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Cells of living organisms simultaneously operate hundreds or thousands of 

interconnected chemical reactions. Metabolic networks include these chemical reactions 

and compounds participating in them. Metabolic engineering is a science centered on the 

analysis and purposeful modification of an organism's metabolic network toward a 

beneficial purpose, such as production of fuel or medicinal compounds in 

microorganisms. Unfortunately, there are problems with the design and visualization of 

modified metabolic networks due to lack of standardized and fully developed visual 

modeling languages. The purposes of this paper are to propose a multilevel framework 

for the synthesis, analysis and design of metabolic systems, and then explore the extent to 

which abstractions from systems engineering (e.g., SysML) can complement and add 

value to the abstractions currently under development within the greater biological 

community (e.g., SBGN). The computational test-bed that accompanies this work is 

production of the anti-malarial drug artemisinin in genetically engineered 

Saccaharomyces cerevisiae (yeast). 
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Chapter 1 Introduction 

1.1 - Problem Statement 

Throughout the systems engineering community, a well-known tenet is that good 

designs balance the need for functionality and performance against limitations on cost. 

During the pre-implementation stages of system development (i.e., where a detailed 

system description may not exist), systems engineers are concerned primarily with 

system functionality and the identification of key environmental conditions within which 

this functionality must occur. Models of functionality need to describe what the system 

will do, and the order in which these functions will be executed, under both normal and 

abnormal operating conditions. The answers to these basic concerns are commonly 

expressed as functional requirements. Performance requirements describe how well a 

system should perform these functions. Interface requirements describe conditions that 

will allow for communication between subsystems, and, between subsystems and the 

external environment. Then, as the system development proceeds, engineers assume that 

it will be possible to control the complexity of developments through separation of design 

concerns (e.g., function before implementation; logic and physical representations) and 

decomposition of design solutions into hierarchies. Together these strategies of 

development lead to loosely coupled system architectures and well-defined hierarchies of 

behavior which, in turn, can facilitate the definition of simulation models (or 

corresponding experimental test-beds) and procedures for efficient search of the design 

space for solutions that are feasible (i.e., satisfy all constraints) and provide a desirable 

tradeoff in design criteria. 
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Figure 1 - Complete Yeast Metabolism (Schellenberger et al, 2010); Highlighted areas represent pathways of high metabolic traffic 
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These principles apply to a wide range of established and emerging application 

areas. As a case in point, metabolic networks are immensely complex systems 

characterized by large numbers of nodes (chemical compounds, hereafter referred to as 

metabolites), and interconnections (reactions). The metabolism of a single 

microorganism such as Escherica coli or S. cerevisiae (yeast) is massive, composed of 

thousands of metabolites and reactions regulated by hundreds of genes, which interact 

with each other in a combinatorial fashion to maintain the cell’s living state (Figure 1). 

Recent advances in computer technology and bioinformatics have allowed for 

detailed analyses of these metabolic systems. Examples include the creation of 

metabolic models for organisms such as E. coli and S. cerevisiae in languages such as 

SBML (systems biology markup language), and the development of algorithms to 

identify nontrivial bottleneck reactions in these models. However, due to a lack of 

visual abstraction capabilities, procedures for the systematic and precise design (i.e., 

modification and construction) of metabolic networks are not as straightforward and 

predictable as they should be. For example, while engineers have algorithms to process 

a metabolic network and identify reactions of interest, the results are not automatically 

carried through to visual diagrams showing where the reactions are located within the 

overall metabolic system.  

State-of-the-art metabolic engineering procedures apply an understanding of 

reaction kinetics from chemical engineering to the chemical networks and compounds 

of cells from the biological domain. Value in metabolic systems is generated by 

maximizing production rate of a metabolite of interest or maximizing carbon flux 

through its synthesis pathway, while minimizing energy cost associated with 
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compounds such as ATP (adenosine triphosphate) and NAD(P)H (Nicotinamide 

adenine dinucleotide (phosphate)). Metabolic engineers identify and investigate how 

specific modifications to the metabolic network (e.g., reaction knockouts or gene 

overexpression) result in redirection of carbon traffic in the system as a whole. 

Computational analysis and linear programming methods are used to simulate and 

predict experimental results while genetic engineering is used to implement the design. 

Unfortunately, this process requires extensive human input and is time consuming. One 

source of inefficiency stems from less-than-perfect algorithms sometimes suggesting 

reactions whose modifications result in cell death, or whose modifications are 

impossible to implement through genetic engineering. This puts researchers in a 

position where code may need to be rewritten multiple times before it outputs reaction 

modifications that are experimentally feasible.  

Overcoming these limitations will require new approaches to identifying and 

handling design modifications such as reaction knockouts. Reaction knockouts are a 

type of modification to a metabolic network in which a reaction is eliminated and a 

pathway becomes a dead end. Since carbon cannot flow through an interrupted 

pathway, the flux is often rerouted through other pathways in the metabolic network. 

When applied strategically, reaction knockouts can reroute flux towards a targeted 

pathway. However, reaction knockouts vary in impact, ranging from no effect on 

reaction flux (e.g., if the knockout reaction is on a pathway in parallel with other paths) 

to total reduction of all cellular flux to zero, also known as cell death (e.g., if a reaction 

is in a main branch of the network). A second source of difficulty stems from the non-

additive nature of reaction knockouts. This occurs due to flux interactions. As a result, 
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design procedures based upon sequences of individual knockouts are sometimes less 

than optimal. To overcome this barrier, design procedures need to handle combinations 

of knockouts. When this fact is coupled with large network size, the complexity of the 

design space explodes in combinatorial fashion. This results in an algorithm’s 

application becoming much more computationally intensive and time consuming. 

To see how the high degree of interconnectivity between biological nodes 

creates combinatorial explosion, consider a 3 knockout experiment of 500 reactions. 

This corresponds to nCr = 500C3 = 20,708,500 knockout combinations. If the designer 

wanted to complete 3 knockouts on a higher-level organism with 900 reactions, 

knockout combinations increase to nCr = 500C3 = 121,095,300. Increasing the number of 

knockouts further to 6, gives nCr = 500C6 = 21,057,686,727,000 possibilities. This rapid 

growth in possible combinations creates a gap between what is required from a system 

perspective, and what is possible from a design and validation perspective. Smarter  

approaches to computational metabolic engineering would incorporate knowledge of 

dependencies among metabolites, and employ combinations of “system decomposition 

and abstraction” to keep the complexities of metabolic computations in check.  

1.2 – Scope and Objectives 

When working with complex biological systems, metabolic engineers 

continually seek new approaches to the synthesis, design, and assessment of system-

level architectures. For example, scientists have suggested that the biological 

community needs to lay broad foundations with respect to the concepts of 

standardization, decoupling and abstraction (Endy 2005). Still, many questions remain. 

How, for example, can one design metabolic processes with less human intervention 
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and greater efficiency through automation? What kinds of design tools will work for 

extremely large biological systems? We hypothesize that various forms of assistance 

will be useful to the metabolic engineering and greater biological community. 

Assistance can be provided in the form of design principles (e.g., rules of development) 

and building blocks upon which good design solutions can be built. Designers also need 

mechanisms to: (1)Dynamically control the levels of detail that will be presented to an 

engineer, and (2)Dynamically reconfigure statements of system functionality in 

response to the identification of designer mistakes and/or changes in required 

functionality.  

This thesis has two purposes. In Chapter 2, we propose a multi-level framework 

for the synthesis, analysis and design of metabolic systems. This framework will 

employ a variety of modeling abstractions, approaches to design specification, and 

strategies for systems integration. In Chapter 3, we apply this framework to a metabolic 

engineering experiment in which the objective is to optimize a yeast strain genetically 

engineered to produce artemisninin via reaction knockouts. We will pay special 

attention to semiformal models of visual abstraction and interfacing them with more 

formal models of simulation. This is an area with strong precedents in systems 

engineering, but limited development in the metabolic engineering space. In Chapter 4, 

we will present a summary of the work and suggestions for future research. Scripts of 

the MATLAB code for the in silico experiment can be found in Appendix A. 
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Chapter 2 – Multi-Level Framework for Orchestration of Good 

Design Solutions 

2.1 – Approach 

Metabolic systems are complex heterogeneous systems developed by teams of 

researchers, many of whom will have expertise in only one or two aspects of biology 

(e.g., cell biology; functional genomics; genetics, microbiology, bioinformatics etc.). 

