for future research.

23

Chapter 2

The Home Theater Design Problem

The aim of this chapter is to develop requirements and propose a multi-level

framework for design of a home theater system cast as a component selection design

problem.

Working in conjunction with Vimal Mayank, Natasha Kositsyna and Mark

Austin from the University of Maryland [3, 4, 20, 21, 23], the Home Theater Design

Problem was first posed by David Everett at NASA Goddard in 2003 as an exercise

in understanding how requirements should be written and organized for the team-

based development of engineering systems. The exercise was posed as a “return to

first principles of requirements engineering” with the goal of trying to understand:

What kinds of requirements need to be written? How should they be organized so

that they mirror the process of deciding upon and buying a home theater system?

Who will be involved in the decision making process? And when will they be

involved? Back in 2003 answers to these questions were viewed as a first step toward

representing requirements, components, and system descriptions in a model-based

format amenable to formal analysis and representation on the Web. During the past

decade, the technical capability and economics of consumer electronics has evolved

through several generations. Today, components cost a fraction of their price in

2001-2003. As such, the problem presented the home theater design problem with

24

specifications revised to 2012-2013 expectations and capabilities.

2.1 Design Requirements

Development of the design requirements begins with a statement of need

(and intial requirements reflecting the statement of need) and evolves into three

levels of requirements. The Level 1 requirements are the initial requirements. The

Level 2 requirements serve the purpose of defining a detailed agreement between the

customer and supplier. The Level 3 represents are the component-level requirements

and are cast as inequality constraints written in terms of the component attribute

values. In other words, they contain quantitative elements that can constrain the

selection of components from a database.

The problem formation addressed here is simplified in the sense that only

the Level 3 requirements are evaluated quantitatively. Evaluation of the Level 1 and

Level 2 requirements occurs through the logical satisfaction of the sets of lower-level

requirements.

Statement of Need. My wishes are very modest:

1. I simply want to watch movies on a large size theater screen that is connected

to a high fidelity audio system.

Initial Requirements.

1. I need a home theater system.

25

Figure 2.1: Flowdown of requirements to a detailed system architecture description.

2. The total cost must be less than USD $2,100.

Now let us assume that the flowdown of requirements to a detailed system archi-

tecture proceeds as shown in Figure 2.1, with the requirements are organized into

three layers.

Level 1. Summary of Initial Requirements

Table 2.1 summarizes the two initial requirements, a reflection of the high-

level statement of need plus an overall budgetary constraint.

Level 2. Agreement between the Customer and Supplier

Table 2.2 outlines the essential features of a detailed agreement between the

customer and supplier. Point to note:

1. The statement “home theater” is refined into a visual display system plus

an audio system, along with preliminary requirements for where the visual

26

Level 1 Requirements

INITIAL CUSTOMER REQUIREMENTS

R1 I need a home theater system.

R2 The total cost must be less than $2,100.

Table 2.1: Initial customer requirements for a Home Theater System.

Level 2 Requirements

DETAILED AGREEMENT BETWEEN CUSTOMER AND SUP-
PLIER

Visual Display

R3 The theater system shall have a large display screen.

R4 The display must be thin enough to be mounted on a wall.

R5 Cost of the visual display shall not exceed US $1,300.

Audio System

R6 The system shall have a high fidelity audio system.

R7 Cost of the ”audio system” shall not exceed US $800.

Table 2.2: Detailed agreement between the customer and the builder of the Home
Theater System.

27

Level 3 Requirements

COMPONENT REQUIREMENTS

Flatscreen TV

R8 The width of the screen shall be at least 3 ft.

R9 The height of the screen shall be at least 2 ft.

R10 The screen thickness shall be no more than 6 inches.

R11 Weight of the screen shall be no more than 60 lbs.

R12 Cost of the flatscreen TV system <= US $1300.00

Amplifier System

R13 The price of the amplifier system <= US $400.00

Speaker System

R14 Cost of the speaker system <= US $400.00.

R15 Capacity of the speaker system output shall be at least 150 watts.

Table 2.3: Component-level requirements for the Home Theatre System.

28

display will be positioned (i.e., on the wall) and a qualitative statement for its

dimensions (i.e., large).

2. Overall cost of the system ($2,100) is apportioned to allowable budgets for the

visual display and audio systems.

3. Implicit requirements emanate from the tight budgetary constraints. if we

only have $2,100 to spend, then custom-building a home theater system is

financially infeasible. The only practical alternative is use of reliable commer-

cial off-the-shelf (COTS) components. Use of these components will required

access to a standard A/C power supply in the house.

Level 3. Component-Level Requirements

The component-level requirements are summarized in Table 2.3 and are writ-

ten in such a way that they can be easily converted into mathematical inequality

constraints expressed in terms of the component atttributes. The matching compo-

nent options will have specific values of component atttributes plus overall estimates

of component performance and reliability.

Generation of Requirement-Specifications

Requirement-specifications for the home theatre system are generated by

identifying the “quantitative element” for each Level 3 requirement. From Table 2.4

(and the level 3 requirements table), we see that the flatscreen TV objects need to

have the following attributes:

29

Requirement
Structure Behavior

Objects, Attributes Time, Performance,
Sequence

TV Req. 8. Screen width. at least 3ft.

TV Req. 9. Screen height at least 2ft.

....

Speaker Req. 15.
Speaker output

.... at least 150 watts

....

Table 2.4: Abbreviated generation of requirement-specifications from Level 3 re-
quirements.

Screen height, screen width, thickness, weight,

and the speakers will have the performance metric

Output (watts).

2.2 Selection of Components for the Home Theater System

The systematic selection of components for the home theater system (with

trade-off) can be partitioned into three sub-problems: (1) Selection of the Flatscreen

TV, (2) Selection of the speakers, and (3) Selection of the amplifier.

Figures 2.2 and 2.3 provide a snapshot for how the selection of components

and evolution of a design space can occur. We assume that each sub-problem can be

solved by searching a database for a component that satisfies the component-level

30

specifications. These subproblems are not uncoupled, however. The tentative selec-

tion of an audio component will impose (or fill in) additional interface constraints

on acceptable TV and speaker components. These constraints, in turn, will refine

the description of the design space.

As a case in point, Figure 2.2 shows the situation where details on the

amplifier, speaker and television components remain to be filled in. Notice that all

three of the cost requiremnts are expressed as inequality constraints. Figure 2.3

illustrates the next step in a hypothetical design process – by tentatively selecting

an amplifier component for $350, the remaining budget can be reapportioned to the

television and speaker components.

If the requirement-specifications are too stringent then the result may be

zero feasible design options. Conversely, if the requirement-specifications are too

easily satisfied and/or the design problem is underconstrained then the number of

potentially acceptable design solutions may be too large to be useful. To fully

understand the tradeoffs that are possible in cost versus system functionality and

performance, while also solving the selection problem in an efficient manner, manual

selection procedures need to be replaced by formal approaches to multi-objective

tradeoff analysis.

2.3 Requirement Attributes

We use examples of attribute tags for requirements taken from Austin,

Mayank and Shmunis [4], which identify the name of the attribute and the value of

31

Figure 2.2: Assembly of the system architecture. Choosing the amplifier.

Port Options

−− I need a home theatre system.
−− The total cost must be less than US $8,000

Home Theatre System

Flat Screen TVAmplifierSpeakers

Requirements

Library of "Product" Descriptions

−− Cost < US $600 −− Cost < US $7,000

Target Target

System Architecture

−− Cost = US $ 450

"Buy vs Build?" subject to a
constrained design space.

Actual

TV

TV

Amplifier

Speakers

Watts200 400

Speakers

TV

Trade Space −− InterfaceTrade Space −− Performance

Trade Space −− Cost

US $ 7,550

US $ 7,550

Speakers

Design Space

Figure 2.3: Assembly of the system architecture. Choosing the speakers.

32

the attribute. Such attribute tags include ID and requirement title. ID establishes

the identity of a requirement and requirement title is the written description of a

requirement. The attribute tags described in [4], lead to the development of new

attribute tags implemented in this paper. New attribute tags include: category,

requirement level, derived by, and depends on. Category identifies a requirement as

a requirement. This attribute is essential when querying RDF graphs, which we

will discuss in Chapter 3. Requirement level assigns a requirement to its position

within the requirement hierarchy. Derived by states the requirement source, which a

requirement is derived from. Depends on states the particular requirement(s) which

the status of a requirement is dependent on.

2.4 Design Component Library

The home theater system comprises three component libraries:

1. Television library.

2. Amplifier library.

3. Speaker library.

with the television, amplifier, and speaker properties obtained bestbuy.com and

polkaudio.com [1, 2]. As illustrated in Tables 2.5 - 2.7, the television library includes

Sony, LG, and Samsung televisions, the amplifier library includes Bose, Klipsch, and

Polk amplifiers, and the speaker library includes Bose, Klipsch, and Polk speakers.

33

TV
Cost P R Height Width Thickness Weight Inputs Outputs

LG $1300 5 0.7 30.8 in 50.6 in 1.2 in 48.7 lbs AC Power,
HDMI,
Video,
Audio-L,
Audio-R, An-
tenna/Cable,
LAN, USB

Audio-L,
Audio-R,
Headphones

Samsung $1650 8 0.8 29.0 in 49.3 in 1.2 in 35.7 lbs AC Power,
HDMI,
Video,
Audio-L,
Audio-R, An-
tenna/Cable,
LAN, USB,
Ex-Link

Audio-L,
Audio-R,
Headphones

Sony $1200 10 0.9 30.4 in 50.0 in 1.6 in 44.5 lbs AC Power,
HDMI,
Video,
Audio-L,
Audio-R, An-
tenna/Cable,
LAN, USB

Audio-L,
Audio-R,
Headphones

Table 2.5: Generation of television design components for the television library. Legend: P = performance, R = reliability.

34

Amplifier
Cost Performance Reliability Power

Handling
Inputs Outputs

Bose $300 10 0.8 100 watts AC Power,
Audio-L,
Audio-R

Speaker-L,
Speaker-R

Polk $350 8 0.9 175 watts AC Power,
Audio-L,
Audio-R

Speaker-L,
Speaker-R

Klipsch $370 5 0.7 70 watts AC Power,
Audio-L,
Audio-R

Speaker-L,
Speaker-R

Table 2.6: Generation of amplifier design components for the amplifier library.

35

Speaker
Cost Performance Reliability Power

Handling
Inputs Outputs

Polk $400 8 0.8 10 - 150
watts

Speaker-R,
Speaker-L

Sound

Klipsch $300 5 0.7 5 - 85
watts

Speaker-R,
Speaker-L

Sound

Bose $328 10 0.9 50 - 200
watts

Speaker-R,
Speaker-L

Sound

Table 2.7: Generation of speaker design components for the speaker library.

36

Chapter 3

Design Methodology and Implementation

3.1 Methodology

With the Home Theater Design Problem in place, the purpose of this chapter

is to lay a foundation for a design methodology that includes representation of re-

quirements and design components as RDF graph models, followed by the automatic

synthesis of compatible component pairs and filtering of design options to satisfy

requirements. To see how the implementation works in Java and Python, details

are provided for one requirement and one component, a television. The television,

amplifier, and speaker properties were obtained bestbuy.com and polkaudio.com

[1, 2].

Step-by-Step Procedure. The procedure for design space exploration of the

framework consists of the following steps:

1. Assemble RDF graphs of design requirements and design components. This

involves:

a. Develop a Java object representation for each design requirement;

b. Assign specification values to each design requirement;

c. Develop a Java object representation for each design component;

37

d. Assign specification values to each design component;

e. Generate a comma separated value (CSV) file for both the design require-

ments and design components models;

f. Import both the design requirements and design components CSV files to

a RDF model implemented in Python;

g. Merge the design requirements and design components graphs;

2. Develop inference rules. This involves:

a. Design inference rules for level 3 requirements;

b. Design inference rules for level 1 and level 2 requirements;

c. Design inference rules for component connectivity;

d. Design inference rules for component compatibility;

e. Design an inference rule, feasible system, that establish relationships be-

tween design components;

f. Design an inference rule, system design, that establish relationships be-

tween design requirements and design components;

3. Apply the inference rules to the merged RDF graph of design requirements and

design components.

4. Query the merged RDF graph of design requirements and design components

for design components which satisfy design requirements.

38

5. Generate a Python graphical user interface (GUI) for the trade space visualiza-

tion. This involves:

a. Construct trade-off analysis plot;

b. Display trade-off analysis for each home theater system combination gen-

erated by querying the merged RDF graph;

6. Find the family of Pareto optimal points in the Trade-Off Analysis Plots. In a

typical design problem, we will want to minimize cost, and maximize system

performance and reliability.

3.2 Modeling and Visualization of RDF Graphs with Python and

PyDot

For systems engineering, RDF graphs are good for modeling engineering

designs by merging RDF graphs and developing inference rules which lead to good

design solutions. But for large systems and when we are merging multiple RDF

graphs, it can become challenging to ensure consistent and unparallel identifiers for

each node [26].

3.2.1 Modeling RDF Graphs with Python

We model RDF Graphs with Python through the Simple Graph class. Specif-

ically, this class is a triplestore that store RDFs [26]. The Simple Graph class include

several methods. We wish to highlight the following methods, which we think are

39

important: add, load, triples, query, and apply inference.

Add Method: This example illustrates the process of adding a triple to the graph.

The method adds a subject, predicate, and object to the index of the graph.

source code

def add(self, (sub, pred, obj)):

self._addToIndex(self._spo, sub, pred, obj)

self._addToIndex(self._pos, pred, obj, sub)

self._addToIndex(self._osp, obj, sub, pred)

Load Method: This example illustrates the process of loading a CSV file into the

graph. The method opens a CSV file, reads the subjects, predicates, and objects

and then add them to the graph.

source code

def load(self, filename):

f = open(filename, "rb")

reader = csv.reader(f)

for sub, pred, obj in reader:

sub = unicode(sub, "UTF-8")

pred = unicode(pred, "UTF-8")

obj = unicode(obj, "UTF-8")

self.add((sub, pred, obj))

f.close()

Triples Method: This example illustrates the process of returning all triples

within the graph which correspond to a triple pattern. The method checks which

subject, predicate, or object terms are present in the triple pattern in order to return

the the correct index from the graph.

source code

def triples(self, (sub, pred, obj)):

check which terms are present in order to use the correct index:

try:

if sub != None:

40

if pred != None:

sub pred obj

if obj != None:

if obj in self._spo[sub][pred]: yield (sub, pred, obj)

sub pred None

else:

for retObj in self._spo[sub][pred]: yield (sub, pred, retObj)

else:

sub None obj

if obj != None:

for retPred in self._osp[obj][sub]: yield (sub, retPred, obj)

sub None None

else:

for retPred, objSet in self._spo[sub].items():

for retObj in objSet:

yield (sub, retPred, retObj)

else:

if pred != None:

None pred obj

if obj != None:

for retSub in self._pos[pred][obj]:

yield (retSub, pred, obj)

None pred None

else:

for retObj, subSet in self._pos[pred].items():

for retSub in subSet:

yield (retSub, pred, retObj)

else:

None None obj

if obj != None:

for retSub, predSet in self._osp[obj].items():

for retPred in predSet:

yield (retSub, retPred, obj)

None None None

else:

for retSub, predSet in self._spo.items():

for retPred, objSet in predSet.items():

for retObj in objSet:

yield (retSub, retPred, retObj)

KeyErrors occur if a query term wasn’t in the index, so we yield nothing:

except KeyError:

pass

Query Method: This example illustrates the process for variable binding within

the graph. The method queries the entire graph of relationships to check which

subject, predicate, or object terms are present in multiple triple patterns in order

41

to return the the correct indices from the graph.

source code

def query(self,clauses):

bindings=None

for clause in clauses:

bpos={}

qc=[]

for x,pos in zip(clause,range(3)):

if x.startswith(’?’):

qc.append(None)

bpos[x[1:]]=pos

else:

qc.append(x)

rows=list(self.triples((qc[0],qc[1],qc[2])))

if bindings==None:

bindings=[]

for row in rows:

binding={}

for var,pos in bpos.items():

binding[var]=row[pos]

bindings.append(binding)

else:

newb=[]

for binding in bindings:

for row in rows:

validmatch=True

tempbinding=binding.copy()

for var,pos in bpos.items():

if var in tempbinding:

if tempbinding[var]!=row[pos]:

validmatch=False

else:

tempbinding[var]=row[pos]

if validmatch: newb.append(tempbinding)

bindings=newb

return bindings

Apply Inference Method: This example illustrates the process for getting an

inference rule and then applying the rule to the graph. The method gets a given set

of queries from an inference rule and then apply the set of queries to the graph.

source code

def applyinference(self,rule):

42

queries=rule.getqueries()

bindings=[]

for query in queries:

bindings+=self.query(query)

for b in bindings:

new_triples=rule.maketriples(b)

for triple in new_triples:

self.add(triple)

3.2.2 Visualing RDF Graphs with PyDot

RDF graphs are visualized through the application of PyDot. PyDot is

a Python software application that illustrates directed graphs [9]. RDF graphs

are considered directed graphs because edges of the nodes are directed away from

the node [26]. Essentially, the graphical representation of RDF graphs is visualized

through PyDot to illustrate the relationship between entities within a directed graph.

When modeling systems as RDF graphs, PyDot is useful to capture rela-

tionships between design components and design requirements. At first, we aim to

illustrate a RDF. In PyDot, we create a directed graph. Then, we create a node

for subject and object of RDF, followed by adding each node to the directed graph.

RDF predicates are represented by directed edges from the subject to object. Next,

the directed graph is written to a .png file and then the code is ran to visualize the

formulate RDF graph.

A Simple Example: This simple example illustrates the process of creating a RDF

43

model.

source code

import pydot

Create directed graph

graph = pydot.Dot(graph_type=’digraph’)

Create nodes

node_a = pydot.Node("A")

node_b = pydot.Node("B")

node_c = pydot.Node("C")

node_d = pydot.Node("D")

Add nodes to graph

graph.add_node(node_a)

graph.add_node(node_b)

graph.add_node(node_c)

graph.add_node(node_d)

Add edges to graph

graph.add_edge(pydot.Edge(node_a, node_b, label="predicate", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_c, label="predicate", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_d, label="predicate", labelfontcolor="#009933",

fontsize="10.0", color="black"))

Points to note:

1. A directed graph is specified.

2. Four nodes are created and added to the directed graph.

3. An edge is created between the nodes to create a relationship between node A

and node B, node C, and node D.

44

Figure 3.1: Example of a PyDot visualization of a RDF Graph.

3.3 Modeling Requirements with RDF

As described in Chapter 2, the home theater system will have three levels

of design requirements, level 1, level 2, and level 3.

Definition of Home Theater Requirements. A Java class for the home theater

requirements is created. Figure 3.2 shows the system architecture of the require-

ments class and associated driver class, both implemented in Java.

Figure 3.2: System architecture of the requirements class and associated driver.

The abbreviated details for the Requirement class are as follows:

source code

package javaBackend;

public class Requirement {

private String name;

45

private String title;

private int level;

private String [] dependOn;

private String derivedBy;

// Constructor methods ...

public Requirement(String name, String title, int level, String [] dependOn,

String derivedBy){

this.name = name;

this.title = title;

this.level = level;

this.dependOn = dependOn;

this.derivedBy = derivedBy;

}

public void setName(String name){

this.name = name;

}

public String getName(){

return name;

}

... details of code removed ...

}

Points to note:

1. A Requirement class is created.

2. Each design requirement will have a name, title, level, dependOn, and a de-

rivedBy property.

Driver for Assembly of Requirements: The Driver class systematically defines

requirement options for each requirement, and creates comma separated value rep-

resentations for each requirement. The abbreviated details for the definition of a

single requirement object is as follows:

46

source code

package javaBackend;

import java.util.ArrayList;

public class Driver {

public Requirement R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11,

R12, R13, R14, R15;

public Driver() {

System.out.println(" --- D e s i g n R e q u i r e m e n t s --- ");

// Create a list of requirements

ArrayList<Requirement> reqList = new ArrayList<Requirement>();

// Requirement 1

String[] R1DependOn = new String[] { "Requirement 3",

"Requirement 4", "Requirement 6"};

Requirement R1 = new Requirement("Requirement 1",

"I need a home theater system", 1,

R1DependOn,"Requirement 1");

R1.printTitle();

R1.printLevel();

R1.printDependOn();

R1.printDerivedBy();

// Add Requirement 1 to requirement list

reqList.add(R1);

... details of other requirements removed ...

}

}

Points to note:

1. An array list is created to store the requirements.

2. The Requirement.java constructor method is use to create the requirement

objects in Driver.java.

47

Graphs of requirements can be modeled with RDF and visualized with Py-

Dot. As described in section 1.3, the subject and object of RDF are represented by

a node – in this case, subject is the design requirement and object is the value of

predicate. Predicate of RDF, which is a directed edge from subject to object, is the

attribute of the design requirement. This, in turn, allows for the formulation of a

directed graph of requirements.

3.3.1 Modeling Level 1 and 2 Requirements

Modeling a Level 1 Requirement: This example illustrates the process of cre-

ating a RDF model of the Level 1, Requirement 1 in PyDot.

source code

import pydot

Create directed graph

graph = pydot.Dot(graph_type=’digraph’, rankdir=’LR’, ranksep=0.75)

Requirement

node_a = pydot.Node("Requirement 1")

Attributes

node_b = pydot.Node("Requirement")

node_c = pydot.Node("I need a home theater system")

node_d = pydot.Node("1")

node_e = pydot.Node("Requirement 1")

node_f = pydot.Node("Requirement 3")

node_g = pydot.Node("Requirement 4")

node_h = pydot.Node("Requirement 6")

Add nodes to graph

graph.add_node(node_a)

graph.add_node(node_b)

graph.add_node(node_c)

graph.add_node(node_d)

graph.add_node(node_e)

graph.add_node(node_f)

graph.add_node(node_g)

graph.add_node(node_h)

48

Add edges to graph

graph.add_edge(pydot.Edge(node_a, node_b, label="category", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_c, label="title", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_d, label="level", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_e, label="derived by", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_f, label="depends on", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_g, label="depends on", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_h, label="depends on", labelfontcolor="#009933",

fontsize="10.0", color="black"))

Create Image File

graph.write_png(’Requirement1.png’)

Points to note:

1. A directed graph is specified.

2. Nodes are created and added to the directed graph.

3. Edges are created between the nodes to develop relationships between each

node.

3.3.2 Modeling Level 3 Requirements

The Level 3 requirements represent the home theater system constraints that

can be quantitatively evaluated. These inequality constraints can be modeled two

ways. First, the simple approach – in this case we model the inequality constraint

within the title of the requirement and later implement the details of the constraint

49

Figure 3.3: A RDF graph model for Requirement 1. Visualized using PyDot.

50

when developing inference rules for level 3 requirements. In the second complex

approach, we model the variables of the inequality constraint as seen in Figure 3.5.

For this research project, we will take the simple approach.

Like the level 1 requirement, we undergo the process of creating a RDF graph

model for a level 3 requirement using PyDot. The generated RDF requirement graph

is illustrated in Figure 3.4.

Figure 3.4: A RDF graph model for Requirement 8 using the simple approach.
Visualized using PyDot.

Figure 3.5: A RDF graph model for Requirement 8 using the complex approach.
Visualized using PyDot.

51

3.4 Modeling Design Components with RDF

As described in Chapter 2, the home theater system will have three types

of design components, a television, an amplifier, and two speakers. Each type of

design component will be selected from a library of predefined components.

Figure 3.6 illustrates the procedure employed in this study for implementing

the television, amplifier, and speaker components as Java object representations of

the design components.

Figure 3.6: Component software implementation for Driver.Java .

Our central concern is creating a design component, and then assigning the design

component to its appropriate library. First, we aim to develop a television library

of design components. This is done by creating a Hashset television library object

in Java.

52

Component Interface and Library. The television, amplifier and speaker com-

ponent representations implement the general-purpose Component interface speci-

fication shown below:

package javaBackend;

public interface Component {

public String getName();

public void setName(String name);

public void setInput (String [] input);

public String [] getInput();

public void setOutput(String [] output);

public String [] getOutput();

public void setCost(int cost);

public int getCost();

public void setPerformance(int performance);

public int getPerformance();

public void setReliability(double reliability);

public double getReliability();

}

Functional support is provided for setting/getting the component name, string ar-

rays of input and output signals, the component cost, performance and reliability.

A Library components is defined as follows:

source code

package javaBackend;

import java.util.*;

public class Library <Component> {

private HashSet<Component> library = new HashSet<Component>();

// Methods to set/get the library

public void setLibrary(HashSet<Component> lib){

library = lib;

}

public HashSet<Component> getLibrary(){

return library;

}

53

public void insert(Component object){

library.add(object);

}

public void delete (Component object){

library.remove(object);

}

public boolean isPresent(Component object){

return library.contains(object);

}

public int getSize(){

return library.size();

}

}

Collections of home theater components are stored as hashsets. As such, support is

provided to test the presense of a coponent in the library.

Definition of Home Theater Components. Java classes for the television,

amplifier and speaker home theater components implement the Component interface

specification. The abbreviated details for the Television class are as follows:

source code

package javaBackend;

public class Television implements Component {

private String [] input;

private String [] output;

private String name;

// Need to put this in some kind of data structure

private double width;

private double height;

private double weight;

private double thickness;

private int cost;

private int performance;

private double reliability;

54

// Construtor methods ...

public Television(String name){

this.name = name;

}

public Television(String name, String [] input, String [] output,

double width, double height, double weight,

double thickness, int cost, int failure,

int performance, double reliability){

this.name = name;

this.input = input;

this.output = output;

this.width = width;

this.height = height;

this.weight = weight;

this.cost = cost;

this.thickness = thickness;

this.performance = performance;

this.reliability = reliability;

}

public void setName(String name){

this.name = name;

}

public String getName(){

return name;

}

... details of code removed ...

}

Points to note:

1. Sony, LG, and Samsung Television design components are created.

2. Inputs and outputs are assigned to each design component.

3. Parameters are assigned to each design component.

Then, we insert each television object into the television library, thus devel-

oping the television library of design components for the home theater design.

55

Driver for Assembly of Component Libraries: The Driver class systematically

defines component options for each component type, inserts them into the libraries,

and creates comma separated variable represenations for each component type. As

a case in point, the abbreviated details for the definition of a single television object

and assembly into the component library is as follows:

source code

package javaBackend;

import java.util.ArrayList;

public class Driver {

public Television sonyTelevision, lgTelevision, samsungTelevision;

public Library tvLib, ampLib, speakerLib;

public Driver() {

System.out.println(" --- D e s i g n C o m p o n e n t s --- ");

// Create a new television

sonyTelevision = new Television("Sony Television");

String[] sonyTelevisionInput = { "AC Power", "HDMI",

"Video", "Audio-L",

"Audio-R", "Antenna/Cable",

"LAN", "USB" };

String[] sonyTelevisionOutput = { "Audio-L", "Audio-R", "Headphones" };

// Assign properties to the television object ...

sonyTelevision.setInput(sonyTelevisionInput);

sonyTelevision.setOutput(sonyTelevisionOutput);

// Print sony inputs and outputs ...

sonyTelevision.printInput();

sonyTelevision.printOutput();

// Add parameters to the Sony television ...

sonyTelevision.setWidth(50);

sonyTelevision.setHeight(30.4);

sonyTelevision.setThickness(1.6);

sonyTelevision.setWeight(44.5);

sonyTelevision.setCost(1200);

sonyTelevision.setPerformance(10);

56

sonyTelevision.setReliability(0.90);

... details of other televisions, amplifiers and speakers removed ...

// Make a HashSet Library for TVs, Speakers, Amps

Library<Television> tvLib = new Library<Television>();

tvLib.insert(sonyTelevision);

... details of code removed

}

}

Points to note:

1. The television library is created.

2. Sony, Samsung, and LG Television design components are inserted into the

television library.

Like the television design component, an amplifier and speaker library of

design components are developed in Java, as well as amplifier and speaker objects.

Then, like the television design component, each amplifier and speaker object is

inserted into its respective library. Thus, developing the amplifier and speaker

library of design components for the home theater design.

3.4.1 Modeling TV Components

Graphs of design components can be modeled with RDF and visualized with

PyDot. As described in section 1.3, the subject and object of RDF are represented

by a node – in this case, subject is the design component and object is the value

57

of predicate. Predicate of RDF, which is a directed edge from subject to object, is

the attribute of the design component. This, in turn, allows for the formulation of a

directed graph of components. Figure 3.7 models the RDF graph of LG television

using PyDot.

Television Component: This example illustrates the process of creating a RDF

model of the LG Television component in PyDot.

source code

import pydot

Create directed graph

graph = pydot.Dot(graph_type=’digraph’, rankdir=’LR’, ranksep=0.75)

Component

node_a = pydot.Node("LG Television")

Input

node_b = pydot.Node("Ac Power")

node_c = pydot.Node("HDMI")

node_d = pydot.Node("Video")

node_e = pydot.Node("Audio-L")

node_f = pydot.Node("Audio-R")

node_g = pydot.Node("Antenna/Cable")

node_h = pydot.Node("LAN")

node_i = pydot.Node("USB")

Output

node_j = pydot.Node("Audio-L")

node_k = pydot.Node("Audio-R")

node_l = pydot.Node("Headphones")

Parameters

node_m = pydot.Node("50.6")

node_n = pydot.Node("30.8")

node_o = pydot.Node("1300")

Add nodes to graph

Inputs

graph.add_node(node_a)

graph.add_node(node_b)

graph.add_node(node_c)

graph.add_node(node_d)

graph.add_node(node_e)

graph.add_node(node_f)

58

graph.add_node(node_g)

graph.add_node(node_h)

graph.add_node(node_i)

Outputs

graph.add_node(node_j)

graph.add_node(node_k)

graph.add_node(node_l)

Parameters

graph.add_node(node_m)

graph.add_node(node_n)

graph.add_node(node_o)

Add edges to graph

Inputs

graph.add_edge(pydot.Edge(node_a, node_b, label="Input[0]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_c, label="Input[1]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_d, label="Input[2]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_e, label="Input[3]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_f, label="Input[4]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_g, label="Input[5]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_h, label="Input[6]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_i, label="Input[7]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

Outputs

graph.add_edge(pydot.Edge(node_a, node_j, label="Output[0]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_k, label="Output[1]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_l, label="Output[2]", labelfontcolor="#009933",

fontsize="10.0", color="black"))

Parameters

graph.add_edge(pydot.Edge(node_a, node_m, label="Width", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_n, label="Height", labelfontcolor="#009933",

fontsize="10.0", color="black"))

graph.add_edge(pydot.Edge(node_a, node_o, label="Cost", labelfontcolor="#009933",

fontsize="10.0", color="black"))

Create Image File

graph.write_png(’lgTelevision.png’)

59

Points to note:

1. A directed graph is specified.

2. Nodes are created and added to the directed graph.

3. Edges are created between the nodes to develop relationships between each

node.