To this end, and in support of the synthesis, design, integration, and evaluation of 

metabolic systems, this chapter formulates a multi-level framework for the 

orchestration of good design solutions. We expect that high levels of productivity will 

be achieved through the use of high-level visual abstractions coupled with lower-level 

(mathematical) abstractions suitable for formal systems analysis.  

2.1.1 - Strategies for Dealing with Increases in System Complexity 

From both a scientific and engineering perspective, metabolic networks are 

immensely complex systems characterized by large numbers of nodes (chemical 

compounds, hereafter referred to as metabolites), and interconnections (reactions). 

History tells us that as technologies improve over time, scientists are provided with 

better tools to conduct experimental observations and collect experimental data. This, in 

turn, allows for the formulation of new hypotheses aimed at explaining the mechanisms 

and dynamics behind experimental observations. After more than five decades of 

modern biological research, we are now entering an era where mathematical modeling 

of biological and biochemical systems can provide insight into the system structure 

(e.g., organs, tissues, cells and molecules, connections among components) and system 

behavior (e.g., detailed dynamics of biochemical interactions; built in control/defense 
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mechanisms to provide protection against environmental attack) (Tomlin 2005, Tomlin 

2007). 

From a systems engineering perspective, biologists are not designing and 

creating more complicated systems per se - instead, they observe systems in the hope of 

creating a better understanding of the architecture, behavior, and control mechanisms in 

the biological system. The associated increase in observational complexity over time is 

shown in Figure 2. We assume that in the beginning, scientific studies will lead to large 

improvements in knowledge and understanding of the biological system, but that longer 

term, further studies will produce diminishing returns. 

One consequence of these advances is an ongoing desire to apply metabolic 

engineering in higher level organisms, with each iteration of design and development 

being more complex than its predecessors. Figure 3 summarizes the key challenges 

designers of metabolic processes will face over time. First, using state-of-the-art 

approaches to design, there is an upper limit to system complexity that can be designed 

and validated in an acceptable amount of time. New approaches to design are needed to 

improve designer productivity and minimize the gap between our capability and what is 

actually feasible from a design and validation point of view.  
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Figure 2 – Sources of complexity from a biological systems viewpoint 

 

Figure 3 - Sources of complexity from a metabolic systems design viewpoint 

 

Figure 4 - Increases in programmer productivity over time (Austin 2011) 
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Fortunately, we can learn a lot about the pathway forward by looking to 

successes from the past. History tells us that major increases in productivity are almost 

always accompanied by problem-solving at higher levels of abstraction. As illustrated 

in Figure 4, within the software world, remarkable increases in programmer 

productivity have been achieved through the use of high-level languages (e.g., Java, 

Python, UML) coupled with compiler technologies for the automated transformation of 

high-level abstractions into equivalent lower level abstractions (e.g., automated code 

generation, byte codes and machine codes), and machine infrastructures for software 

execution (e.g., Java Virtual Machine). Naturally, professionals in both the systems 

engineering and metabolic engineering communities would like a pathway forward for 

achieving similar increases in attainable productivity. 

2.1.2 - Solution Mechanisms  

Experience tells us that good solutions are likely to employ a combination of the 

following mechanisms: 

 Semi-Formal Models. To allow for the efficient description of ideas (e.g., goals 

and scenarios, tentative design concepts), textual and visual representations 

need to be based on semi-formal models (e.g, Unified Modeling Languages 

(UML) and Systems Modeling Languages (SysML)) having well defined syntax 

and semantics. 

 Formal Models. To help prevent serious flaws in detailed design and operation, 

design representations and validation/verification procedures need to be based 

on formal languages having precise semantics. 
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 Abstraction. Abstraction mechanisms eliminate details that are of no importance 

when evaluating system functionality, system performance, and/or checking that 

a design satisfies a particular property. When we discuss the effectiveness of an 

abstraction, we are focusing on two particular concepts: (1) information hiding, 

and (2) encapsulation. By information hiding, we are referring to the omission 

of all irrelevant details. By encapsulation, we are referring to the grouping of 

processes or concepts together in a logical way. It often goes hand in hand with 

information hiding, as by grouping a set of items together, we can often 

condense them under the group heading and free up space in the diagram for 

other uses.  

 Decomposition. Decomposition is the process of breaking a design at a given 

level of hierarchy into subsystems and components that can be designed and 

verified almost independently. 

 Composition. Composition is the process of systematically assembling a system 

from subsystems and components. We seek, in particular, methods that allow 

for the systematic assembly of behavior models for complex systems from 

behavior models for simpler systems and components.  

(coupled with strategies of systems engineering development (e.g., separation of logical 

and physical concerns; breadth before depth) refined over many years).  

Semi-formal models are appropriate for the early stages of development, 

especially when a complete system description does not exist. At first, the central 

concern is making sure the right product or process will be designed. For projects that 

are new and innovative, the system engineer will need to work with the stakeholders 
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simply to figure out what the system will do, the scenarios corresponding to goals, and 

strategies for handling unexpected events. This activity is called goals and scenario 

analysis. The use of visual modeling abstractions, such as UML and SysML helps to 

reduce the risk of failure by forcing engineers to state all of their assumptions and think 

systematically about how the fragments of system behavior will be translated into flows 

of control and sequences of functionality. Development of the system structure 

description will include identification of the major subsystems, their connectivity to 

other subsystems, and connectivity to the surrounding environment. A second purpose 

for visual modeling abstractions is to act as an enabling formalism for the integration of 

models developed for different purposes. 

Formal models of analysis are appropriate for the simulation, evaluation, and 

optimization-based design of detailed design descriptions, where decisions on high-

level behavior and structure need to be refined to include data/information relevant to a 

specific discipline (e.g., the chemistry and physics of metabolic processes). Formal 

models for engineering design should consist of the following components 

(Sangiovanni-Vincentelli, 1996): 

 A set of explicit or implicit equations which involve input, output and possible 

internal (state) variables; 

 A set of properties that the design must satisfy given as a set of equations over 

design variables (inputs, outputs, states); 

 A set of performance indices which evaluate the quality of the design in terms 

of cost, reliability, speed, etc. given as a set of equations involving design 

variables. 
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 A set of constraints on design variables and on performance indices specified as 

a set of inequalities. 

Appropriate formalisms will depend on the domain of interest. For our purposes, we 

will incorporate the chemistry and physics of metabolic engineering processes, thereby 

allowing for: (1) The quantitative evaluation of metabolic system performance and cost, 

and (2) A framework for defining and searching the design space of potentially good 

solutions. 

Semi-formal and formal modeling abstractions are developed to support design 

processes that are part top-down and part bottom-up. Top-down approaches to 

development assume that a complicated design problem can be simplified through its 

decomposition into a network of simpler design problems. A key advantage for top-

down approaches to design is built-in support for customization. The key disadvantage 

of top-down approaches to design is that processes always start from scratch – since 

there is no attempt to reuse previous work, schedules of development may be 

unnecessarily long. Bottom-up approaches to development assume that good design 

solutions can be created through the assembly or composition of previously defined 

components or building blocks. The key advantages of bottom-up development are 

reduced time to market and improved quality (because building blocks will have been 

tested in previous iterations of development). 

2.1.3 - Multi-Level Framework for Metabolic Process Design  

We propose that the mechanisms of semi-formal and formal modeling, and top-

down and bottom-up approaches to design be combined in a single multi-level 

framework as shown in Figure 5.  
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The design of metabolic processes will be part top-down decomposition (e.g., 

customized specification metabolic pathways) and part bottom-up composition of 

previously designed biochemical blocks. As a designer moves from the semi-formal to 

formal layers, levels of design detail will increase and reliance on abstractions will 

decrease. Conversely, moving from the detailed design layer to the higher-level layer 

relying on visual abstractions will correspond to an increasing reliance on abstractions 

and an increased focus on integration of models.  

Recent research has demonstrated the use of SysML as a successful centerpiece 

abstraction for team-based system development, with a variety of interfaces and 

relationship types (e.g., parametric, logical and dependency) providing linkages to 

detailed discipline-specific analyses and orchestration of system engineering activities. 

(Bajaj et al, 2011). In the long term, however, we believe that multiple models of 

visualization will be required (e.g, combinations of SysML and SBGN), with graphical 

formalisms displaying concepts in a notation familiar to the end user.  

Figure 5 - A Multi-level framework for synthesis, analysis, design and integration of models in metabolic 
system design. 
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To support the broader exploration of design spaces, for example, a long-term 

goal is to find ways of connecting algorithms for design space exploration with those 

for performance assessment of metabolic processes. We also need tools for the 

automated transformation of high-level representations into lower-level schematics for 

detailed implementation, and for automated transformation between visual 

representations (e.g., SySML to SBGN where similarities exist). Finally, we envision 

the use of optimization-based design tools that will assist a designer in the efficient 

exploration of a design space. Subsystems will be integrated together by connecting 

interface representations for each of the participating subsystems.  

2.1.4 - Systems Integration  

System integration is the process of bringing together the component 

subsystems into one system and ensuring that the subsystems function together as a 

single system. To simplify the design and management of the system operation, these 

subsystems will have interfaces that expose to the outside world the mechanisms for 

communication and hide internally, the mechanisms of subsystem functionality. Thus, 

integration can be viewed as joining the subsystems together by gluing their interfaces 

together. If the interfaces do not interlock directly, then adapters can be designed to 

provide the required mappings (or glue).  

Figure 6 (an extension of Figure 5) shows the details for how high-level visual 

modeling languages, such as SysML, can act as the glue for the integration of formal 

models for guided design space exploration and detailed simulation. By itself, SysML  
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Figure 6 - Framework for integration of semi-formal models with formal models 

enables systems integration through its use of requirements diagrams, structural 

constructs, and parametric, logical, and dependency relationships. The hope is that 

SysML will also be a suitable abstract visual representation for metabolic systems, with 

the potential to interface with algorithms such as OPTKNOCK, and FBA simulations as 

they are implemented in MATLAB (details to follow in Chapter 3).  

2.2 – Semi-Formal Models for Metabolic Engineering 

Standardized graphical representations, such as the Systems Modeling 

Language (SysML) or Systems Biology Graphical Notation (SBGN) provide a means 

to describe products of conceptual design such as models of system functionality and 

high-level requirements.  

2.2.1- Goals and Scenarios 

The primary design goal for this work is efficient production of a metabolite of 

interest within a metabolic system subject to rigid constraints for homeostasis (life-

maintaining processes). Restated, in order for a metabolic system to be considered 

functional, the cell cannot die! Modifying metabolic systems for the purpose of 
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increasing or decreasing formation of certain metabolites falls under performance 

requirements. Metabolic engineering experiments tend to be oriented towards 

optimization of target metabolites while still maintaining a cell’s living state.  

2.2.2 – Abstraction: Ad Hoc Metabolic Engineering Diagrams 

Within the biochemical community, SBGN (Systems Biology Graphical 

Notation) provides a family of language for shown process flow, entity relationships 

and flows of information. For example, the SBGN Process Description Language 

provides a standardized graphical notation for showing the temporal courses of 

biochemical/molecular interactions taking place in a network of biochemical entities. 

 

Figure 7 - Metabolic Engineering Diagrams (Yang et al, 2011; Boyle et al, 2011) 



18 
 

 

While most metabolic engineering diagrams do not adhere to a particular 

standard, there are some common design principles that researchers do tend to follow 

when presenting their data in the field. One of the most important metrics for metabolic 

engineers is metabolic flux. Metabolic flux can also be thought of as the flow rates at 

which reactions proceed, or also the flow of carbon atoms through a series of reactions. 

For this reason, metabolic engineers place primary emphasis on showing the metabolic 

flux through a system, and secondary emphasis on showing the system itself. A 

common way to show differences in flow is through size, color, and shape (Agrawala et 

al, 2011). The examples from Figure 7 demonstrate this. On the left side, grey 

represents zero flow, green represents low flow, and yellow represents high flow. On 

the right side, the size of the arrows represents flow rate, with thicker arrows indicating 

higher activity. While this method works well on an ad hoc basis, it is not device 

independent (i.e., it is easily affected by rescaling and/or photocopying). Lack of a 

standard has resulted in a plethora of different diagram types and formats with 

individual syntax and semantics.  

2.2.3 - Abstractions: SBGN  

 SBGN is the result of efforts from the biological community to develop a 

standardized visual language for the greater biological community, one that overcomes the 

shortcomings of ad hoc visual languages used in previous generations of work. A summary of 

these shortcomings can be found in Table 1. In order to address these problems, the SBGN 

development community created three types of visual languages: (1) Process diagrams, (2) 

Entity relationship diagrams, and (3) Activity flow diagrams. Examples of all three are seen in 
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Figure 8, along with a summary of the relative advantages and disadvantages of each 

one (Table 2).  

Table 1 - Features and problems of ad hoc graphical notations (Novere et al, 2009) 

 

Feature Problem(s) 

Different line thicknesses distinguish 

different types of processes or elements 

1. Rescaling a diagram can make line 

thicknesses and styles impossible to discern 

Dotted or dashed line styles distinguish 

different types of processes or elements 

2. Photocopying or faxing a diagram can cause 

differences in line thicknesses and styles to 

disappear 

  

3. Differences in line thickness and style are 

difficult to make consistent in diagrams drawn 

by hand 

Different colors distinguish different 

types of processes or elements 

1. Photocopying or faxing a diagram will cause 

color differences to be indistinguishable 

  

2. color characteristics are difficult to achieve 

and keep consistent when drawing diagrams by 

hand 

Identical line terminators (e.g., a single 

arrow) indicate different effects or 

processes depending on context 

1. Greater ambiguity is introduced into a 

diagram 

  

2. Interpreting a diagram requires more thought 

on the part of the reader 

  

3. Automated verification of diagrams is more 

difficult due to lack of distinction between 

different processes or elements 

Ad hoc symbols introduced at will by 

author 

Interpreting a diagram requires the reader to 

search for additional information explaining the 

meaning of the symbols.  
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Figure 8 - SBGN examples: (a) process diagram, (b) entity relationship diagram, (c) SBGN activity flow 
diagram (Novere et al, 2009).  
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Table 2 - Comparison between the three languages of SBGN (Novere et al, 2009) 

  Process diagram Entity relationship diagram 
Activity Flow 
diagram 

Purpose 

Represent processes that 

convert physical entities 

into other entities, change 
their states, or change 

their location 

Represent the interactions 
between entities and the rules 

that control them 

Represent the 

influence of 

biological 
activities on 

each other 

Building 
Block 

Different states of 

physical entities are 
represented separately 

Physical entities are 
represented only once 

Different 

activities of 
physical 

entities are 

represented 
separately 

Ambiguity 

Unambiguous 

transcription into 
biochemical events 

Unambiguous transcription 
into biochemical events 

Ambiguous 

interpretation 

in biochemical 
terms 

Level of 

Description 

Mechanistic descriptions 

of processes 

Mechanistic description of 

relationships 

Conceptual 

description of 

influences 

Temporality 

Representation of 

sequential events 

Absence of sequentiality 

between events 

Representation 

of sequential 

influences 

Pitfalls 

Sensitive to combinatorial 
explosion of states and 

processes 

Creation, destruction, and 
translocation are not easily 

represented 

Not suitable to 
represent 

association, 

dissociation, 
multistate 

entities 

Advantages 

the best for representing 

temporal/mechanistic 

aspects of processes such 
as metabolism 

The best for representing 

signaling involving multistate 
entities 

The best for 

functional 
genomics and 

signaling with 

simple 
activities 
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Figure 10 - Glyphs for SBGN Process Diagrams 

Figure 9 - SBGN Process diagram for Glycolysis 
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Summary of SBGN Process Diagram Notation. Figure 10 is a reference card which 

describes the various types of glyphs specific to the process diagram language of 

SBGN, and Figure 9 is a depiction of glycolysis using the process diagram language. 

These are included to give the reader some familiarity with how to read SBGN 

diagrams, which will be used in Chapter 3 to represent the experimental results.  

The process diagram shows the transformation of glucose to glucose-6-

phosphate, to fructose-6-phosphate, etc. all the way through to pyruvate in the 

metabolic process of glycolysis. These are all simple chemicals represented by circles. 