3.4.2 Modeling Amplifier and Speaker Components

Like the LG Television component in subsection 3.4.1, we undergo the process of

creating a RDF model of the Bose Amplifier and Polk Speaker in PyDot. These

generated RDF component graphs are illustrated in Figure 3.8 and 3.9 respectively.

60

Figure 3.7: Modeling the RDF graph of LG Television using PyDot.

61

Figure 3.8: Modeling the RDF graph of Bose Amplifier using PyDot.

62

Figure 3.9: Modeling the RDF graph of Polk Speaker using PyDot.

63

3.5 Transformation of Objects to RDF Graphs

Figure 3.10 illustrates the procedure employed in this study for transforming

Java object representations of the requirements and design components into RDF

graphs for the requirements and components.

Figure 3.10: Software transformation from Java objects to Python RDF graphs .

The process of assembling the RDF graphs of design components to model the

home theater system begins with developing a component interface in Java. The

component interface describes methods that all design components are to encompass.

Using Java, we create a television, amplifier, and speaker class that implement the

component interface. Each Java class includes methods as well as parameters that

describe the design component. In the Java driver class, we aim to create television

64

objects then add parameters to the television objects, and assign a value to each

parameter. As well, in the Java driver class, amplifier and speaker objects are also

created. Further, a Hashset library is created for television, amplifier, and speaker

to contain each design component object created in the driver class.

RDF structure is that of a Comma Separated Value (CSV) format [26].

Accordingly, subject and predicate is separated by a comma, as well predicate and

object is separated by a comma. We seek, in particular, to generate a CSV file in

Java for television, amplifier, and speaker. At first, we create a component CSV

class in Java. Then, we compose a file in the class, followed by writing to the file

for each television object within the television library. Specifically, we write to the

file, the name of the television object concatenated with a comma and a parameter

of television, concatenated with a comma and the value of the parameter. As well,

in the component CSV class, we write to the file for each amplifier and speaker

object within the amplifier and speaker library. Further, we generate a television,

amplifier, and speaker CSV file in the driver class.

Television CSV file: This example illustrates the process of creating a television

CSV file.

source code

package javaBackend;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

public class GenerateComponentCsv {

private File rdf;

65

private FileWriter cmp;

// Make csv file

public GenerateComponentCsv(String file){

rdf = new File(file);

}

private File getRdf(){

return rdf;

}

// Write to file for Tvs

public void writeToFileTelevision(Library<Television> lib){

// Check that the libary contains contents ...

if(lib == null){

System.out.print("Library is null");

System.exit(0);

}

try {

FileWriter tv = new FileWriter(getRdf());

for(Television i : lib.getLibrary()) {

tv.write(i.getName() + ",category," + "television" + "\n");

tv.write(i.getName() + ",cost," + i.getCost()+ "\n");

tv.write(i.getName() + ",performance," + i.getPerformance()+ "\n");

tv.write(i.getName() + ",reliability," + i.getReliability()+ "\n");

tv.write(i.getName() + ",width," + i.getWidth()+ "\n");

tv.write(i.getName() + ",height," + i.getHeight()+ "\n");

tv.write(i.getName() + ",thickness," + i.getThickness()+ "\n");

tv.write(i.getName() + ",weight," + i.getWeight()+ "\n");

for(int x = 0; x < i.getInput().length; x++){

tv.write(i.getName() + ",input"+ "," + i.getInput()[x] + "\n");

}

for(int x = 0; x < i.getOutput().length; x++){

tv.write(i.getName() + ",output"+ "," + i.getOutput()[x] + "\n");

}

}

tv.close();

} catch (IOException e) {

e.printStackTrace();

}

}

66

Points to note:

1. The GenerateComponentCsv class creates a CSV file.

2. The parameters of television design components are formatted into CSV.

3. The FileWriter tv object writes the television design components to a CSV file.

Figure 3.11 illustrates the structure of an Excel CSV file for a design compo-

nent.

Figure 3.11: Snapshot of the television CSV file in Excel.

The process of assembling the RDF graph of design requirements to model

the home theater system begins with developing a requirement class in Java. The

requirement class includes a constructor and methods as well as parameters that

67

describe the design requirement. In the Java driver class, we aim to create require-

ment objects using the requirement constructor formulated in the requirement class.

Further, an Arraylist is created to contain each design requirement object created

in the driver class.

We seek, in particular, to generate a CSV file in Java for requirements.

At first, we create a requirement CSV class in Java. Then, we compose a file in

the class, followed by writing to the file for each requirement object within the

requirement list. Specifically, we write to the file, the name of the requirement

object concatenated with a comma and a parameter of requirement, concatenated

with a comma and the value of the parameter. Further, we generate a requirement

CSV file in the driver class.

Requirement CSV file: This example illustrates the process of creating a require-

ment CSV file.

source code

package javaBackend;

package javaBackend;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.ArrayList;

public class GenerateRequirementCsv {

private File rdf;

private FileWriter cmp;

// Make csv file

public GenerateRequirementCsv(String file){

rdf = new File(file);

}

68

private File getRdf(){

return rdf;

}

// Write to file for Requirements

public void writeToFileRequirement(ArrayList<Requirement> list){

try {

FileWriter req = new FileWriter(getRdf());

int dependencyLength = 0;

for(Requirement i: list){

req.write(i.getName() + ",category," + "requirement" + "\n");

req.write(i.getName() + ",id," + i.getName()+ "\n");

req.write(i.getName() + ",title," + i.getTitle()+ "\n");

req.write(i.getName() + ",level," + i.getLevel()+ "\n");

req.write(i.getName() + ",derived by," + i.getDerivedBy()+ "\n");

if(i.getDependOn() != null){

dependencyLength= i.getDependOn().length;

for(int x = 0; x < dependencyLength; x++){

req.write(i.getName() + ",depends on"+"," + i.getDependOn()[x] + "\n");

}

}

}

req.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

Points to note:

1. The GenerateRequirementCsv class creates a CSV file.

2. The properties of the design requirements are formatted into CSV.

3. The FileWriter tv object writes the design requirements to a CSV file.

69

Figure 3.12 illustrates the structure of an Excel CSV file for a design require-

ment.

Figure 3.12: Snapshot of the requirement CSV file in Excel.

The collection and arrangement of RDFs form a RDF graph. RDF graphs are

useful to model systems. For instance, RDF graphs can model design components

of a system. Design components of a system are represented by each subject of the

RDF graph. Attributes of design components of a system are represented by each

subjects predicate of the RDF graph. Values of attributes of design components of

a system are represented by each predicates object of the RDF graph. As well, RDF

graphs can also model design requirements of a system. Further, RDF graphs can be

merged to form a RDF graph that models a system which detail design components

and design requirements.

The central concern is assemblying a RDF graph in Python. This is done

70

by calling the SimpleGraph function that store RDFs [26]. Here, we create a design

component RDF graph and load the television, amplifier, and speaker CSV files gen-

erated in Java to the Python RDF graph. As well, a design requirement RDF graph

is created and the requirement CSV file generated in Java is loaded to the Python

RDF graph. Then, we merge the design component and the design requirement

RDF graphs to produce a RDF graph, which models the home theater system.

Merged RDF Graph: This example illustrates the process of loading CSV files

into RDF graphs and then merging the graphs together.

source code

Home Theater System.py.

from simplegraph_chapter3 import SimpleGraph

*******R D F G R A P H S*******

Build component graph

componentRdf=SimpleGraph()

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileTelevision.csv’)

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileAmplifier.csv’)

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileSpeaker.csv’)

Build requirement graph

requirementRdf=SimpleGraph()

requirementRdf.load(’C:\Users\Queen\workspace\HomeTheatreSystem\graphfileRequirement.csv’)

#Merge Component and Requirement Graphs

mergegraph = SimpleGraph()

for sub, pred, obj in componentRdf.triples((None, None, None)):

mergegraph.add((sub, pred, obj))

for sub, pred, obj in requirementRdf.triples((None, None, None)):

mergegraph.add((sub, pred, obj))

Points to note:

71

1. The television, amplifier, and speaker CSV files are loaded into the component

RDF graph.

2. The requirement CSV file is loaded into the requirement RDF graph.

3. The component and requirement RDF graphs are merged, forming the merge-

graph of design components and design requirements.

3.6 Querying RDF Graphs

RDF graphs are queried with the intent of finding information within the

graph. When modeling systems using RDF graphs, querying the RDF graph results

in finding design components that satisfy design requirements. Essentially, querying

systems through the application of RDF graphs, aim at verifying and validating

system architecture.

Querying RDF graphs searches for subjects and objects that satisfy a RDF

pattern [26]. This process begins with a RDF pattern. The structure of a RDF

pattern is that of the assembly of RDF, discussed in section 3.2, yet different. The

subject and/or object of a RDF pattern is None. If only the subject of a RDF

pattern is None, then the RDF graph is queried to find subjects that are coupled

with the predicate and object specified within the RDF pattern. If only the object

of a RDF pattern is None, then the RDF graph is queried to find objects that are

coupled with the subject and predicate specified within the RDF pattern. If the

subject and object of a RDF pattern are None, then the RDF graph is queried to

72

find subjects and objects that are coupled with the predicate specified within the

RDF pattern. In addition, syntax such as ?x, ?y, or ?z can substitute None, when

querying RDF graphs [26].

Querying RDF graphs return subjects and objects that satisfy a RDF pattern

[26]. The returned subjects and objects can also be queried to retrieve further

information about the RDF graph. This is done by specifying another RDF pattern

following the initial RDF pattern. We seek, in particular, to model systems as RDF

graphs with intent to query the system to explore feasible design solutions.

Querying RDF Graph: This example illustrates the process of querying a tele-

vision component RDF graph.

source code

from simplegraph_chapter3 import SimpleGraph

Build tv component graph

tvComponentRdf=SimpleGraph()

tvComponentRdf.load(’C:\Users\Nassar\workspace\Thesis Code\graphfileTelevision.csv’)

#Query graph

print list(tvComponentRdf.triples((None, ’category’, ’television’)))

Points to note:

1. The SimpleGraph function creates a RDF graph.

2. The television design component CSV is loaded into the RDF graph.

3. The RDF graph is queried to find subjects which have predicate cateogry and

73

object television.

74

3.7 Inference Rules for Design

An inference is an inferred conclusion derived from factual information. We

aim to develop inference rules that further establish relationships between design

components and design requirements to model systems. We expect that relationships

between individual design components and relationships between individual design

requirements will be achieved by applying inference rules to RDF graphs.

An inference rule is a class in Python that contain two functions. The first

function of inference rule class is getqueries. The getqueries function queries RDF

graphs for the RDFs specified within the function, similar to querying RDF graphs

discussed in section 3.3. The second function of inference class is maketriples. Here,

the parameters returned from getqueries are passed to the maketriples function.

This, in turn, allows for the assembly of a RDF. Through the maketriples method,

we seek, in particular, to introduce an inferred relationship between subjects of

RDFs within the RDF graph. Accordingly, the developed inference rule class is

applied to the RDF graph, followed by querying the RDF graph [26].

Inference rules are useful to infer relationships of design requirements. This

is appropriate for modeling systems because inference rules establish an implicit

correlation. As well, inference rules can also be useful to infer relationships of design

components. Furthermore, inference rules are most valuable to infer relationships

between design requirements and design components. This is effective for modeling

systems because this particular inference rule generate feasible design solutions.

75

Inference Rule: This example illustrates the process of creating an inference rule

for connecting a television to an amplifier.

source code

InferenceRule.py.

class InferenceRule:

def getqueries(self):

return None

def maketriples(self,binding):

return self._maketriples(**binding)

Rule: television connects to amplifier

class televisionToAmplifier(InferenceRule):

def getqueries(self):

tvToAmp=[(’?x’,’category’,’television’),

(’?y’,’category’,’amplifier’)]

return [tvToAmp]

def _maketriples(self,x,y):

return [(x, ’connects to’, y)]

Home Theater System.py.

Apply Tv to Amp Rule to RDF Graph...

tvamp = televisionToAmplifier()

componentRdf.applyinference(tvamp)

Points to note:

1. The getqueries function searches for two RDF patterns.

2. The maketriples function creates a new RDF, which establish a relationship

between television and amplifier.

3. The developed inference rule is applied to the RDF graph.

76

Chapter 4

Synthesis of Pareto Optimal Design Alternatives

This chapter presents methodology, algorithms, and numerical experiments

for the automated synthesis of Pareto Optimal Design Alternatives from families of

potentially good design solutions.

4.1 Methodology and Definition

Engineering systems are typically designed to satisfy the needs of multiple

stakeholders. Each stakeholder will have: (1) A set of design concerns/functional

requirements, (2) Levels of performance that need to be met, and (3) A budget. The

challenge that we face is finding ways to systematically and efficiently find designs

that balance the attributes of economy, performance, reliability/quality, and use of

resources, subject to physical, regulatory, design and implementation constraints

imposed by the participating stakeholders and domains.

Purpose of a Trade Study. The purpose of a trade study is to examine the

relative value and sensitivity of attributes associated with the design’s measure of

effectiveness. This information is then used to guide decision making relating to the

selection and treatment of design alternatives. In some applications (e.g., design of

a building), multiple objectives are resolved and constraints are satisfied to find a

77

singular one-off design. However, in cases where a point customer does not exist

(e.g., customers for the purchase of electronic/computer equipment), objectives and

constraints are resolved and satisfied to find a family of good design solutions.

The so-called “sweet spot in design” occurs when improvements in one aspect

of system effectiveness can only occur when it is traded against decreases in one

or more other aspects of system effectiveness. Understanding the trades that a

particular design problem offers can be an exceedingly difficult problem – generally

speaking, more functionality usually means less economy (i.e., you can expect to pay

more for additional system functionality). More functionality can also mean slower

time-to-market (i.e., it takes time develop and test a new technology). Improved

performance usually means less economy (e.g., a system might cost more because

components with high-end performance are expensive). And shorter time-to-market

means less economy (e.g., due to increased costs in shipping). To determine which

combination of design options is best for a particular situation, designers need to

resolve conflicts by indicating their preferences. Instead of trying to compute a

single optimal solution, we begin the problem solving procedure by partitioning

the feasible design space into regions of high technical efficiency and regions of

inferior performance. The preferred design is one that is technically efficient (or

non-inferior). The inferior solutions are removed from further consideration.

Mathematical Definition of Non-Inferior Solutions. Given a set of feasible

solutions X, the set of non-inferior (or non-dominated) solutions is denoted S and

defined as follows:

78

S = x : x ∈ X, there exists no other x∗ ∈ X such that fq(x
∗) > fq(x) for

some q ∈ {1 · · ·p} and fk(x
∗) ≥ fk(x) for all k 6= q.

The plain English interpretation of this definition is as follows: Let S be the set of

solutions x for which we can demonstrate no better solutions exist. As one moves

from one non-dominated solution to another and one objective function improves,

then one or more of the other objective functions must decrease in value. Regard-

less of how the design objectives are prioritized, the non-dominated design solutions

(also called pareto optimal design solutions and/or efficient frontier solutions) will

lie along the boundary of the feasible domain.