Each reaction is a process represented by a square, and each step is catalyzed by a more 

complex macromolecule enzyme. Catalysis is represented by small circles near squares 

and macromolecules are represented by rounded rectangles. Repeated molecules, such 

as ATP, are partially filled in.  

The notation is designed so that a user can see with a quick glance what the 

main enzymes are, what the commonly repeated molecules are, what the main reactants 

are and how they fit together in the process of glycolysis.  

2.2.4 - Abstractions: SysML 

The Systems Engineering Markup Language, SysML, is a standard visual 

language for communication of system development product and process concepts, 

such as requirements, models of system behavior and structure, and support for 

parametric studies.  
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The concepts of SysML build upon those of UML (the Unified Modeling 

Language), a similar visual language for communication of software products and 

processes. UML was developed by the Object Management Group during the 1990s. 

SysML was also developed by the Object Management Group, but during the 2002-

2005 time frame. During the past two decades, UML has evolved to meet the 

expanding demands of the software community. For example, UML 2 added features to 

support the development of software for real-time systems. To our knowledge, 

however, SysML has not been used to model biological systems. 

 

The primary uses for UML and SysML are to provide engineers with a 

collection of visual formalisms (i.e., types of diagrams) to express system behavior and 

architecture in the form of entities, processes, activities, components, and relationships 

between components. SysML can be subdivided into three groups of support (as shown 

in Figure 11): (1)Structural constructs, which tend to take the form of block diagrams 

Figure 11 - SysML Taxonomy (OMG: SysML v 1.2, 2010) 
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and depict the components of a system, (2)Behavioral constructs, which depict the 

interactions between components of a system, and (3)Requirement diagrams. Note that 

it is possible to create diagrams which combine both structural and behavioral 

constructs, e.g., nesting a state machine inside a block.  

Focus on internal block and parametric diagrams. It is generally accepted that 

metabolic flux is a key parameter in metabolic engineering. The process flows and 

transformation reactions can be represented as a hierarchical graph of blocks, ports, and 

connections. In order to successfully integrate the constraints as defined by metabolic 

flux into a SysML diagram, it makes sense that we use internal block diagrams and at a 

more detailed level, parametric diagrams.  

To see how this might work in practice, Figure 12 and Figure 13 are SysML 

compliant internal block diagram and parametric diagram depictions of a distiller 

example, as developed in the text of Friedenthal 2009. 

  

Figure 12 - Internal Block Diagram of a Distiller (Friedenthal et al, 2009) 
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One can see from Figure 12 how the distiller works. There are three types of 

flows: H2O, Heat, and Residue, and three major components: a heat exchanger, a 

boiler, and a drain. Heat flows into the system and to the boiler. Water flows through 

two loops. The first loop flows into the system, through the heat exchanger, and then 

out of the system. The second loop is a closed loop flowing between the heat exchanger 

and the boiler. Residue flows from the boiler out of the system through a drain valve.  

 

Figure 13 - Parametric Diagram of a Distiller (Friedenthal et al, 2009) 

Figure 13 also represents the distiller. However, its emphasis is on describing 

the parameters which describe the material flows in Figure 12. For each item flow, 

there is a list of value properties and value bindings, e.g., temperature and flow rate 

properties. Additionally, each of these listed item flows is linked to multiple constraints 

which can be called out with defining equations and proportionalities.  

Thus, while a biology-specific layer of SysML does not exist, our experience 

with metabolic engineering suggests that Internal Block Diagrams with potential 
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parametric specifications and constraints would be the best SysML notation for 

representing metabolic systems. 

2.3 - Formal Models for Metabolic Engineering 

For metabolic engineering, formal models are needed for the accurate and 

quantitative evaluation of system behavior (e.g., metabolic process production) and 

efficient design space exploration. The best formal model system analysis tool that 

allows for detailed simulations of metabolic systems is flux balance analysis (FBA). By 

optimizing for biomass, and setting the parameters so that they reflect the reactions 

which have been modified, one can get a good idea for how a metabolic system will 

perform. 

Design space exploration takes the form of various algorithms which can 

winnow the metabolic landscape down and identify key bottleneck reactions which can 

be modified to redirect cellular traffic towards pathways of interest. Examples of such 

algorithms include GDLS (Lun et al, 2009), EMILiO (Yang et al, 2011), OptORF (Kim 

et al, 2010) and OPTKNOCK (Burgard et al, 2003). The general purpose of these 

algorithms is to apply a linear programming based framework which will identify key 

reactions or genes whose modification (in the form of knockouts or overexpression) 

will result in optimization of a target metabolite. As the oldest of the algorithms 

mentioned, OPTKNOCK has become the standard benchmark algorithm within 

metabolic engineering. 

2.3.1 - Flux Balance Analysis 

Expressing a biological system in mathematical terms enables the researcher to 

use linear algebra to find mathematical solutions for experimental problems at a high 



28 
 

level of abstraction. Consider Figure 14. Visually, a researcher can see from the 

diagram that the flux r0 breaks into two flux branches, r1 and r2. The r1 flux continues 

to the r3 flux, and the r2 flux continues to the r4 flux. Thus, r1=r3, r2=r4, r1+r2=ro, and 

r3+r4=0. Figure 15 verifies this mathematically. While the flux through the network in 

Figure 14 is easy to visualize, as networks become more complex, convoluted, and 

interconnected, we have to rely increasingly on mathematical abstraction for analysis. 

The standard method of mathematically representing a genome scale system and 

predicting biomass formation is the process known as flux balance analysis. 

Figure 14- How to translate a reaction network into a linear algebra expression with stoichiometric 
matrix and flux vector. (Athanasiou et al, 2003) 
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In order to understand flux balance analysis (which is essentially metabolic flux 

analysis at the genome scale), it helps to understand metabolic flux analysis.One takes a 

reaction network and breaks it down by reaction. Depending on whether a metabolite is 

produced or consumed, one can assign a positive or negative coefficient to the flux 

vector (which is equivalent to the rate of consumption/production) in the individual 

metabolite rate expressions. This coefficient will be the number expressed later in the 

stoichiometric matrix (where every row corresponds to the concentration of one 

compound, and every column corresponds to the flux of one reaction).  

One can then set up a linear algebra equation of dx/dt = Sv, where dx/dt is the 

change in concentration of a column of reactants, S is the stoichiometric matrix (based 

on the coefficients for each individual reactant rate expression), and v is the flux 

through each reaction. The major assumption of metabolic flux analysis is that all 

internal metabolites have a steady state of 0. Since one can measure external 

Figure 15 - Applying Steady State and solving for fluxes using linear algebra (Athanasiou et al, 2003) 
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metabolites to obtain values, one can then set dx/dt=0 for the internal metabolites and 

solve for the unknown fluxes using linear algebra (Figure 14 and Figure 15).  

Flux balance analysis is metabolic flux analysis at the genome scale (Orth et al, 

2010; Palsson, 2006). The major concepts from metabolic flux analysis are still the 

same. S is still the stoichiometric matrix, and v is still the flux vector. Internal 

metabolites still have an assumed steady state of 0. However, there are now a much 

greater number of unknowns due to the larger system scale. With a larger system scale, 

the number of unknowns exceeds number of knowns, resulting in a solution space, and 

not a specific solution (Figure 16).  

 

Figure 16 - Flux balance analysis – The allowable solution space is the set of all points satisfying all 
constraints. These constraints are represented by mass balance equations (which assure that any 
compound produced must equal the amount consumed at steady state) and capacity constraints (in the 
form of upper and lower bounds, which are usually based on experimental values). If a linear program 
has a non-empty bounded feasible region, then the optimal solution is always one of the corner points. 
(Orth et al, 2010).  

In order to find an optimal solution within the solution space, one needs to apply 

constraints, set an objective function c
t
v=Z, where c is a vector of weights indicating 

how much each reaction contributes to the objective function, and maximize the 

objective function. Ultimately, the objective function quantifies how much each 

reaction contributes to overall phenotype. The mathematical representations of the 

stoichiometric function and objective function set up a system of linear equations which 
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can be optimized using linear programming based algorithms to find the solution. Since 

the constraints define a non empty and bounded solution space, the optimal solution 

will always be at one of the corners (Figure 17 and Figure 18).  