4.2 Computation of Pareto-Optimal Design Alternativess

The step-by-step procedure for the computation of Pareto-Optimal design

alternatives is as follows:

Case 1: Minimize X-Axis and Minimize Y-Axis.

1. Consider all coordinate points of the scatter plot Pareto-Optimal and add the

points into a two-dimensional Pareto-Optimal data array. The first columm

will store objective values along the x- axis. The second columm will store

objective values along the y- axis.

2. Find the minimum coordinate point of the x-axis on the scatter plot.

3. Pop all coordinate points from the Pareto-Optimal array which are greater than

and equal to the y-axis value of the minimum coordinate point.

79

4. For coordinate points remaining in the Pareto-Optimal array with the same x-

axis value, the coordinate point with the minimum y-axis value should remain

and others must be popped from the Pareto-Optimal array.

5. For coordinate points remaining in the Pareto-Optimal array with the same y-

axis value, the coordinate point with the minimum x-axis value should remain

and others must be popped from the Pareto-Optimal array.

6. The remaining coordinate points in the Pareto-Optimal array are considered

Pareto-Optimal.

Case 2: Minimize X-Axis and Maximize Y-Axis.

1. Consider all coordinate points of the scatter plot Pareto-Optimal and add the

points into a Pareto-Optimal array.

2. Find the minimum coordinate point of the x-axis on the scatter plot.

3. Pop all coordinate points from the Pareto-Optimal array which are less than

and equal to the y-axis value of the minimum coordinate point.

4. For coordinate points remaining in the Pareto-Optimal array with the same x-

axis value, the coordinate point with the maximum y-axis value should remain

and others must be popped from the Pareto-Optimal array.

5. For coordinate points remaining in the Pareto-Optimal array with the same y-

axis value, the coordinate point with the minimum x-axis value should remain

and others must be popped from the Pareto-Optimal array.

80

6. The remaining coordinate points in the Pareto-Optimal array are considered

Pareto-Optimal.

Case 3: Maximize X-Axis and Maximize Y-Axis.

1. Consider all coordinate points of the scatter plot Pareto-Optimal and add the

points into a Pareto-Optimal array.

2. Find the maximum coordinate point of the x-axis on the scatter plot.

3. Pop all coordinate points from the Pareto-Optimal array which are less than

and equal to the y-axis value of the minimum coordinate point.

4. For coordinate points remaining in the Pareto-Optimal array with the same x-

axis value, the coordinate point with the maximum y-axis value should remain

and others must be popped from the Pareto-Optimal array.

5. For coordinate points remaining in the Pareto-Optimal array with the same y-

axis value, the coordinate point with the maximum x-axis value should remain

and others must be popped from the Pareto-Optimal array.

6. The remaining coordinate points in the Pareto-Optimal array are considered

Pareto-Optimal.

Case 4: Maximize X-Axis and Minimize Y-Axis.

1. Consider all coordinate points of the scatter plot Pareto-Optimal and add the

points into a Pareto-Optimal array.

81

2. Find the maximum coordinate point of the x-axis on the scatter plot.

3. Pop all coordinate points from the Pareto-Optimal array which are greater than

and equal to the y-axis value of the minimum coordinate point.

4. For coordinate points remaining in the Pareto-Optimal array with the same x-

axis value, the coordinate point with the minimum y-axis value should remain

and others must be popped from the Pareto-Optimal array.

5. For coordinate points remaining in the Pareto-Optimal array with the same y-

axis value, the coordinate point with the maximum x-axis value should remain

and others must be popped from the Pareto-Optimal array.

6. The remaining coordinate points in the Pareto-Optimal array are considered

Pareto-Optimal.

Implementation of Pareto Optimal Computations in Python: The following

code illustrates the process of finding the Pareto optimal point of a trade-off analysis

plot. Pareto optimal design alternatives can be computed for four cases;

1. Minimize both objectives of the trade-off analysis plot.

2. Minimize the x-axis objective, maximize the y-axis objective.

3. Minimize both the x- and y-axis objectives.

4. Maximize the x-axis objective and minimize the y-axis objective.

82

The Pareto-Optimal code is a structure of if-else statements used to find an array

of Pareto-Optimal point(s) of a graph. Each if statement include the procedures for

either minimizing or maximizing the x-axis and either minimizing or maximizing

the y-axis of a graph. First, the user provides both the x and y-axis objectives of a

graph in the form of an array. Then, the code prompts the user to input whether

the x-axis objective is minimized or maximized and whether the y-axis objective is

minimized or maximized. Next, the if-else statements are executed according to the

user input. As a result, a graph is shown illustrating the user’s provided x and y-axis

objectives, in addition to the computed Pareto-Optimal point(s) of the graph.

source code

import matplotlib.pyplot as plt

import numpy as np

from pylab import *

x_objective = []

y_objective = []

********** P A R E T O O P T I M A L **********

Prompt User

Ask user for the intent of objective 1 and store

input1 = int(raw_input("Is the x-axis objective min[0] or max[1] : "))

Ask user for the intent of objective 2 and store

input2 = int(raw_input("Is the y-axis objective min[0] or max[1] : "))

if input1 == 0 and input2 == 0:

Data = np.array((x_objective,y_objective))

points = zip(*Data)

temp = points[:]

temp holds all the points, lets call this Pareto

for t in range(0,len(points)):

x, y = zip(*temp)

minPairs = [temp[i] for i,a in enumerate(x) if a == min(x)]

returnPair = minPairs

83

if len(returnPair) == 1:

m,n = zip(*returnPair)

test_a = [temp[i] for i, b in enumerate(y) if b >= n]

popPairs = test_a

for i in popPairs:

if i == returnPair[0]:

popPairs.remove(i)

for i in popPairs:

temp.remove(i)

if len(temp) == 2:

break

if len(returnPair) > 1:

returnPair = returnPair

m,n = zip(*returnPair)

test_a = [returnPair[i] for i, b in enumerate(n) if b == min(n)]

popPairs = test_a

m,n = zip(*popPairs)

test_a1 = [temp[i] for i, b in enumerate(y) if b >= n]

popPairs_a1 = test_a1

for i in popPairs_a1:

if i == popPairs[0]:

popPairs_a1.remove(i)

for i in popPairs_a1:

temp.remove(i)

if len(temp) == 1:

break

x,y = zip(*temp)

space = {}

for i in set(y):

space[i] = y.count(i)

while y.count >1:

test_b = [temp[i] for i, c in enumerate(y) if y.count(c)>1]

popPairs_b = test_b

if len(popPairs_b) == 0:

test_b = [temp[i] for i, c in enumerate(x) if x.count(c)>1]

popPairs_b = test_b

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(b) if d == max(b)]

popPairs_b1 = test_b1

84

for i in popPairs_b1:

temp.remove(i)

break

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(a) if d == max(a)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

if len(popPairs_b) ==2:

break

x,y = zip(*temp)

break

break

elif input1 == 0 and input2 == 1:

Data = np.array((x_objective, y_objective))

points = zip(*Data)

temp = points[:]

temp holds all the points, lets call this Pareto

for t in range(0,len(points)):

x, y = zip(*temp)

minPairs = [temp[i] for i,a in enumerate(x) if a == min(x)]

returnPair = minPairs

if len(returnPair) == 1:

m,n = zip(*returnPair)

test_a = [temp[i] for i, b in enumerate(y) if b <= n]

popPairs = test_a

for i in popPairs:

if i == returnPair[0]:

popPairs.remove(i)

for i in popPairs:

temp.remove(i)

if len(temp) == 2:

break

if len(returnPair) > 1:

returnPair = returnPair

m,n = zip(*returnPair)

test_a = [returnPair[i] for i, b in enumerate(n) if b == max(n)]

popPairs = test_a

85

m,n = zip(*popPairs)

test_a1 = [temp[i] for i, b in enumerate(y) if b <= n]

popPairs_a1 = test_a1

for i in popPairs_a1:

if i == popPairs[0]:

popPairs_a1.remove(i)

for i in popPairs_a1:

temp.remove(i)

if len(temp) == 1:

break

x,y = zip(*temp)

space = {}

for i in set(y):

space[i] = y.count(i)

while y.count >1:

test_b = [temp[i] for i, c in enumerate(y) if y.count(c)>1]

popPairs_b = test_b

if len(popPairs_b) == 0:

test_b = [temp[i] for i, c in enumerate(x) if x.count(c)>1]

popPairs_b = test_b

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(b) if d == min(b)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

break

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(a) if d == max(a)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

if len(popPairs_b) ==2:

break

x,y = zip(*temp)

break

break

elif input1 == 1 and input2 == 1:

Data = np.array((x_objective,y_objective))

points = zip(*Data)

86

temp = points[:]

temp holds all the points, lets call this Pareto

for t in range(0,len(points)):

x, y = zip(*temp)

minPairs = [temp[i] for i,a in enumerate(x) if a == max(x)]

returnPair = minPairs

if len(returnPair) == 1:

m,n = zip(*returnPair)

test_a = [temp[i] for i, b in enumerate(y) if b <= n]

popPairs = test_a

for i in popPairs:

if i == returnPair[0]:

popPairs.remove(i)

for i in popPairs:

temp.remove(i)

if len(temp) == 2:

break

if len(returnPair) > 1:

returnPair = returnPair

m,n = zip(*returnPair)

test_a = [returnPair[i] for i, b in enumerate(n) if b == max(n)]

popPairs = test_a

m,n = zip(*popPairs)

test_a1 = [temp[i] for i, b in enumerate(y) if b <= n]

popPairs_a1 = test_a1

for i in popPairs_a1:

if i == popPairs[0]:

popPairs_a1.remove(i)

for i in popPairs_a1:

temp.remove(i)

if len(temp) == 1:

break

x,y = zip(*temp)

space = {}

for i in set(y):

space[i] = y.count(i)

while y.count >1:

test_b = [temp[i] for i, c in enumerate(y) if y.count(c)>1]

87

popPairs_b = test_b

if len(popPairs_b) == 0:

test_b = [temp[i] for i, c in enumerate(x) if x.count(c)>1]

popPairs_b = test_b

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(b) if d == min(b)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

break

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(a) if d == min(a)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

if len(popPairs_b) ==2:

break

x,y = zip(*temp)

break

break

elif input1 == 1 and input2 == 0:

Data = np.array((x_objective,y_objective))

points = zip(*Data)

temp = points[:]

temp holds all the points, lets call this Pareto

for t in range(0,len(points)):

x, y = zip(*temp)

minPairs = [temp[i] for i,a in enumerate(x) if a == max(x)]

returnPair = minPairs

if len(returnPair) == 1:

m,n = zip(*returnPair)

test_a = [temp[i] for i, b in enumerate(y) if b >= n]

popPairs = test_a

for i in popPairs:

if i == returnPair[0]:

popPairs.remove(i)

for i in popPairs:

temp.remove(i)

if len(temp) == 2:

88

break

if len(returnPair) > 1:

returnPair = returnPair

m,n = zip(*returnPair)

test_a = [returnPair[i] for i, b in enumerate(n) if b == min(n)]

popPairs = test_a

m,n = zip(*popPairs)

test_a1 = [temp[i] for i, b in enumerate(y) if b >= n]

popPairs_a1 = test_a1

for i in popPairs_a1:

if i == popPairs[0]:

popPairs_a1.remove(i)

for i in popPairs_a1:

temp.remove(i)

if len(temp) == 1:

break

x,y = zip(*temp)

space = {}

for i in set(y):

space[i] = y.count(i)

while y.count >1:

test_b = [temp[i] for i, c in enumerate(y) if y.count(c)>1]

popPairs_b = test_b

if len(popPairs_b) == 0:

test_b = [temp[i] for i, c in enumerate(x) if x.count(c)>1]

popPairs_b = test_b

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(b) if d == max(b)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

break

a,b = zip(*popPairs_b)

test_b1 = [popPairs_b[i] for i,d in enumerate(a) if d == min(a)]

popPairs_b1 = test_b1

for i in popPairs_b1:

temp.remove(i)

if len(popPairs_b) ==2:

break

89

x,y = zip(*temp)

break

break

else:

print("You failed to min or max either one or both objectives")

******* P L O T T R A D E - O F F A N A L Y S I S *******

AND

******* P A R E T O O P T I M A L *******

print ’’

print "========================="

print "Pareto Optimal Points"

print "========================="

print ’’

print "Pareto Point(s):",temp

if input1 == 0 and input2 == 0:

Min x-axis & Min y-axis

fig, (ax0) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax0.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax0.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax0.axis([min(x)-1, max(x)+1, min(y)-1, max(y)+1])

ax0.set_xlabel(’Objective 1’)

ax0.set_ylabel(’Objective 2’)

fig.suptitle(’Trade-off Analysis: Minimize Objective 1 & Minimize Objective 2’)

plt.tight_layout(pad=2)

plt.show()

elif input1 == 0 and input2 == 1:

Min x-axis & Max y-axis

fig, (ax1) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax1.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax1.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax1.axis([min(x)-1, max(x)+1, min(y)-1, max(y)+1])

ax1.set_xlabel(’Objective 1’)

ax1.set_ylabel(’Objective 2’)

fig.suptitle(’Trade-off Analysis: Minimize Objective 1 & Maximize Objective 2’)

plt.tight_layout(pad=2)

plt.show()

90

elif input1 == 1 and input2 == 1:

Max x-axis & Max y-axis

fig, (ax2) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax2.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax2.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax2.axis([min(x)-1, max(x)+1, min(y)-1, max(y)+1])

ax2.set_xlabel(’Objective 1’)

ax2.set_ylabel(’Objective 2’)

fig.suptitle(’Trade-off Analysis: Maximize Objective 1 & Maximize Objective 2’)

plt.tight_layout(pad=2)

plt.show()

elif input1 == 1 and input2 == 0:

Max x-axis & Min y-axis

fig, (ax3) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax3.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax3.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax3.axis([min(x)-1, max(x)+1, min(y)-1, max(y)+1])

ax3.set_xlabel(’Objective 1’)

ax3.set_ylabel(’Objective 2’)

fig.suptitle(’Trade-off Analysis: Maximize Objective 1 & Minimize Objective 2’)

plt.tight_layout(pad=2)

plt.show()

print ""

print ""

print "========================= Finished ========================="

print ""

In this script of Python code, all four cases are handled. If else statements are used

to find the minimum and maximum of the objectives.

91

4.3 Trade-Space Visualization with Python

A Graphical User Interface (GUI) is an application that allows the user to

interact with the software environment. Python GUI is useful to display valuable

information developed within Python classes.

Python GUI is appropriate for modeling systems to permit the user to

visually interact with the design requirements and design components of the system.

We seek, in particular, to develop a Python GUI that visualizes the trade-space of

feasible design solutions.

The trade-space visualization of the Python GUI illustrates three interactive

trade-off plots for each feasible system design combination generated. The first plot

displays the trade-off analysis of cost verse performance. The second plot displays

the trade-off analysis of cost verse reliability. The third plot displays the trade-off

analysis of performance verse reliability. There are three criteria, cost, performance,

and reliability, which each feasible system design combination is evaluated against.

Cost is calculated by summing the cost of individual design components. For the

purpose of this project, performance is calculated by summing the performance of

individual design components. Assuming the design components are connected in

series, reliability is calculated by multiplying the reliability of each design compo-

nent.

92

4.4 Numerical Experiments

The Python code for computing sets of Pareto-Optimal design solutions was

exercised by computing design solutions for two test cases:

Test Shape A: Square

x_objective = [5,5,5,6,6,7,7,7]

y_objective = [5,6,7,5,7,5,6,7]

Test Shape B: Diamond

x_objective = [1,3,3,5,5,7,7,9]

y_objective = [5,7,3,9,1,7,3,5]

The results for Test Shape A are shown in Figures 4.1 - 4.4. The results for Test

Shape B are shown in Figures 4.5 - 4.8. In each case the Pareto-Optimal design

points are displayed as an enlarged two-dimensional diamond.

93

Figure 4.1: Test shape A trade-off analysis GUI of minimizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal point.

Figure 4.2: Test shape A rade-off analysis GUI of minimizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal point.

94

Figure 4.3: Test shape A trade-off analysis GUI of maximizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal point.

Figure 4.4: Test shape A trade-off analysis GUI of maximizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal point.

95

Figure 4.5: Test shape B trade-off analysis GUI of minimizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal points.

Figure 4.6: Test shape B rade-off analysis GUI of minimizing Objective 1 and max-
imizing Objective 2 with starred Pareto optimal points.

96

Figure 4.7: Test shape B trade-off analysis GUI of maximizing Objective 1 and
maximizing Objective 2 with starred Pareto optimal points.

Figure 4.8: Test shape B trade-off analysis GUI of maximizing Objective 1 and
minimizing Objective 2 with starred Pareto optimal points.

97

Chapter 5

Home Theater Design and TradeOff Analysis

5.1 Problem Statement and Solution Procedure

This chapter describes the computational procedure and results for design

synthesis and trade-space analysis of the Home Theater Design Problem. The left-

hand side of Figure 5.1 summarizes the sequence of inference rule evaluations that

will generate ensembles of feasible design solutions. The right-hand side of Figure

5.1 summarizes the three types of trades that will be examined in this study. Figure

5.2 illustrates the level and dependencies of each requirement of the home theater

design.

We seek a computationally efficient procedure for the synthesis of design

solutions by casting the problem as a sequence of inferences. Inference rules for

system-level development will establish premissable relationships between design

components as well as design components and design requirements. Each design

requirement will be translated into a Python inference rule according to the require-

ment description, level, and dependencies among requirements.

Solution Procedure. The step-by-step procedure for synthesizing potentially good

design solutions and assessing their performance, reliability and cost is as follows:

1. Assemble the graph model of the requirements from a CSV file of requirements

98

Figure 5.1: Flowchart for home theater design and tradeoff analysis.

Figure 5.2: Requirement Hierarchy.

99

data.

2. Assemble the component graph by reading in CSV files for the television,

amplifier and speakers.

3. Define and apply the System-Level Architecture Connectivity Rules to the

component graph: TVtoAmp Rule and AmptoSpeaker Rule.

4. Define and apply the Component Compatibility Rules to the component graph:

TV/Amp Compatibility Rule and Amp/Speaker Compatibility Rule

5. Merge the component and requirement graphs

6. Define and apply the Feasible System Configuration Rule.

7. Define and verify the Level 3 Requirements Rules: Req15 Rule, Req14 Rule,

Req13 Rule, Req12 Rule, Req11 Rule, Req10 Rule, Req9 Rule, and and Req8

Rule.

8. Define and verify the Level 2 Requirements Rules: Req7 Rule, Req6 Rule, Req5

Rule, Req4 Rule, and Req3 Rule.

9. Define and verify the Level 1 Requirements Rules: Req2 Rule and Req1 Rule.

10. Define and apply the Feasible System Design Rule.

11. Retrieve all of the Feasible Design Combinations from the inferred model.

12. Create Trade-off Analysis Plots: Performance vs Cost, Reliability vs Cost and

Performance vs Reliability.

100

The feasible system configurations (see Step 6) rule identifies combinations of am-

plifier, speaker and television components that are compatible, and match the ar-

chitectural requirements described in Chapter 2. The feasible system design rule

(see step 10) prunes the list system cofigurations by removing all combinations of

components that fail one or more of the Level 3 requirements.

5.2 Initializing the Design Problem

The home theater design problem is initialized once the requirement and

components graphs are assembled. The requirement CSV file is loaded into the

SimpleGraph function, which we have identified as the requirements model graph.

source code

GUI and Trade-Space Visualization.py.

Build the requirements model graph ...

requirementRdf=SimpleGraph()

requirementRdf.load(’C:\Users\Queen\workspace\HomeTheatreSystem\

graphfileRequirement.csv’)

Build the design components graph ...

componentRdf=SimpleGraph()

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileTelevision.csv’)

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileAmplifier.csv’)

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileSpeaker.csv’)

The requirements model graph has 44 unique vertices and 130 edges. The television,

amplifier, and speaker CSV files are loaded into the SimpleGraph function, which

we have identified as the design components graph. The design components graph

101

has 57 unique vertices and 115 edges. The following script of Python code initializes

the design problem:

5.3 System-Level Architecture

The system-level architecture rules declare that television components can

only connect to amplifiers and amplifiers can only connect to speakers. The following

script of Python code establishes the first rule:

source code

InferenceRule.py.

Rule: television connects to amplifier

class televisionToAmplifier(InferenceRule):

def getqueries(self):

tvToAmp=[(’?x’,’category’,’television’),

(’?y’,’category’,’amplifier’)]

return [tvToAmp]

def _maketriples(self,x,y):

return [(x, ’connects to’, y)]

First, the getqueries function searches for two RDF patterns, first with predicate

category and object television, second with predicate category and object amplifier.

Then, the maketriples function creates a new RDF, with subject television, predicate

connects to, and object amplifier. The second connectivity rule is implemented in

exactly the same way, except we test for,

ampToSpeaker=[(’?x’,’category’,’amplifier’), (’?y’,’category’,’speaker’)]

102

Solution Procedure: The fragment of Python code:

source code

tvamp = televisionToAmplifier()

ampspk = amplifierToSpeaker()

componentRDF.applyinference(tvamp)

componentRDF.applyinference(ampspk)

applies the televisionToAmplifier() and amplifierToSpeaker() inference rules to the

design components graph of design component properties.

Results: The following script of Python code queries the design components graph,

in search of new relationships:

source code

Query the design components graph for system-level architecture relationships ...

print "**"

print " Find which components ’z’ connect to the Lg Television "

print "**"

print ""

print componentRdf.query([(’Lg Television’,’connects to’,’?z’)])

print ""

print "**"

print " Find which components ’z’ connect to the Bose Amplifier "

print "**"

print ""

print componentRdf.query([(’Bose Amplifier’,’connects to’,’?z’)])

... Output of query

**

Find which components ’z’ connect to the Lg Television

**

[{’z’: u’Klipsch Amplifier’}, {’z’: u’Bose Amplifier’}, {’z’: u’Polk Amplifier’}]

103

**

Find which components ’z’ connect to the Bose Amplifier

**

[{’z’: u’Klipsch Speaker’}, {’z’: u’Bose Speaker’}, {’z’: u’Polk Speaker’}]

After applying the system-level architecture rules to the design components graph,

the graph now has 57 unique vertices and 133 edges. The size of the graph in terms

of the number of vertices remained the same. However, the order of the graph in

terms of the number of edges has increase by a factor of 18 new relationships.

5.4 Synthesis of Feasible System Configurations

The component compatibility rules establish whether or not two differ-

ent component types are compatible based upon the outputs of the first matched

against the inputs of the second. For the synthesis of home theater design solutions,

amplifier-to-television and amplifier-to-speaker compatibility are required.

Amplifier-to-Television Compatibility Rule: This rule establishes the condi-

tions for compatibility of inputs and outputs between the television and amplifier

components.

source code

InferenceRule.py.

For Television & Amplifier to be compatible,

Amplifier inputs are compatible with Television outputs

class Television_Amplifier_Compatibility(InferenceRule):

def getqueries(self):

Tv_Amp_Compatibility =[(’?x’,’output’,’?z1’),

104

(’?x’,’category’,’television’),

(’?y’,’input’,’?z2’),

(’?y’,’category’,’amplifier’)]

return [Tv_Amp_Compatibility]

def _maketriples(self,x,y,z1,z2):

if z1 == z2:

return [(x, ’compatible with’,y)]

else:

return[]

The getqueries function assembles a search based upon four RDF patterns shown in

the script of Python code. Then, the maketriples function tests for compability of

input and output relations in the television and amplifier components. When the

test evaluates to true, a new RDF statement is created declaring that telvision x is

compatible with amplifier y.

Amplifier-to-Speaker Compatibility Rule: The amplifier-to-speaker compata-

bility rule declares that if all the outputs of an amplifier are consistent with all the

inputs of the speaker design component, then the two components are compatible.

In the fragment of Python code:

source code

InferenceRule.py.

For Amplifier & Speaker to be compatible,

Speaker inputs are compatible with Amplifier outputs

class Amplifier_Speaker_Compatibility(InferenceRule):

def getqueries(self):

Amp_Speaker_Compatibility=[(’?x’,’connects to’,’?y’),

(’?x’,’category’,’amplifier’),

(’?x’,’output’,’?z1’),

(’?x’,’power handling’,’?m1’),

(’?y’,’category’,’speaker’),

(’?y’,’input’,’?z2’),

105

(’?y’,’power handling’,’?m2’)]

return [Amp_Speaker_Compatibility]

def _maketriples(self,x,y,z1,z2, m1,m2):

list = m2[:]

if z1 == z2 and int(m1) in range(int (list)):

return [(x, ’compatible with’,y)]

else:

return[]

amplifier component x will be compatible with speaker component y when the out-

puts of the amplifier are equivalent to the inputs of the speaker, and the power

handling value of amplifier is within the speaker power handling range.

Solution Procedure: The fragment of Python code:

source code

Apply Component Compatibility Rules ...

tvampCompat = Television_Amplifier_Compatibility()

ampspeakerCompat = Amplifier_Speaker_Compatibility()

componentRdf.applyinference(tvampCompat)

componentRdf.applyinference(ampspeakerCompat)

applies the Television Amplifier Compatibility() and Amplifier Speaker Compatibility()

inference rules to the design components graph of design component properties.

Results: The following script of Python code queries the design components graph,

in search of new relationships:

source code

106

Query the design component graph for compatibility relationships ...

print "**"

print " Find which components ’z’ are compatible with the Lg Television "

print "**"

print ""

print componentRdf.query([(’Lg Television’,’compatible with’,’?z’)])

print ""

print "**"

print " Find which components ’z’ are compatible with the Bose Amplifier "

print "**"

print ""

print componentRdf.query([(’Bose Amplifier’,’compatible with’,’?z’)])

print ""

... Output of query

**

Find which components ’z’ are compatible with the Lg Television

**

[{’z’: u’Klipsch Amplifier’}, {’z’: u’Bose Amplifier’}, {’z’: u’Polk Amplifier’}]

**

Find which components ’z’ are compatible with the Bose Amplifier

**

[{’z’: u’Bose Speaker’}, {’z’: u’Polk Speaker’}]

After the compatibility rules have been applied, the design components graph has 57

unique vertices and 148 edges. Notice that these transformations leave the number of

graph vertices unchanged. However, 15 new edges are added to the graph structure.

Figure 5.3 illustrates the design component graph.

107

Figure 5.3: Modeling the design component RDF graph using PyDot.

Merging Graphs. The requirements model and design components graphs are

merged. The Python code is as follows:

source code

Merge Design Components and Requirements Model Graphs ...

mergegraph = SimpleGraph()

for sub, pred, obj in requirementRdf.triples((None, None, None)):

mergegraph.add((sub, pred, obj))

for sub, pred, obj in componentRdf.triples((None, None, None)):

108

mergegraph.add((sub, pred, obj))

Results: The merged graph has 99 unique vertices and 278 edges. The number of

vertices for the merged graph is the summation of the unique requirements model

and design components graph vertices. The number of edges for the merged graph

is the summation of the requirements model and design components graph edges.

Synthesis of Feasible System Configurations. The feasible system configu-

rations rule identifies permutations of compatible amplifier, television and speaker

components, and for each compatible arrangement, computes and prints the total

system cost. The Python code is as follows:

source code

InferenceRule.py.

class feasibleSystemConfigurations(InferenceRule):

def getqueries(self):

System=[(’?x’,’connects to’,’?y’),

(’?x’,’cost’,’?x1’),

(’?y’,’compatible with’,’?z’),

(’?y’,’cost’,’?y1’),

(’?z’,’category’,’speaker’),

(’?z’,’cost’,’?z1’)]

return [System]

def _maketriples(self,x,y,z,x1,y1,z1):

global counter

count = counter

counter = counter+1

combo = [[] for i in range(20)]

combo[counter].append(x)

combo[counter].append(y)

combo[counter].append(z)

total_cost = int(x1[0:])+int(y1[0:])+int(z1[0:])

print ’System Design’, counter, ’: ’, combo[counter]

109

print ’System Design Cost = $’, total_cost

print ’ ’

return []

It is important to notice that this rule merely identifies sets of compatible compo-

nents and makes no reference to the requirements.

Solution Procedure. The fragment of Python code:

source code

Apply Feasible System Configurations Rule...

feasibleSystemConfigurations = feasibleSystemConfigurations()

mergegraph.applyinference(feasibleSystemConfigurations)

The step-by-step procedure for synthesizing feasible system configurations and as-

sessing their cost is as follows:

1. Assemble a search through the getqueries function based upon six RDF patterns.

a. Query the graph to find sets of two components that can be connected. This

query is based on the connectivity Rules.

(’?x’,’connects to’,?y’)

b. Query the graph to find the assigned cost of the first component of the sets of

two components, returned from the connectivity query.

110

(’?x’,’cost’,?x1’)

c. Query the graph to find components that are compatible with the second com-

ponent of the sets of two components, returned from the connectivity query.

In fact, this query is based on the Compatibility Rules.

(’?y’,’compatible with’,?z’)

d. Query the graph to find the assigned cost of the second component of the sets

of two components, returned from the connectivity query.

(’?y’,’cost’,?y1’)

e. Query the graph to ensure that the third component, which is the compatible

component of the second component returned from the connectivity query, is

indeed a speaker component.

(’?z’,’category’,’speaker’)

f. Query the graph to find the assigned cost of the third component.

(’?z’,’cost’,?z1’)

2. Create an array through the maketriples function and append each system

combination of components as a result from the getqueries function to the

array.

111

3. Calculate the cost of each system combination by summing the cost of each

component.