 

Figure 17 - (1) The feasible region of any linear program is always a convex set and (2) The iso-value 
line of a linear program objective function is always a linear function. Combining these two concepts, it 
follows that if a linear program has a non-empty, bounded feasible region, the optimal solution will 
always be one of the corner points (Arsham 2011).  
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Figure 18 - Flux Balance Analysis - Overall Approach (Orth et al, 2010) 

2.3.2 - OPTKNOCK Algorithm 

The OPTKNOCK algorithm is a bilevel programming algorithm (Figure 19), 

meaning it takes the cellular objective function (as described in the previous flux 

balance analysis section) and then runs it while also maximizing a surrounding 

bioengineering objective (through the reaction knockouts) (Burgard et al, 2003). 
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Figure 19 - OPTKNOCK algorithm framework (Burgard et al, 2003) 

Below is the Sv=0 function (the stoichiometric matrix multiplied by the flux 

vector at steady state, as discussed in the section regarding FBA) rewritten within 

context of maximizing flux towards the cellular objective (that is, the target pathway).  

                                        

               
 
           N  

                                       

                                    

                  
      

       

          Mirrev 

          Msecr_only 

          Mrev 

Next one accounts for gene deletion/reaction elimination; this constraint ensures 

reaction flux is zero only if the yj is zero, i.e., reaction is knocked out .  
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The next step is combination of the reaction knockout and objective function 

into the bilevel programming framework as illustrated in Figure 19. In other words, for 

every reaction knockout the algorithm is also maximizing the cellular objective 

function. Figure 20 shows the bilevel programming framework with the relevant 

equations plugged in.  

 

Figure 20 - Bilevel programming framework - maximizing cellular and bioengineering objectives 
(Burgard et al, 2003) 

This is where we apply linear programming to find the solution (i.e., the 

knockout which results in the highest flux redirected towards our target reactions). 

There is a rule in linear programming where for every linear programming problem 

(primal), there exists a unique optimization problem (dual) whose optimal objective 

value is equal to that of the primal problem. 

The dual problem associated with the OPTKNOCK inner problem is as follows. 
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Note that both the primal and dual problems are bounded by constraints in the form of 

reaction knockouts, stoichiometric coefficients, and glucose uptake inputs. When 

bounded by these constraints the primal and dual problems are equal to each other at 

the optimal point. They can then be rewritten in order to solve for that optimum, which 

corresponds to our solution (i.e., the knockout which results in the highest flux 

redirected towards our target reactions).  
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2.4 - Formal Model Interface Design for Systems Integration 

Now that the details for the semi-formal and formal modeling are in place, the 

next issue to consider is interface design for the systems integration of models from 

metabolic simulation and design space exploration. 

 

 

 

The upper-half of Figure 19 is a Venn diagram of the relationship between SysML and 

SBGN. Although the formalisms for both visualizations have been designed to serve 

the needs of distinct communities, most of the distinctions are at the syntax level. There 

is, in fact, a surprising overlap in features common to both representations. The notable 

differences crop up in the visual representation of biology-specific glyphs and flow-

based modeling. The three SBGN diagrams (process diagrams, entity relationships 

diagrams, and activity flow diagrams) are oriented respectively towards representing 

temporal/mechanistic aspects of biochemical processes (e.g., metabolism), signaling 

interactions between multistate entities (e.g., hormonal cascades), and biological 

Figure 21 – Venn Diagram showing common and distinct features of SysML and SBGN, 
together with a framework for wrapping formal models with SysML interface constructs (e.g., 
ports). 
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influences (e.g., gene regulation). Process diagrams correspond in SysML notation to 

structural constructs such as block diagrams, internal block diagrams, constrained block 

diagrams and to some extent behavioral constructs such as state machine diagrams. 

Entity relationship and activity flow diagrams correspond in the SysML notations to 

behavioral constructs such as activity diagrams.  

The defining characteristic of SBGN is its customization and use of visual 

constructs for communication of ideas in biology. This is a good thing. Our supposition 

is that SBGN can be combined with SysML, resulting in a system representation that 

communicates ideas and acts as an interface to models for flow-based modeling (e.g., 

metabolic flux analysis and design explorations enabled through the use of 

OPTKNOCK).  
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Chapter 3 – Metabolic Engineering Experiment 

3.1 – Background 

3.1.1 – Semi-formal Model Design - Goals 

The second purpose of this paper is to demonstrate the effectiveness of the 

framework discussed in Chapter 2, through application to a metabolic engineering 

experiment.  

This process begins with the semi-formal model design portion of our 

framework (see the upper half of Figure 5) and the formulation of experimental 

goals/scenarios, followed by the generation of requirements. Accordingly, the objective 

of this experiment is to determine which reaction knockouts will maximize production 

of the metabolite artemisinin in our genetically engineered strain of yeast. The 

performance requirement is to maximize production of artemisinin. The functional 

requirement is to maximize production subject to the constraint of maintaining 

homeostasis.  

The experimental procedure will determine the reaction knockouts using the 

OPTKNOCK algorithm, and verify the predicted results using flux balance analysis 

(FBA) simulations. Finally, we will present the results in visual form using a 

combination of ad hoc metabolic engineering diagrams, SBGN, and SysML.  

3.1.2- Motivation and History 

Malaria is an infectious disease which affects nearly 200-250 million people and 

kills nearly 700,000-1,000,000 people annually (World malaria report 2010). The 

majority of those who die from infection live in poverty and cannot afford access to the 

current anti-malarial drug standard, artemisinin. Consequently, any scientific advances 



39 
 

which can help lower the cost of artemisinin will translate into greater accessibility to 

the drug worldwide. There have been two such major scientific advances in the past  

five years. The first involves the reengineering of yeast to manufacture artemisinic acid, 

a precursor to artemisinin (Ro et al, 2006), and the second, the creation of an alternative 

“dihydro” pathway within yeast which enables synthesis of artemisinin in situ in the 

presence of activated oxygen (Zhang et al, 2008).  

3.1.3 – Advance 1: CYP71AV1/CPR Pathway 

The high cost of Artemisinin stems from the extraction process of the drug from 

the herb Artemisia annua (A. annua). Researchers at UC-Berkeley (hereafter referred to 

as the Keasling group) have developed a procedure to cut the costs of drug 

development by genetically engineering S. cerevisiae to produce artemisinic acid, a 

precursor to artemisinin (Ro et al, 2006). By sourcing the drug from microbes instead 

of plants, overall production time is decreased from months to days, and biomass 

fraction increases from 1.9% to 4.5%, resulting in nearly two orders of magnitude of 

productivity improvement.  

The Keasling group’s strategy for producing artemisinin in S. cerevisiae 

consists of three major steps: 

1. Increase farnesyl pyrophosphate (FPP) production. As illustrated in Figure 

22, this was done by upregulating the expression of tHMGR and ERG20, 

and downregulating the expression of ERG 1-8, 11-13, 24-25.  
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Figure 22 - Schematic Representation of engineered artemisinic acid biosynthetic pathway in S. 
cerevisiae (Ro et al, 2006) 

 

2. Introduce the amorphadiene synthase (ADS) gene into the genetic sequence 

of S. cerevisiae in order to convert FPP to amorphadiene. To drive carbon 

towards the inserted ADS pathway, the Keasling group uses a methionine-

repressible promoter to downregulate ERG9, the gene which expresses the 
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enzyme squalene synthase (red), and catalyzes the next step in the 

mevalonate pathway in wild type yeast.  

3. Insert genes CYP71AV1 and CPR from A. Annua to express enzymes from 

the family cytochrome P450. These enzymes catalyze the oxidation of 

amorphadiene to artemisinic acid.  

3.1.4 – Advance 2: DBR2 Pathway 

A second group of researchers from the Canadian Plant Biotechnology Institute 

(hereafter referred to as the Covello group), have determined that the gene DBR2, a 

complementary DNA clone isolated from the flower buds of A. annua, corresponds to 

artemisinic aldehyde double bond reductase activity in A. annua. As illustrated in the 

highlighted portion of Figure 23, when S. cerevisiae uptakes the DBR2 gene, it creates 

a new metabolic pathway from artemisinic alcohol to dihydroartemisinic acid (Zhang et 

al, 2008).  