Results: There exist eighteen compatible system configurations, each one contain-

ing a television, an amplifier, and speakers.

source code

::::: C O M P A T I B L E S Y S T E M D E S I G N S :::::

System Design 1 : [u’Lg Television’, u’Bose Amplifier’, u’Polk Speaker’]

System Design Cost = $ 2000

System Design 2 : [u’Lg Television’, u’Bose Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1928

System Design 3 : [u’Samsung Television’, u’Bose Amplifier’, u’Polk Speaker’]

System Design Cost = $ 2350

System Design 4 : [u’Samsung Television’, u’Bose Amplifier’, u’Bose Speaker’]

System Design Cost = $ 2278

System Design 5 : [u’Sony Television’, u’Bose Amplifier’, u’Polk Speaker’]

System Design Cost = $ 1900

System Design 6 : [u’Sony Television’, u’Bose Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1828

System Design 7 : [u’Lg Television’, u’Klipsch Amplifier’, u’Klipsch Speaker’]

System Design Cost = $ 1970

System Design 8 : [u’Lg Television’, u’Klipsch Amplifier’, u’Polk Speaker’]

System Design Cost = $ 2070

System Design 9 : [u’Lg Television’, u’Klipsch Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1998

System Design 10 : [u’Samsung Television’, u’Klipsch Amplifier’, u’Klipsch Speaker’]

System Design Cost = $ 2320

System Design 11 : [u’Samsung Television’, u’Klipsch Amplifier’, u’Polk Speaker’]

System Design Cost = $ 2420

System Design 12 : [u’Samsung Television’, u’Klipsch Amplifier’, u’Bose Speaker’]

System Design Cost = $ 2348

System Design 13 : [u’Sony Television’, u’Klipsch Amplifier’, u’Klipsch Speaker’]

112

System Design Cost = $ 1870

System Design 14 : [u’Sony Television’, u’Klipsch Amplifier’, u’Polk Speaker’]

System Design Cost = $ 1970

System Design 15 : [u’Sony Television’, u’Klipsch Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1898

System Design 16 : [u’Lg Television’, u’Polk Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1978

System Design 17 : [u’Samsung Television’, u’Polk Amplifier’, u’Bose Speaker’]

System Design Cost = $ 2328

System Design 18 : [u’Sony Television’, u’Polk Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1878

Compatible component pairs are compatible design components which do not neces-

sarily satisfy all design requirements. The least expensive (potentially good) cofig-

uration costs USD $1,828; it consists of a Sony television, Bose amplifier, and Bose

speakers. The most expensive configuration costs USD $2,420, and consists of a

Samsung television, a Klipsch amplifier, and a Polk speaker.

5.5 Quantitative Evaluation of Requirements

The quantitative evaluation of requirements involves development of infer-

ence rules for evaluation of the level 3, level 2 and level 1 requirements, followed by

their application to the merged RDF graph of requirements and design components.

Level 3 Requirements. Inference rules for the Level 3 component-level require-

ments are derived directly from the requirement description. They evaluate one or

more inequality constraints and create new attribute relationships when the con-

113

straints evaluate to true. Consider, for example, the inference rule for quantitative

evaluation of Requirement 15.

source code

InferenceRule.py.

class InferenceRule:

def getqueries(self):

return None

def maketriples(self,binding):

return self._maketriples(**binding)

Rule: Requirement 15

class Req15(InferenceRule):

def getqueries(self):

setReq15 =[(’?x’,’id’,’Requirement 15’),

(’?x’,’category’,’requirement’),

(’?y’,’power handling’,’?z’),

(’?y’,’category’,’speaker’)]

return [setReq15]

def _maketriples(self,x,y,z):

list = z[:]

if int (149) in range(int (list)):

return [(y,’satisfy’, x)] + [(x,’status’, ’satisfied’)]

else:

return []

The getqueries function searches the merged requirements graph for RDF triples

having a requirements identification of Requirement 15, and a speaker with power

handling parameters. When 150 watts is within the power handling range of a

speaker, two new RDF statements are created: (1) Amplifier component “y” satisfies

requirement 15, and (2) Requirements 15 status is “satisfied.”

Dedicated requirements evaluation functions have also been developed for

Requirements 8 through 14. Functions for Requirements 12, 13 and 14 evaluate

114

constraints associated with cost of the amplifier, speaker and television components.

Similarly, functions for Requirements 8 through 11 evaluate constraints relating to

the weight and acceptable dimensions of the flatscreen television.

Level 2 Requirements. Next, we develop inference rules for the Level 2 require-

ments that serve the purpose of a detailed agreement between the customer and

supplier. Satisfaction of the Level 2 inference rules occurs through the satisfaction

of lower-level (Level 3) dependency requirements. For example, the fragments of

Python code:

source code

InferenceRule.py.

class InferenceRule:

def getqueries(self):

return None

def maketriples(self,binding):

return self._maketriples(**binding)

Rule: Requirement 7

class Req6(InferenceRule):

def getqueries(self):

setReq7 = [(’?x’,’id’,’Requirement 7’),

(’?x’,’depends on’,’?y’),

(’?y’,’category’,’requirement’),

(’?y’,’status’,’?z’)]

return [setReq7]

def _maketriples(self,x,y,z):

if z == ’satisfied’:

return[(x,’status’, ’satisfied’)]

else:

return[(x,’status’, ’unsatisfied’)]

determines whether or not Requirement 7 is satisfied. Level 2 requirements will

115

be satisfied if and only if all of the lower-level requirements are satisfied. Identical

functions have been written for the evaluation of Requirements 3 through 6.

Level 1 Requirements. Last, we develop inference rules for the evaluation of Re-

quirements 1 and 2, the initial requirements. Satisfaction of the Level 1 requirements

occurs indirectly through the satisfaction of the lower level (Level 2) requirements.

The strategy for evaluating a requirements is identical to the Level 2 requirements,

e.g., setReq2 = [(’?x’,’id’,’Requirement 2’) , (’?x’,’depends on’,’?y’)

, (’?y’,’category’,’requirement’) , (’?y’,’status’,’?z’)].

Solution Procedure: The fragment of Python code:

source code

Apply Level 3 Requirements Rules ...

requirement15 = Req15()

mergegraph.applyinference(requirement15)

requirement14 = Req14()

mergegraph.applyinference(requirement14)

requirement13 = Req13()

mergegraph.applyinference(requirement13)

requirement12 = Req12()

mergegraph.applyinference(requirement12)

requirement11 = Req11()

mergegraph.applyinference(requirement11)

requirement10 = Req10()

mergegraph.applyinference(requirement10)

requirement9 = Req9()

mergegraph.applyinference(requirement9)

requirement8 = Req8()

mergegraph.applyinference(requirement8)

Apply Level 2 Requirements Rules ...

requirement7 = Req7()

mergegraph.applyinference(requirement7)

requirement6 = Req6()

mergegraph.applyinference(requirement6)

requirement5 = Req5()

mergegraph.applyinference(requirement5)

requirement4 = Req4()

116

mergegraph.applyinference(requirement4)

requirement3 = Req3()

mergegraph.applyinference(requirement3)

Apply Level 1 Requirements Rules ...

requirement2 = Req2()

mergegraph.applyinference(requirement2)

requirement1 = Req1()

mergegraph.applyinference(requirement1)

applies all the level 3, level 2, and level 1 requirement inference rules to the merged

graph of requirements and design component properties.

Results: After the inference rules for the level 3 requirements have been applied,

the merged graph has 100 unique vertices and 308 edges While only one new satisfied

vertex is added to the graph, 30 new edge relationships are added. After applying

the level 2 requirement inference rules to the merged graph, the graph has 100

unique vertices and 319 edges. The graph size remains unchanged and 11 new edge

relationships are added. Finally, application of the level 1 inference rules transforms

the merged graph to 100 unique vertices and 321 edges (i.e., only two new edges are

added).

5.6 Synthesis of System-Level Design Alternatives

The system design rule establishes relationships between the design compo-

nents and the design requirements. The rule declares that a home theater system

design can only be comprised of compatible design components which satisfy all

117

design requirements, and is implemented by the script of Python code:

source code

InferenceRule.py.

class systemDesign(InferenceRule):

def getqueries(self):

sysDesReq = [(’?x’,’connects to’,’?y’),

(’?x’,’category’,’television’),

(’?x’,’cost’,’?x1’),

(’?x’,’performance’,’?xp’),

(’?x’,’reliability’,’?xr’),

(’?x’,’satisfy’,’Requirement 12’),

(’?x’,’satisfy’,’Requirement 11’),

(’?x’,’satisfy’,’Requirement 10’),

(’?x’,’satisfy’,’Requirement 9’),

(’?x’,’satisfy’,’Requirement 8’),

(’?y’,’compatible with’,’?z’),

(’?y’,’category’,’amplifier’),

(’?y’,’cost’,’?y1’),

(’?y’,’performance’,’?yp’),

(’?y’,’reliability’,’?yr’),

(’?y’,’satisfy’,’Requirement 13’),

(’?y’,’satisfy’,’Requirement 7’),

(’?z’,’category’,’speaker’),

(’?z’,’cost’,’?z1’),

(’?z’,’performance’,’?zp’),

(’?z’,’reliability’,’?zr’),

(’?z’,’satisfy’,’Requirement 15’),

(’?z’,’satisfy’,’Requirement 14’),

(’?z’,’satisfy’,’Requirement 7’)]

return [sysDesReq]

def _maketriples(self,x,y,z,x1,y1,z1,xp,yp,zp,xr,yr,zr):

global sysCounter

count = sysCounter

sysCounter= sysCounter+1

comb = []

comb.append(x)

comb.append(y)

comb.append(z)

combo = [[] for i in range(20)]

combo[sysCounter].append(x)

combo[sysCounter].append(y)

combo[sysCounter].append(z)

total_performance = int(xp)+int(yp)+int(zp)

118

comb.append(total_performance)

total_reliability = float(xr)*float(yr)*float(zr)

comb.append(total_reliability)

total_cost = int(x1[0:])+int(y1[0:])+int(z1[0:])

if total_cost <= int(2000):

comb.append(total_cost)

all_comb.append(comb)

print ’System Design’, sysCounter, ’: ’, combo[sysCounter]

print ’System Design Cost = $’, total_cost

print ’System Design Performance = ’, total_performance

print ’System Design Reliability = ’, total_reliability

print ’ ’

return []

sysCounter = sysCounter -1

return []

The maketriples function assembles and prints sets of compatible television, ampli-

fier, and speaker components that also satisfy the design requirements, along with

the measures of effectiveness: cost, performance, and reliability. The total cost com-

putation is easy – we sum the cost of the participating design components. System

performance is computed by summing the performance level of each design compo-

nent. To compute the system-level reliability we assume that the components are

connected in a series – hence the system-level reliability is simply the product of the

component reliabilities.

Solution Procedure: The following (abbreviated) script of Python code illus-

trates the process of applying inference rules for the merged graph of home theater

requirements:

source code

119

Apply System Design Rule...

systemDesign = systemDesign()

mergegraph.applyinference(systemDesign)

In this procedure, each design requirement inference-rule function is assigned to an

object, and then the design requirement inference-rule function is applied to the

merged requirements graph.

Results: System-level designs are compatible design components which satisfy all

design requirements. As illustrated in the script of program output below, there

exist nine system-level designs.

source code

::::: S Y S T E M - L E V E L D E S I G N S :::::

System Design 1 : [u’Lg Television’, u’Bose Amplifier’, u’Polk Speaker’]

System Design Cost = $ 2000

System Design Performance = 23

System Design Reliability = 0.448

System Design 2 : [u’Lg Television’, u’Bose Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1928

System Design Performance = 25

System Design Reliability = 0.504

System Design 3 : [u’Sony Television’, u’Bose Amplifier’, u’Polk Speaker’]

System Design Cost = $ 1900

System Design Performance = 28

System Design Reliability = 0.576

System Design 4 : [u’Sony Television’, u’Bose Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1828

System Design Performance = 30

System Design Reliability = 0.648

System Design 5 : [u’Lg Television’, u’Klipsch Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1998

System Design Performance = 20

System Design Reliability = 0.441

120

System Design 6 : [u’Sony Television’, u’Klipsch Amplifier’, u’Polk Speaker’]

System Design Cost = $ 1970

System Design Performance = 23

System Design Reliability = 0.504

System Design 7 : [u’Sony Television’, u’Klipsch Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1898

System Design Performance = 25

System Design Reliability = 0.567

System Design 8 : [u’Lg Television’, u’Polk Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1978

System Design Performance = 23

System Design Reliability = 0.567

System Design 9 : [u’Sony Television’, u’Polk Amplifier’, u’Bose Speaker’]

System Design Cost = $ 1878

System Design Performance = 28

System Design Reliability = 0.729

The highest performing system-level design has a value of 30 with an associated

cost of USD $1,828 and a reliability of 0.648. This system-level design includes a

Sony television, Bose amplifier, and a Bose speaker. The most reliable system-level

design has a value of 0.729 with an associated cost of USD $1,878 and a performance

of 28. This system-level design includes a Sony television, Polk amplifier, and a

Bose speaker. The least expensive system-level design cost USD $1,828 with an

associated performance of 30 and a reliability of 0.648. This system-level design

includes a Sony television, Bose amplifier, and a Bose speaker. A final observation

is that the system-level design which has the highest performance level is also the

least expensive. The tentative conclusion is as follows: the best system-level design

will include a Sony television, Bose amplifier, and a Bose speaker.

121

5.7 Trade-Space Evaluation and Exploration

The results of applying connectivity and compatibility inference rules, as

discussed in section 5.3, have revealed the system-level design alternatives of the

home theater system. We aim to explore the best system-level design through a

trade-space evaluation.

The trade-space evaluation will be based on three criteria: cost, perfor-

mance, and reliability. First, we evaluate each system-level design against cost verse

performance. Then, we find the Pareto optimal point of cost verse performance for

minimizing cost and maximizing performance. Next, we evaluate each system-level

design against cost verse reliability. As well, we find the Pareto optimal point of

cost verse reliability for for minimizing cost and maximizing performance. Last,

we evaluate each system-level design against performance verse reliability. As well,

we find the Pareto optimal point of performance verse reliability for maximizing

performance and maximizing reliability.

The acquired Pareto optimal points of each trade-space evaluation facilitate

in helping us select the best system-level design according to our desirable criteria.

When evaluating each system-level design against cost verse performance, we prefer

to minimize cost and maximize performance. For that reason, the system-level

design which include Sony television, Bose amplifier, and Bose speaker is the best

home theater system. When evaluating each system-level design against cost verse

reliability, we prefer to minimize cost and maximize reliability. For that reason,

122

Figure 5.4: Trade-off analysis GUI of minimizing cost and maximizing performance
with a starred Pareto optimal point.

Figure 5.5: Trade-off analysis GUI of minimizing cost and maximizing reliability
with a starred Pareto optimal point.

123

Figure 5.6: Trade-off analysis GUI of maximizing reliability and maximizing perfor-
mance with a starred Pareto optimal point.

the system-level designs which include Sony television, Bose amplifier, and Bose

speaker and Sony television, Polk amplifier, and Bose speaker are the best home

theater systems. When evaluating each system-level design against performance

verse reliability, we prefer to maximize performance and maximize reliability. For

that reason, the system-level designs which include Sony television, Bose amplifier,

and Bose speaker and Sony television, Polk amplifier, and Bose speaker are the best

home theater system. As a result, Sony television, Bose amplifier, and Bose speaker

is the best overall home theater design.

124

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have discovered that RDF and Python can be used in a

software pipeline as a replacement for RDF, OWL, Jess, Jena, Protg, and SWRL.

We successfully developed a three-level RDF graph representations for requirements

and their properties, and used Python for the implementation of logical reasoning

and inferencing mechanisms to solve a component-selection design problem. We fo-

cused on merging RDF graphs to develop relationships between design requirements

and design components, and the design of sequences of inference rules to system-

atically transform and filter the RDF graph into representations for ensembles of

design alternatives. We then used the algorithm for relabeling of Pareto-Optimal

design solutions to separate the inferior and non-inferior designs. Tasks that can be

accomplished through the use of this pipeline include:

1. Development of system requirement and design component representations (e.g.,

television, speaker, amplifier) in Java.

2. Transformation of system requirement and design component representations

into RDF graphs modeled in Python, and

125

3. Development and implementation of inference rules modeled in Python for

the step-by-step selection of compatible design component combinations that

satisfy all system requirements.