In this pathway, artemisinic alcohol is converted to dihydroartemisinic alcohol 

through the action of the double bond reductase enzyme, as regulated by the DBR2 

gene. The double bond reductase eliminates the nonring double bond in artemisinic 

alcohol by adding two atoms, resulting in the nickname “dihydro” pathway. While the 

researchers were unable to identify what specific enzymes controlled for the continued 

oxidization of dihydroartemisinic alcohol to dihydroartemisinic acid, oxidation did take 

place, just as artemisinic alcohol oxidized to artemisinic acid in three steps.  
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Figure 23 - Covello Group Pathway (Source: Zhang et al, 2008) 

A key benefit of dihydroartemisinic acid is that it quickly converts to 

artemisinin in the presence of activated oxygen. Artemisinic acid, on the other hand, 

requires two additional steps in order to isolate artemisinin. In other words, this means 

that in a scale-up facility, a researcher can simply run an oxygenating hose through a 

bioreactor and produce artemisinin in situ, thereby avoiding the need for time-

consuming extraction steps. This lowers the overall cost (Acton et al, 1992).  
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It is important to note that the new strains of yeast developed by the Covello 

group contain both the “dihydro” pathway and Keasling Group pathways. While the 

“dihydro” pathway presents productivity and economic advantages, the enzymes that 

catalyze the formation of artemisinic acid from artemisinic alcohol play important roles 

upstream within the overall yeast metabolic network. The creation of a new “dihydro” 

only strain of yeast requires validation and verification to ensure that knockouts forcing 

carbon to the “dihydro” route do not affect the performance of the overall metabolic 

network.  

3.2 - Formal Models for Metabolic Engineering 

For the formal model sections of our multi-level framework, design space 

exploration takes the form of determining which reaction knockouts will maximize 

production of artemisinin. To do this, we run a mathematical abstraction of a yeast 

model (as described earlier in Chapter 2) through the OPTKNOCK Algorithm. Then, 

with the OPTKNOCK results in hand, the next step is to verify those results using flux 

balance analysis (FBA) simulation. The latter coincides with the formal model analysis 

portion of our framework.  

3.2.1 - Tools 

The simulation and design space exploration elements of the in silico 

experiment employ MATLAB 7.11.0, a Tomlab/Cplex or Gurobi Linear Programming 

solver, the COBRA Toolbox for MATLAB, and a suitable yeast model.  

 MATLAB 7.11.0 is a software package, which after more than two decades of 

development, has become one of the standards for numerical analysis in the greater 

scientific community. CPLEX is a linear programming solver designed by IBM. The 



44 
 

Tomlab plugin allows a MATLAB user to run CPLEX from within MATLAB. Gurobi 

is an alternative linear programming solver free for academic users that runs within 

MATLAB. The COBRA (Constraint Based Reconstruction and Analysis) Toolbox is a 

package for MATLAB designed for in silico analysis of biological models. (Becker et 

al,2007; Hyduke et al 2011). I will discuss yeast models further on in Section 3.2.4. 

3.2.2 - Methodology 

Figure 24 provides a high level view of the procedure for design space 

exploration and simulation processes in the in silico experiment. The experimental 

procedure consists of the following steps: 

1. Prepare a SBML and COBRA compatible model of S. cerevisiae so that it 

accurately reflects the genotypes of the strains in possession and load the 

model into the COBRA Toolbox. 

2. Set parameters and constraints of the simulated environment. This involves:  

a. Define the media and nutrients available to the microbial culture; 

b. Remove reactions from consideration that would be difficult or unreasonable 

to knockout; 

c. Establish the target reaction to maximize flux towards (for our purposes, the 

artemisinin production biosynthetic pathway); 

d. Declare biomass formation to be the constraint reaction; 

3. With the aforementioned parameters and constraints in place, run the 

OPTKNOCK algorithm. OPTKNOCK will output a list of suggested reactions 

to knockout.  
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Figure 24 - Schematic of a Computational Metabolic Engineering Experiment 
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4. Run a flux balance analysis simulation on the preknockout model. The 

preknockout model is the same model that was run through the OPTKNOCK 

algorithm. Flux balance analysis will output simulated flux through target 

reaction and simulated biomass growth.   

5. Modify the preknockout yeast model to exclude the reaction knockout list as 

output by the OPTKNOCK algorithm. This is the postknockout yeast model.  

6. Run a flux balance analysis simulation on the post knockout yeast model to 

obtain post knockout results. Flux balance analysis will output simulated flux 

through target reaction and simulated biomass growth.   

7. Verify the results of the simulation. For Step 7, there are two indicators that 

the algorithm worked: (1) The simulated maximum flux through the target 

reaction should correspond with OPTKNOCK’s prediction, and (2) The 

maximum flux should increase through the target pathway going from the 

Preknockout model to the Postknockout model.  

Step 3 of this procedure (OPTKNOCK) corresponds to the design space exploration 

quadrant of the systems engineering framework. Step 4 of this procedure (Flux Balance 

Analysis) corresponds to the simulation quadrant of the systems engineering 

framework.  

3.2.3 - Preparing the Model 

The most current curated model of yeast is referred to as the Yeast Consensus 

Model, available at: http://www.comp-sys-bio.org/yeastnet/ (Herrgard et al, 2008). 

While it would have been the ideal model to use as the basis for the simulation 

experiment, we found that the Yeast Consensus Model is neither SBML (systems 

http://www.comp-sys-bio.org/yeastnet/
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biology markup language) nor COBRA compliant. Furthermore, although the protocol 

behind SBML compliance can be extensive in its own right, a general overview of what 

compatibility entails will suffice here (Hucka et al, 2003). 

Within the model, there are two categories of classes: (1) reaction classes and 

(2) metabolite classes. To be SBML compatible, each reaction class must have 

attributes that include the abbreviation for the reaction, the name(s) of the compounds 

in the reaction, the equation of the reaction, the cellular compartment in which the 

reaction takes place (e.g., cytosol, mitochondria, ribosomes, etc), and the direction of 

the reaction (i.e., irreversible, reversible). In order for the model to be COBRA 

compatible, each reaction must also have a lower and upper bound with respect to flux 

for each direction of the reaction, along with an objective function status (either 0 or 1). 

For metabolite classes, SBML compatibility entails including attributes for a 

compound’s abbreviation, name, and formula. COBRA compatibility requires the 

attribute of compound charge. It is important to note that while additional attributes 

could be included within classes, such as EC (enzyme class) numbers, KEGG (Kyoto 

Encyclopedia of Genes and Genomes) abbreviations, and molecular weights, they are 

not necessary for SBML/COBRA compatibility. Of all the attributes listed above, the 

most important for the purposes of the simulation experiment is the equation, as the 

mathematical abstraction of the S. cerevisiae model will be based on this attribute. A 

practical caveat - because the equation is dependent on the compound abbreviations and 

direction of reaction, it is important to verify that both of these attributes also 

correspond correctly with the equations.  

Since the consensus yeast model was neither SBML nor COBRA compatible,  
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 the next best choice was the iMM904 model (note that i stands for in silico, MM are 

the initials of Monica Mo, who developed the model, and 904 is the number of genes in 

the model) (Mo et al, 2009). The iMM904 model corresponds to the genetic makeup of 

the wild type yeast strain S288C.  

The yeast strains used in the Sriram lab are derivatives of yeast strain W303 

from the Covello group, which has some differences from S288C with respect to 

genetic makeup that have to be accounted for in the model: 

 

S288C has the genotype: MATα SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6 

(Mortimer et al, 1986) 

W303 has the genotype: MATa/MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-

11,15} (Thomas et al, 1989) 

 

When observing genotypes, it is important to note that capitalized letters are 

working versions of the gene, and lower case letters are nonfunctional. Nonfunctional 

genes can be restored to functional status when the cell uptakes a plasmid with the 

gene.  

The following plasmids were taken up by the W303 genotype to generate the 

Sriram lab’s strains: (Zhang et al, 2008)  

 

Strain 1: pESC-HIS, pESC-LEU, pYES-DEST52-GUS2 

Strain 2: pESC-HIS-FPS-ADS, pESC-LEU-CYP-CPR, pYES-DEST52-GUS. 

Strain 3: pESC-HIS-FPS-ADS, pESC-LEU-CYP-CPR, pYES-DEST52-DBR2 
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Each plasmid contained its own strain-dependent combination of pathways. 

Being a control, Strain 1 received a control plasmid which reactivated histidine, 

reactivated leucine, and contained a placeholder gene DEST52-GUS. Strain 2 contained 

the artemisinic acid production pathway which consists of the ADS genes and the CYP-

CPR genes (refer Figure 22) along with the DEST52-GUS gene. Strain 3 contained the 

genes coding for the artemisinic acid pathway and the dihydroartemisinic pathway 

(attached with the DEST-52 gene).  

For the purposes of modifying the model, this means that between S288C and 

W303, only the SUC2 gene and corresponding reaction need to be removed, as the rest 

of the genes are nonfunctional. An additional point to note is that the active versions of 

his, leu and ura3-52 in the model represent the yeast strain taking up the plasmids 

containing HIS, LEU, and DEST52. By taking up the plasmids, the yeast cell restores 

the ability to synthesize histidine, leucine, and uracil. After accounting for all of the 

aforementioned factors in the W303 strain, this leaves the genes trp1, ade2, and can1-

100. Any reactions controlled by active versions of these genes would have to be 

removed from the model in order to reflect the experimental strain. Table 3 contains a 

summary of all reactions removed from the iMM904 model. It coincides with Strain 1.  

Table 3 - Preparing the Yeast model – Strain 1 

REMOVALS 

(STRAIN 1)   

Gene RXN RXN Description 

SUC2 DGGH alpha-D-glucoside glucohydrase 

trp1 PRAIi  phosphoribosylanthranilate isomerase (irreversible) 

ade2 AIRCr  phosphoribosylaminoimidazole carboxylase  

can1-

100 ARGt2r L-arganine reversible transport via proton symport  
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When adding reactions to the model, it helps to reexamine the plasmids taken 

up by the strains. Every one of the capitalized genes, except for the promoters (pESC 

and pYES) will have to be accounted for in the strain reactions.  

As a case in point, Strain 1 took up the pESC-HIS, pESC-LEU, pYES-DEST52-

GUS2 plasmids. HIS, LEU, and DEST52 are already present in the model and GUS2 

regulates the expression of the enzyme beta-glucuronidase. However, none of the 

reactants for the reactions that beta-glucuronidase controls were present in the model as 

metabolites, meaning that this enzyme would be essentially inactive, and therefore not 

required in the model. This is why DEST52-GUS 52 is referred to as a placeholder 

earlier (as it is simply there as a control until it functions as a delivery vehicle for 

DBR2 in strain 3). 

Strain 2 took up the plasmids pESC-HIS-FPS-ADS, pESC-LEU-CYP-CPR, 

pYES-DEST52-GUS2. HIS, LEU, and DEST52 are already present in the model. 

Referring back to Figure 22 , one will remember that the FPS-ADS gene controls the 

conversion of FPP to amorphadiene, and that CYP/CPR controls the 3 step oxidation of 

artemisinic alcohol to artemisinic acid. While Strain 2 represents the Keasling group’s 

pathway in the simulation experiment, it is important to remember that the W303 strain 

is still genetically different overall from the Keasling group’s strain, BY4742. Thus, a 

true direct comparison between the Keasling group’s results and this experiment may 

not be possible. In order to represent the genotype of strain 2, the reactions in Table 4 

were added to the model for strain 1 (Table 3). 
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Table 4 - Preparing the Yeast model - Strain 2 

ADDITIONS 

(STRAIN 2)     (in addition to strain 1 removals)  

Gene  RXN RXN Description 

FPS-ADS ADS  Amorpha-4,11-diene synthase 

CYP-CPR ARTALC_CYP7 amorph-4,11-diene to artemisinic alcohol 

CYP-CPR ARTALD_CYP7 artemisinic alcohol to artemisinic aldehyde  

CYP-CPR ARTACID artemisinic aldehyde to artemisinic acid 

 

Strain 3 took up the plasmids pESC-HIS-FPS-ADS, pESC-LEU-CYP-CPR, and 

pYES-DEST52-DBR2 plasmids. Referring to Figure 23, one will remember that the 

DBR2 gene controls for the conversion of artemisinic alcohol to dihydroartemisinic 

alcohol, i.e., the “dihydro” pathway. Strain 3 essentially represents the Covello group’s 

strain in the simulation experiment, which included both the Keasling group’s pathway 

and the “dihydro” pathway. The reactions listed in Table 5 were added to the strain 2 

model (seeTable 3 and Table 4 ) to accurately represent the strain 3 genotype.  

Table 5 - Preparing the Yeast Model - Strain 3 

ADDITIONS  

(STRAIN 3)     

Gene  RXN RXN Description 

DBR2 DBR2 artemisinic aldehyde to dihydroartemisinic aldehyde  

DBR2 DARTACID dihydroartemisinic aldehyde to dihydroartemisinate  

 

3.2.4 - Setting Parameters and Constraints 

Preparation of the simulation environment begins with the setting of parameters 

and constraints for the availability of amino acids and nutrients from the media (Becker 

et al, 2007; Hyduke et al, 2011). Since the laboratory media is galactose based, the 

simulation set galactose uptake to 11.1 mol•gDW
-1

• h
-1. And since the W303 derived 
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strains lack capability to produce adenine and tryptophan, those two nutrients would 

have to be present within the media, or else there would be no flux. Uptake for these 

two nutrients was set to 0.01087 mol•gDW
-1
• h

-1
and 0.009803 mol•gDW

-1
• h

-1. For 

additional details regarding the media makeup, please consult the MATLAB code in 

Appendix A.  

When choosing reactions to remove from further consideration in the design 

(i.e., knockout), the simulation essentially picked biomass, reactions involving ATP 

synthase, exchange and transport reactions, reactions not linked to genes, dead end 

reactions (i.e., zero flux) and the stated target reaction. The omission of the target 

reaction and biomass in reactions for potential knockout is intuitive. Exchange, 

transport, and non-gene linked reactions were not included as they tend to be harder to 

knockout through genetic engineering. Reactions involving ATP synthase are crucial 

for cell homeostasis, and thus necessary towards meeting our functional requirement of 

making sure the cell does not die (Feist et al, 2010).  

The target reactions for maximization of flux varied with each strain, and are 

summarized in Table 6. For Strain 1, the target reaction was designed to maximize flux 

towards the reaction which produces FPP (the reactant which converts to amorphadiene 

in the presence of the enzyme controlled by the gene ADS), referred to in the model as 

GRTT. For Strain 2, the target reaction was the reaction to form artemisinic acid, 

referred to in the model as ARTACID. For Strain 3, the target reaction was the reaction 

to form dihydroartemisinic acid, referred to in the model as DARTACID.  
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Table 6 - List of Target Reactions 

Strain RXN RXN Description RXN Equation 

RXN 

Compartment 

1 GRTT 

Geranyl- 

transtransferase 

grdp[c] + ipdp[c] -> 

frdp[c] + ppi[c]  

Sterol 

Metabolism 

2 ARTACID 
artemisinic aldehyde 
to artemisinic acid 

artCHO[c] + nadph[c] <=> 

artCOOH[c] 

Artemisinin 

Pathway 

3 DARTACID 

dihydroartemisinic 

aldehyde to 

dihydroartemisinate 

dhartCHO[c] + nadp[c] + 

h2o[c] <=> dhartCOO[c] 

+ nadph[c] + 2 h[c] 

Dihydro 

Artemisinin 
Pathway 

 

3.2.5 - OPTKNOCK Results and FBA Verification 

Table 7 is a summary of the results of the metabolic engineering experiment.  