4. Computation Pareto-Optimal designs to identify non-inferior design combina-

tion.

5. Tracking of the size of the RDF graphs at various stages in the software pipeline.

Steps 2, 3 and 4 make up a software pipeline for the synthesis of Pareto-Optimial

design solutions from requirements and component options. The software pipeline

was linked to visualization of RDF graphs through PyDot.

The computational results of this thesis suggest that for design problems

of a modest size, RDF and Python can be used to satisfy system requirements and

acquire good design solutions in a straightforward and uncomplicated manner. The

size of the RDF graphs, and associated inference rules in Python, are at least an

order of magnitude smaller than their counterpart implementation in OWL. At this

point the proposed approach may not be scalable to thousands of requirements and

libraries containing hundreds of component options, practical design solutions can

be obtained with smaller numbers of requirements and component options. We

expect, however, that this shortcoming can be mitigated with the development of

appropriate algorithms and strategies for using the results of inference computations

to carry forward only that information that will be used downstream.

126

6.2 Future Work

Future work should focus on strategies to overcome the limitations of the

proposed method. Looking ahead, computational support is needed for:

• Reasoning with physical quantities (i.e., numerical quantities plus dimensions).

In the current pipeline, all quantities are represented as character strings. An

improved pipeline would explicitly represent and provide support for reason-

ing about physical quantities. This is a reasonable expectation given that

units and measures are now part of Java 7. For details, see the Java package

javax.measure.

• Developing a requirements template that allows for the automatic generation of

inference rule functions from the RDF graph. In the current work, each infer-

encing mechanism for the level-3 system requirements is manually embedded

into the software pipeline. All of the system-level requirements are manually

applied to the RDF graph. A family of requirement templates would define

the syntactic structure of requirements and semi-automation of the inference

functions needed for design.

• Developing a way to automate the generation of visualizing RDF graphs in PyDot.

The current visualization of RDF graphs using PyDot is implemented through

character strings. A method for extracting triples from the RDF graph would

assemble each subject, predicate, and object into a format for visualizing RDF

graphs.

127

• Combining the feasible system configurations rule and the system design rule.

In the current pipeline, the feasible system configurations rule identifies sets

of compatible components and makes no reference to the requirements while

the system design rule identifies compatible design components which satisfy

all design requirements. Combining these rules would minimize the frequency

of querying the RDF graph and further compact the software pipeline.

128

Bibliography

[1] Best Buy - Computers, Video Games, TVs, Cameras, Appliances, Phones. See
http://www.bestbuy.com/.

[2] Polk Audio. See http://www.polkaudio.com/.

[3] Austin M.A., Mayank V., and Shmunis N. Ontology-Based Validation of Con-
nectivity Relationships in a Home Theater System. International Journal of
Intelligent Systems, 21(10):1111–1125, October 2006.

[4] Austin M.A., Mayank V., and Shmunis N. PaladinRM: Graph-Based Visualiza-
tion of Requirements Organized for Team-Based Design. Systems Engineering:
The Journal of the International Council on Systems Engineering, 9(2):129–
145, May 2006.

[5] Ball M., Baras J., Bashyam S., Karne R. and Trichur, V.,. On the Selection of
Parts and Processes during Design of Printed Circuit Board Assemblies. 1995
INRIA/IEEE Symposium on Emerging Technologies and Factory Automation,
3:241–248, 1995.

[6] Bartholet R.G, Brogan D.C., and Reynolds Jr. P.F. The Computational Com-
plexity of Component Selection in Simulation Reuse. In Winter Simulation
Conference, pages 2472–2481, Orlando, Florida, 2005.

[7] Berners-Lee T., Hendler J., Lassa O. The Semantic Web. Scientific American,
pages 35–43, May 2001.

[8] Butler R. NASA LaRC Formal Methods Program: What Is Formal Methods?
2001. See http://shemesh.larc.nasa.gov/fm/fm-what.html.

[9] Carrera E. Python Package Index. See http://pypi.python.org/pypi/pydot.

[10] Ciocoiu M., Gruninger M., Nau D.S. Ontologies for Integrating Engineering
Applications. Journal of Computing and Information Science in Engineering,
1(1):12–22, 2001.

[11] Ferland J., Hertz A., and Lavoie A. An Object-Oriented Methodology for Solv-
ing Assignment-Type Problems with Neighborhood Search Techniques. Oper-
ations Research, 44(2):347–359, March-April 1996.

[12] Friedman G. Constraint Theory: Multidimensional Mathematical Model Man-
agement, volume 23. IFSR International Series on Systems Science and Engi-
neering, Springer, 2005.

[13] Geroimenko V., and Chen C. (Eds). Visualizing the Semantic Web: XML-based
Internet and Information Visualization. Springer, 2003.

129

[14] Hamza-Lup G.L., Agarwal A., Shankar R., and Iskander C. Component Selec-
tion Strategies based on System Requirements’ Dependencies on Component
Attibutes. In SysCon 2008 – IEEE International Systems Conference, Mon-
treal, Canada, March 7-10 2008.

[15] Hendler J. Agents and the Semantic Web. IEEE Intelligent Systems, pages
30–37, March/April 2001.

[16] Horrocks I., Patel-Schneider P.F., Boley H., Tabet S., Grosof B., and Dean M.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 2004.
W3C Member Submission: See http://www.w3.org/Submission/SWRL/.

[17] ILOG Solver. See http://www.ilog.com/products/cp/ (Accessed February 26,
2009). 2009.

[18] Jess – The Expert System Shell for the Java Platform. See
http://herzberg.ca.sandia.gov/jess/. 2003.

[19] Kiliccote H., Garrett J.H. Standards Usage Language (SUL). Journal of
Computing in Civil Engineering, 15(2):118–128, 2001.

[20] Kositsyna N., Mayank V., and Austin M. Paladin Software Toolset.
Institute for Systems Research, 2003. For more information, see
http://www.isr.umd.edu/paladin/.

[21] Mayank V., Austin M.A. Ontology-Enabled Validation of System Architec-
tures. In Proceedings of Fourteenth Annual International Symposium of The
International Council on Systems Engineering (INCOSE), Toulouse, France,
June 20-24 2004.

[22] Mayank V., Kositsyna N. and Austin M.A. Requirements Engineering and
the Semantic Web: Part II. Representation, Management and Validation of
Requirements and System-Level Architectures. ISR Technical Report 2004-14,
2004. See http://techreports.isr.umd.edu/reports/2004/TR 2004-14.pdf.

[23] Mayank V., Kositsyna N., and Austin M.A. Graph-Based Visualization of
System Requirements Organized for Team-Based Development. Technical Re-
search Report TR 2005-92, Institute for Systems Research, College Park, MD
20742, June 2005.

[24] Muller D. Requirements Engineering Knowledge Management based on STEP
AP233. 2003.

[25] Protege Ontology Editor and Knowledge Acquisition System. For details, see
http://protege.stanford.edu. 2003.

[26] Segaran T., Taylor J., Evans C. Programming the Semantic Web. O’Reilly,
Beijing, 2009.

130

[27] Tidwell D. XSLT. O’Reilly and Associates, Sebastopol, California, 2001.

[28] Web Ontology Language (OWL). See http://www.w3.org/TR/owl-ref/. 2003.

[29] XML Stylesheet Transformation Language (XSLT). See
http://www.w3.org/Style/XSL. 2002.

131

Appendix A

Python GUI and Trade-Space Visualization Code

In this appendix we provide the process of creating a Python GUI and
trade-space visualization for each of the feasible system designs that are generated.

source code

GUI and Trade-Space Visualization.py.

from Engineering_Design_Components import Driver

from simplegraph_chapter3 import SimpleGraph

from Home_Theater_System_InferenceRule import *

import matplotlib.pyplot as plt

import numpy as np

from pylab import *

*******R D F G R A P H S*******

Build requirement graph ...

requirementRdf = SimpleGraph()

requirementRdf.load(’C:\Users\Queen\workspace\HomeTheatreSystem\

graphfileRequirement.csv’)

Compute the size of the requirements model graph ...

size = []

aList = []

for sub, pred, obj in requirementRdf.triples((None, None, None)):

aList.append(sub)

aList.append(obj)

print "Nodes in the component graph..."

print "List: " ,aList

print "List size: ", len(aList)

print " "

aList = list(set(aList))

print "Eliminate redundant nodes ..."

print "New List: " ,aList

print "New List size: ", len(aList)

print " "

Initialization of the list of vertices and edges for the size-graph ...

verticesList = list()

edgesList = list()

Creation of the vertices for the size-graph ...

132

for k in range (len(aList)):

verticesList.append(aList[k])

Creation of edges for the size-graph ...

edgesList = requirementRdf.makeEdgesList(verticesList)

Creation of the size-graph ...

directed_graph = Graph(verticesList,edgesList)

Compute the graph size ...

print("The vertices within the directed graph: " + str(directed_graph.getVertices()))

print("The number of vertices within the directed graph: " + str(directed_graph.getSize()))

print " "

print("The edges within the directed graph are: ")

directed_graph.printEdges()

print("The number of edges within the directed graph: " + str(directed_graph.getEdgeSize()))

print ""

Build component graph ...

componentRdf = SimpleGraph()

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileTelevision.csv’)

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileAmplifier.csv’)

componentRdf.load(’C:\Users\Queen\workspace\Thesis Code\graphfileSpeaker.csv’)

Apply System-Level Architecture Rules ...

tvamp = televisionToAmplifier()

ampspk = amplifierToSpeaker()

componentRdf.applyinference(tvamp)

componentRdf.applyinference(ampspk)

Compute the size of the design components graph ...

size = []

aList = []

for sub, pred, obj in componentRdf.triples((None, None, None)):

aList.append(sub)

aList.append(obj)

... Details of graph size computation removed ...

Query the design components graph for system-level architecture relationships ...

print "**"

print " Find which components ’z’ connect to the Lg Television "

print "**"

print ""

133

print componentRdf.query([(’Lg Television’,’connects to’,’?z’)])

print ""

print "**"

print " Find which components ’z’ connect to the Bose Amplifier "

print "**"

print ""

print componentRdf.query([(’Bose Amplifier’,’connects to’,’?z’)])

print ""

Apply Component Compatibility Rules ...

tvampCompat = Television_Amplifier_Compatibility()

ampspeakerCompat = Amplifier_Speaker_Compatibility()

componentRdf.applyinference(tvampCompat)

componentRdf.applyinference(ampspeakerCompat)

Compute the size of the design components graph ...

size = []

aList = []

for sub, pred, obj in componentRdf.triples((None, None, None)):

aList.append(sub)

aList.append(obj)

... Details of graph size computation removed ...

Query the design components graph for compatibility relationships ...

print "**"

print " Find which components ’z’ are compatible with the Lg Television "

print "**"

print ""

print componentRdf.query([(’Lg Television’,’compatible with’,’?z’)])

print ""

print "**"

print " Find which components ’z’ are compatible with the Bose Amplifier "

print "**"

print ""

print componentRdf.query([(’Bose Amplifier’,’compatible with’,’?z’)])

print ""

Merge Design Components and Requirements Model Graphs ...

mergegraph = SimpleGraph()

for sub, pred, obj in requirementRdf.triples((None, None, None)):

mergegraph.add((sub, pred, obj))

for sub, pred, obj in componentRdf.triples((None, None, None)):

mergegraph.add((sub, pred, obj))

134

Compute the size of the design components graph ...

size = []

aList = []

for sub, pred, obj in mergegraph.triples((None, None, None)):

aList.append(sub)

aList.append(obj)

... Details of graph size computation removed ...

Apply Feasible System Configurations Rule...

feasibleSystemConfigurations = feasibleSystemConfigurations()

mergegraph.applyinference(feasibleSystemConfigurations)

Apply Level 3 Requirements Rules ...

requirement15 = Req15()

mergegraph.applyinference(requirement15)

requirement14 = Req14()

mergegraph.applyinference(requirement14)

requirement13 = Req13()

mergegraph.applyinference(requirement13)

requirement12 = Req12()

mergegraph.applyinference(requirement12)

requirement11 = Req11()

mergegraph.applyinference(requirement11)

requirement10 = Req10()

mergegraph.applyinference(requirement10)

requirement9 = Req9()

mergegraph.applyinference(requirement9)

requirement8 = Req8()

mergegraph.applyinference(requirement8)

Compute the size of the merge graph ...

size = []

aList = []

for sub, pred, obj in mergegraph.triples((None, None, None)):

aList.append(sub)

aList.append(obj)

... Details of graph size computation removed ...

Apply Level 2 Requirements Rules ...

requirement7 = Req7()

mergegraph.applyinference(requirement7)

requirement6 = Req6()

mergegraph.applyinference(requirement6)

requirement5 = Req5()

135

mergegraph.applyinference(requirement5)

requirement4 = Req4()

mergegraph.applyinference(requirement4)

requirement3 = Req3()

mergegraph.applyinference(requirement3)

Compute the size of the merge graph ...

size = []

aList = []

for sub, pred, obj in mergegraph.triples((None, None, None)):

aList.append(sub)

aList.append(obj)

... Details of graph size computation removed ...

Apply Level 1 Requirements Rules ...

requirement2 = Req2()

mergegraph.applyinference(requirement2)

requirement1 = Req1()

mergegraph.applyinference(requirement1)

Compute the size of the merge graph ...

... Details of graph size computation removed ...

Apply System Design Rule...

systemDesign = systemDesign()

mergegraph.applyinference(systemDesign)

******* P A R E T O O P T I M A L A L G O R I T H M *******

Get all feasible combinations from inference class

full = return_comb()

performance = []

reliability = []

cost = []

for i in range(len(full)):

performance.append(full[i][3])

reliability.append(100*(full[i][4]))

cost.append(full[i][5])

print "Finding the Pareto-Optimal point for Cost vs Performance ... "

x_objective = performance

y_objective = cost

... Details of Pareto-Optimal Computation removed ...

136

******* P L O T T R A D E - O F F A N A L Y S I S *******

AND

******* P A R E T O O P T I M A L *******

print ’’

print "========================="

print "Pareto Optimal Points"

print "========================="

print ’’

print "Pareto Point(s):",temp

if input1 == 0 and input2 == 0:

Min x-axis & Min y-axis

fig, (ax0) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax0.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax0.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax0.axis([min(x)-1, max(x)+1, min(y)-5, max(y)+5])

ax0.set_xlabel(’Performance’)

ax0.set_ylabel(’Cost ($)’)

fig.suptitle(’Trade-off Analysis: Minimize Performance & Minimize Cost’)

plt.tight_layout(pad=2)

plt.show()

elif input1 == 0 and input2 == 1:

Min x-axis & Max y-axis

fig, (ax1) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax1.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax1.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax1.axis([min(x)-1, max(x)+1, min(y)-5, max(y)+5])

ax1.set_xlabel(’Performance’)

ax1.set_ylabel(’Cost ($)’)

fig.suptitle(’Trade-off Analysis: Minimize Performance & Maximize Cost’)

plt.tight_layout(pad=2)

plt.show()

elif input1 == 1 and input2 == 1:

Max x-axis & Max y-axis

fig, (ax2) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax2.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

137

ax2.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax2.axis([min(x)-1, max(x)+1, min(y)-5, max(y)+5])

ax2.set_xlabel(’Performance’)

ax2.set_ylabel(’Cost ($)’)

fig.suptitle(’Trade-off Analysis: Maximize Performance & Maximize Cost’)

plt.tight_layout(pad=2)

plt.show()

elif input1 == 1 and input2 == 0:

Max x-axis & Min y-axis

fig, (ax3) = plt.subplots(ncols=1)

x = x_objective

y = y_objective

a,b = zip(*temp)

ax3.plot(x, y, marker =’.’,markersize= 8, linewidth=0)

ax3.plot(a, b, marker =’*’,markersize= 18, linewidth=0)

ax3.axis([min(x)-1, max(x)+1, min(y)-5, max(y)+5])

ax3.set_xlabel(’Performance’)

ax3.set_ylabel(’Cost ($)’)

fig.suptitle(’Trade-off Analysis: Maximize Performance & Minimize Cost’)

plt.tight_layout(pad=2)

plt.show()

x_objective = reliability

y_objective = cost

print "Finding the Pareto-Optimal point for Cost vs Reliability ... "

... Details of Pareto-Optimal computation removed ...

******* P L O T T R A D E - O F F A N A L Y S I S *******

AND

******* P A R E T O O P T I M A L *******

... details of reliability versus cost plot removed

x_objective = performance

y_objective = reliability

print "Finding the Pareto-Optimal point for Reliability vs Performance ... "

Prompt User

Ask user for the intent of objective 1 and store

input1 = int(raw_input("Is the performance objective min[0] or max[1] : "))

Ask user for the intent of objective 2 and store

input2 = int(raw_input("Is the reliability objective min[0] or max[1] : "))

... Details of Pareto-Optimal computation removed ...

138

******* P L O T T R A D E - O F F A N A L Y S I S *******

AND

******* P A R E T O O P T I M A L *******

... details of performance versus reliability plot removed

print ""

print ""

print "========================= Finished ========================="

print ""

139

Appendix B

Television Component

This appendix contains complete details of Television.java, an implementa-
tion of the compoent interface specification for television components.

source code

Television.java

package javaBackend;

public class Television implements Component{

private String [] input;

private String [] output;

private String name;

private double width;

private double height;

private double weight;

private double thickness;

private int cost;

private int performance;

private double reliability;

// Television constructor methods ...

public Television(String name){

this.name = name;

}

public Television(String name, String [] input, String [] output, double width,

double height, double weight, double thickness, int cost,

int performance, double reliability){

this.name = name;

this.input = input;

this.output = output;

this.width = width;

this.height = height;

this.weight = weight;

this.thickness = thickness;

this.cost = cost;

this.performance = performance;

this.reliability = reliability;

}

public void setName(String name){

this.name = name;

}

public String getName(){

140

return name;

}

public void setInput (String [] input){

this.input = input;

}

public String [] getInput(){

return input;

}

public void printInput(){

System.out.println(name + " Input:");

for(int index = 0; index< input.length; index++){

System.out.print(input[index] + ", ");

}

System.out.println();

}

public void setOutput(String [] output){

this.output = output;

}

public String [] getOutput(){

return output;

}

public void printOutput(){

System.out.println(name + " Output:");

for(int index = 0; index< output.length; index++){

System.out.print(output[index] + ", ");

}

System.out.println();

}

public void setWidth(double width){

this.width = width;

}

public double getWidth(){

return width;

}

public void printWidth(){

System.out.print(name + " Width = " + width);

System.out.println();

}

public void setHeight(double height){

this.height = height;

}

public double getHeight(){

return height;

141

}

public void printHeight(){

System.out.print(name + " Height = " + height);

System.out.println();

}

public void setWeight(double weight){

this.weight = weight;

}

public double getWeight(){

return weight;

}

public void printWeight(){

System.out.print(name + " Weight = " + weight);

System.out.println();

}

public void setThickness(double thickness){

this.thickness = thickness;

}

public double getThickness(){

return thickness;

}

public void printThickness(){

System.out.print(name + " Thickness = " + thickness);

System.out.println();

}

public void setCost(int cost){

this.cost = cost;

}

public int getCost(){

return cost;

}

public void printCost(){

System.out.print(name + " Cost = " + cost);

System.out.println();

}

public void setPerformance(int performance){

this.performance = performance;

}

public int getPerformance(){

return performance;

}

142

public void printPerformance(){

System.out.print(name + " Performace = " + performance);

System.out.println();

}

public void setReliability(double reliability){

this.reliability = reliability;

}

public double getReliability(){

return reliability;

}

public void printReliability(){

System.out.print(name + " Reliability = " + reliability);

System.out.println();

}

}

143

Appendix C

Amplifier Component

This appendix contains complete details of Amplifier.java, an implementa-
tion of the compoent interface specification for amplifier components.

source code

Amplifier.java

package javaBackend;

public class Amplifier implements Component{

private String [] input;

private String [] output;

private String name;

private int cost;

private int powerHandling;

private int performance;

private double reliability;

// Amplifier constructor methods ...

public Amplifier(String name){

this.name = name;

}

public Amplifier(String name, String [] input, String [] output, int cost,

int powerHandling, int performance, double reliability){

this.input = input;

this.output = output;

this.cost = cost;

this.powerHandling = powerHandling;

this.performance = performance;

this.reliability = reliability;

}

public void setName(String name){

this.name = name;

}

public String getName(){

return name;

}

public void setInput(String [] input){

this.input = input;

}

public String [] getInput(){

144

return input;

}

public void printInput(){

System.out.println(name + " Input:");

for(int index = 0; index< input.length; index++){

System.out.print(input[index] + ", ");

}

System.out.println();

}

public void setOutput(String [] output){

this.output = output;

}

public String [] getOutput(){

return output;

}

public void printOutput(){

System.out.println(name + " Output:");

for(int index = 0; index< output.length; index++){

System.out.print(output[index] + ", ");

}

System.out.println();

}

public void setCost(int cost){

this.cost = cost;

}

public int getCost(){

return cost;

}

public void printCost(){

System.out.print(name + " Cost = " + cost);

System.out.println();

}

public void setPowerHandling(int powerHandling){

this.powerHandling = powerHandling;

}

public int getPowerHandling(){

return powerHandling;

}

public void printPowerHandling(){

System.out.print(name + " Power Handling = " + powerHandling);

System.out.println();

}

public void setPerformance(int performance){

145

this.performance = performance;

}

public int getPerformance(){

return performance;

}

public void printPerformance(){

System.out.print(name + " Performance = " + performance);

System.out.println();

}

public void setReliability(double reliability){

this.reliability = reliability;

}

public double getReliability(){

return reliability;

}

public void printReliability(){

System.out.print(name + " Reliability = " + reliability);

System.out.println();

}

}

146

Appendix D

Speaker Component

This appendix contains complete details of Speaker.java, an implementation
of the compoent interface specification for speaker components.

source code

Speaker.java

package javaBackend;

public class Speaker implements Component{

private String [] input;

private String [] output;

private String name;

private int [] powerHandling;

private int cost;

private int performance;

private double reliability;

// Speaker constructor methods ...

public Speaker(String name){

this.name=name;

}

public Speaker(String name, String [] input, String [] output, int [] powerHandling,

int cost, int performance, double reliability){

this.input = input;

this.output = output;

this.powerHandling = powerHandling;

this.cost = cost;

this.performance = performance;

this.reliability = reliability;

}

public void setName(String name){

this.name = name;

}

public String getName(){

return name;

}

public void setInput(String [] input){

this.input = input;

}

147

public String [] getInput(){

return input;

}

public void printInput(){

System.out.println(name + " Input:");

for(int index = 0; index< input.length; index++){

System.out.print(input[index] + ", ");

}

System.out.println();

}

public void setOutput(String [] output){

this.output = output;

}

public String [] getOutput(){

return output;

}

public void printOutput(){

System.out.println(name + " Output:");

for(int index = 0; index< output.length; index++){

System.out.print(output[index] + ", ");

}

System.out.println();

}

public void setPowerHandling(int [] powerHandling){

this.powerHandling = powerHandling;

}

public int [] getPowerHandling(){

return powerHandling;

}

public void printPowerHandling(){

System.out.print(name + " Power Handling = " + powerHandling);

System.out.println();

}

public void setCost(int cost){

this.cost = cost;

}

public int getCost(){

return cost;

}

public void printCost(){

System.out.print(name + " Cost = " + cost);

System.out.println();

}

148

public void setPerformance(int performance){

this.performance = performance;

}

public int getPerformance(){

return performance;

}

public void printPerformance(){

System.out.print(name + " Performance = " + performance);

System.out.println();

}

public void setReliability(double reliability){

this.reliability = reliability;

}

public double getReliability(){

return reliability;

}

public void printReliability(){

System.out.print(name + " Reliability = " + reliability);

System.out.println();

}

}

149

Appendix E

System Requirement

This appendix contains complete details of Requirement.java, an implemen-
tation of the specification for system requirements.

source code

Requirement.java

package javaBackend;

public class Requirement {

private String name;

private String title;

private int level;

private String [] dependOn;

private String derivedBy;

// Requirement constructor methods ...

public Requirement(String name){

this.name = name;

}

public Requirement(String name, String title, int level, String [] dependOn,

String derivedBy){

this.name = name;

this.title = title;

this.level = level;

this.dependOn = dependOn;

this.derivedBy = derivedBy;

}

public void setName(String name){

this.name = name;

}

public String getName(){

return name;

}

public void setTitle(String title){

this.title = title;

}

public String getTitle(){

return title;

}

150

public void printTitle(){

System.out.print(name + " Title: " + title);

System.out.println();

}

public void setLevel(int level){

this.level = level;

}

public int getLevel(){

return level;

}

public void printLevel(){

System.out.print(name + " Level = " + level);

System.out.println();

}

public void setDependOn(String [] dependOn){

this.dependOn = dependOn;

}

public String [] getDependOn(){

return dependOn;

}

public void printDependOn(){

if(dependOn == null){

System.out.print(name + " Depends on: " + "null");

System.out.println();

}

if(dependOn != null){

System.out.print(name + " Depends on: ");

for(int index = 0; index< dependOn.length; index++){

System.out.print(dependOn[index] + ", ");

}

System.out.println();

}

}

public void setDerivedBy(String derivedBy){

this.derivedBy = derivedBy;

}

public String getDerivedBy(){

return derivedBy;

}

public void printDerivedBy(){

System.out.print(name + " Derived by: " + derivedBy);

System.out.println();

}

}

151

152

Appendix F

Generate Component CSV file

This appendix contains complete details of GenerateComponentCsv.java, an
implementation of the specification for generating component CSV files.

source code

GenerateComponentCsv.java

package javaBackend;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

public class GenerateComponentCsv {

private File rdf;

private FileWriter cmp;

// Create CSV file ...

public GenerateComponentCsv(String file){

rdf = new File(file);

}

private File getRdf(){

return rdf;

}

// Write to file for televisions ...

public void writeToFileTelevision(Library<Television> lib){

if(lib == null){

System.out.print("Library is null");

System.exit(0);

}

try {

FileWriter tv = new FileWriter(getRdf());

for(Television i : lib.getLibrary()){

tv.write(i.getName() + ",category," + "television" + "\n");

tv.write(i.getName() + ",cost," + i.getCost()+ "\n");

tv.write(i.getName() + ",performance," + i.getPerformance()+ "\n");

tv.write(i.getName() + ",reliability," + i.getReliability()+ "\n");

tv.write(i.getName() + ",width," + i.getWidth()+ "\n");

tv.write(i.getName() + ",height," + i.getHeight()+ "\n");

tv.write(i.getName() + ",thickness," + i.getThickness()+ "\n");

tv.write(i.getName() + ",weight," + i.getWeight()+ "\n");

153

for(int x = 0; x < i.getInput().length; x++){

tv.write(i.getName() + ",input"+ "," + i.getInput()[x] + "\n");

}

for(int x = 0; x < i.getOutput().length; x++){

tv.write(i.getName() + ",output"+ "," + i.getOutput()[x] + "\n");

}

}

tv.close();

}

catch (IOException e) {

e.printStackTrace();

}

}

// Write to file for amplifiers ...

public void writeToFileAmplifier(Library<Amplifier> lib){

if(lib == null){

System.out.print("Library is null");

System.exit(0);

}

try {

FileWriter amp = new FileWriter(getRdf());

for(Amplifier i : lib.getLibrary()){

amp.write(i.getName() + ",category," + "amplifier" + "\n");

amp.write(i.getName() + ",cost," + i.getCost()+ "\n");

amp.write(i.getName() + ",performance," + i.getPerformance()+ "\n");

amp.write(i.getName() + ",reliability," + i.getReliability()+ "\n");

amp.write(i.getName() + ",power handling," + i.getPowerHandling()+ "\n");

for(int x = 0; x < i.getInput().length; x++){

amp.write(i.getName() + ",input" + "," + i.getInput()[x] + "\n");

}

for(int x = 0; x < i.getOutput().length; x++){

amp.write(i.getName() + ",output" + "," + i.getOutput()[x] + "\n");

}

}

amp.close();

}

catch (IOException e) {

e.printStackTrace();

}

}

// Write to file for speakers ...

public void writeToFileSpeaker(Library<Speaker> lib){

if(lib == null){

System.out.print("Library is null");

System.exit(0);

}

try {

154

FileWriter speaker = new FileWriter(getRdf());

for(Speaker i : lib.getLibrary()){

speaker.write(i.getName() + ",category," + "speaker" + "\n");

speaker.write(i.getName() + ",cost," + i.getCost()+ "\n");

speaker.write(i.getName() + ",performance," + i.getPerformance()+ "\n");

speaker.write(i.getName() + ",reliability," + i.getReliability()+ "\n");

for(int x = 0; x < i.getPowerHandling().length; x++){

speaker.write(i.getName() + ",power handling"+ "," +

i.getPowerHandling()[x] + "\n");

}

for(int x = 0; x < i.getInput().length; x++){

speaker.write(i.getName() + ",input" + "," + i.getInput()[x] + "\n");

}

for(int x = 0; x < i.getOutput().length; x++){

speaker.write(i.getName() + ",output" + "," + i.getOutput()[x] + "\n");

}

}

speaker.close();

}

catch (IOException e) {

e.printStackTrace();

}

}

}

155

Appendix G

Generate Requirement CSV file

This appendix contains complete details of GenerateRequirementCsv.java,
an implementation of the specification for generating a requirement CSV file.

source code

GenerateRequirementCsv.java

package javaBackend;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.ArrayList;

public class GenerateRequirementCsv {

private File rdf;

private FileWriter cmp;

// Create CSV file ...

public GenerateRequirementCsv(String file){

rdf = new File(file);

}

private File getRdf(){

return rdf;

}

// Write to file for requirements ...

public void writeToFileRequirement(ArrayList<Requirement> list){

try {

FileWriter req = new FileWriter(getRdf());

int dependencyLength = 0;

for(Requirement i: list){

req.write(i.getName() + ",category," + "requirement" + "\n");

req.write(i.getName() + ",id," + i.getName()+ "\n");

req.write(i.getName() + ",title," + i.getTitle()+ "\n");

req.write(i.getName() + ",level," + i.getLevel()+ "\n");

req.write(i.getName() + ",derived by," + i.getDerivedBy()+ "\n");

if(i.getDependOn() != null){

dependencyLength= i.getDependOn().length;

for(int x = 0; x < dependencyLength; x++){

req.write(i.getName() + ",depends on"+"," +

i.getDependOn()[x] + "\n");

156

}

}

}

req.close();

}

catch (IOException e) {

e.printStackTrace();

}

}

}

157