Table 7 - OPTKNOCK Results and Verification (Units: mol•gDW-1• h-1) 

  STRAIN 1 

Growth Rate of 

Yeast Cells Targeted RXN = GRTT  

Trial 

# Suggested KO 

Optknock 

Prediction 

PreKO 

Biomass  

PostKO 

Biomass 

PreKO Max 

Flux 

PostKO 

Max Flux 

1 HICITDm 2.5098 0.1098 0.057 2.4393 2.5209 

2 HACNHm / UGLT 2.5098 0.1098 0.057 2.4393 2.5209 

3 
ADK1 / SACCD1 / 
G6PDH2 2.5098 0.1098 0.057 2.4393 2.5209 

              

  STRAIN 2 

Growth Rate of 

Yeast Cells 

Targeted RXN = 

ARTACID  

Trial 
# Suggested KO 

Optknock 
Prediction 

PreKO 
Biomass  

PostKO 
Biomass 

PreKO Max 
Flux 

PostKO 
Max Flux 

1 HACNHm 2.593 0.1098 0.057 2.5199 2.6045 

2 

ACONT / 

HICITDm 2.593 0.1098 0.057 2.5199 2.6045 

3 SACCD2 2.593 0.1098 0.057 2.5199 2.6045 

              

  STRAIN 3 

Growth Rate of 

Yeast Cells 

Targeted RXN = 

DARTACID  

Trial 
# Suggested KO 

Optknock 
Prediction 

PreKO 
Biomass  

PostKO 
Biomass 

PreKO Max 
Flux 

PostKO 
Max Flux 

1 SACCD2 2.558 0.1098 0.057 2.4859 2.5694 

2 ADK1 / SACCD2 2.558 0.1098 0.057 2.4859 2.5694 

3 HICITDm / ILETA 2.558 0.1098 0.057 2.4859 2.5692 
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And Figure 25 is a graphical representative of the pre and post knockout fluxes for each 

strain. 

 

Figure 25 - A Bar Graph Comparing Pre and Post Knockout fluxes for each strain 

As indicated in Figure 24, validation corresponds to a two check procedure: (1) 

Agreement between the OPTKNOCK prediction and the FBA PostKO Max Flux 

simulation, and (2) An increase in maximum flux through the targeted reaction. It is 

important to remember that our functional requirement is to maintain homeostasis 

within the cell. As long as the growth rate of biomass is greater than 0.0, then we will 

have met the functional requirement.  

The OPTKNOCK predictions and post knockout FBA max flux simulation 

through the target reaction agree, as they are always within 0.012 mol·gDW
-1

· h
-1

 of 

each other. 
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A comparison of the preKO and postKO max fluxes through the target pathway 

always showed an increase of 0.080-0.085 mol·gDW
-1

· h
-
1. When comparing pre and 

post knockout flux, it did not seem like this increase was particularly significant (with 

the change in flux between pre and post knockout models being less than 0.1). We 

would not anticipate results this small would show up experimentally.  

There is, however, a trend within these results, which will become more 

apparent with visualization. SACCD1, SACCD2, HACNHm, and HICITDm are all 

suggested knockouts that lie in the same pathway of lysine formation, the latter 

stemming from the combination of alpha keto glutarate and acetyl CoA (refer Figure 

26). One can logically hypothesize that knocking out reactions in this pathway would 

cause a buildup of acetyl CoA. This strategy is supported by Figure 22 and Figure 23, 

where one can see that acetyl CoA is the primary metabolite feeding into the 

mevalonate pathway, the site of our inserted genetically engineered pathways. Thus, an 

increase in acetyl CoA could feasibly translate into an increase in flux through our 

target pathways. From this perspective, the suggested knockouts make sense. Rather 

than having to produce its own lysine, the cell could obtain the amino acid lysine from 

the medium. In fact, it is possible that experimenting with the makeup of the media may 

result in higher and more significant changes in flux when comparing the pre and post 

knock out models.  
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Figure 26 - Lysine Metabolic Pathway  
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3.3 – Semi-Formal Models for Metabolic Engineering 

 The purpose of this section is to compare and contrast the strengths and 

weaknesses of the three types of abstraction (ad-hoc, SBGN, and SysML) for 

visualization of experimental results.  

Two key concepts associated with visualization are information hiding and 

encapsulation. With respect to the experiment, information hiding refers to the omission 

of all irrelevant pathways of interest, and encapsulation refers to the grouping of sets of 

reactions by their pathways. From the perspective of designing an efficient metabolic 

process, the most relevant pathways are: (1) The mevalonate pathway (on which our 

target reactions were inserted), (2) Glycolysis / the TCA cycle (on which a key 

metabolite, acetyl CoA, is produced), and (3) The pathway of lysine formation, which 

stems from the combination of alpha keto glutarate and acetyl CoA. These pathways are 

highlighted in Figure 27. Visualization techniques that draw attention towards these 

pathways, and eliminate information not needed for decision-making, will be helpful. 

 The first type of visualization, (see for example, Figure 27) employs an ad hoc 

notation for the visual display of yeast metabolism: use of this notation is state-of-the-art 

practice in the metabolic engineering field. This notation is ad hoc because it comes from 

a commercial toolbox and is not an industry standard. The ad hoc notation places an 

emphasis on showing flux and giving a bird’s eye view of the metabolic system. The 

second type of visualization (see Figure 28) involves an SBGN compliant diagram based 

on a single knockout run of strain 2. Its emphasis is on showing the topological 

connections between the metabolites. The third type of visualization (see Figure 29 and 

Figure 30) is a set of two SysML compliant diagrams that show a single knockout run of 
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strain 2. Figure 29 is an internal block diagram that emphasizes the connectivity of the 

reactions through which the carbon atoms flow. Figure 30 is a parametric diagram that 

shows how flow can be modeled using constraints.  

3.3.1 - Ad Hoc Abstraction 

This section briefly discusses the key visual abstractions, and advantages and 

disadvantages of the ad hoc visualization (associated with the COBRA Toolbox).  

Key Abstractions. The labeled segments act as abstractions, hiding information specific 

to nodes and encapsulating nodes on the same pathway together. Experienced Metabolic 

Engineers will have an intuitive understanding of the labeled pathways. Hence, they may 

not need to see individual nodes within a labeled segment in order to understand what is 

going on within the networks. Engineers without a metabolic engineering background 

may have difficulty understanding how the suggested knockout drives metabolic traffic 

towards Acetyl CoA and the artemisinic acid pathway.  

Advantages. The primary purpose of this ad hoc diagram notation is to provide a bird’s 

eye view of yeast metabolism. In Figure 27, each black node represents a compound, 

with each line between nodes representing a reaction. There are well over a thousand 

reactions represented here, so this type of diagram does a great job of showing how 

complex yeast metabolism is (with the pathways highlighted in yellow being our 

pathways of interest). The metabolic flux is represented via color and line thickness (in 

this case pink and blue show corresponding areas of high metabolic traffic). This type of 

representation can be useful in virtual space, since it allows for zooming in, zooming out, 

and creating external links to websites with information on each reaction / compound. 
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Figure 27 –A Non standard de facto Visual Abstraction generated using BIGG and the COBRA Toolbox (Hyduke et al, 2011)) 
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Disadvantages. First, it is impossible to see what is going on at a more detailed level 

without zooming in. A second disadvantage is the lack of clarity in how the different 

pathways represented as segments connect to each other. This problem can be mitigated 

by representing flux with color and line thickness is an intuitive way to show metabolic 

traffic; however, this potential solution is not device independent. To summarize, 

generally speaking, the COBRA Toolbox is relatively limited in terms of its visualization 

capabilities. The text-based layout means that the visual layout is rigid, with only the 

colors and line thickness of metabolic traffic being capable of modification (Hyduke et al, 

2011; Schellenberger et al, 2010). 

Figure 28 – SBGN compliant notation, generated using VANTED and SBGN-ED software (Junker et al, 2006; 

Czauderna et al, 2010). The target pathway for flux is highlighted and the suggested knockouts are 

crossed out.  
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3.3.2 - SBGN Abstraction 

This section briefly discusses the key abstractions, and advantages and 

disadvantages of SBGN as a visual formalism.  

Key Abstractions. The abstractions specific to SBGN and biology are as follows: simple 

molecules are represented by circles, with more complex compounds represented by 

rectangles with rounded corners. Repeated compounds are partially filled in. Reactions 

are represented by squares. Enzymes are marked by compounds linked to circles which 

modify the squares (See Figure 10 in Section 2.2.2 for the complete list of glyphs). The 

next important abstraction in SBGN is the subgraph. As illustrated in Figure 28, the 

subgraph is the functional equivalent of a black box in systems engineering and enables 

the user to condense a series of relevant reactions into a subgraph with links connecting 

the subgraph to other metabolites. Subgraphs are crucial abstractions as they enable 

encapsulation of a group of reactions in a pathway while hiding the details of each 

individual reaction, thereby freeing up space in the layout for the reactions of interest.  

Advantages. SBGN diagrams provide a visual representation for how the suggested 

knockout reaction (conversion of but-1-ene-1,2,4-tricarboxylate to homoisocitrate as 

catalyzed by the enzyme homoacontinate hydratase) drives traffic back towards Acetyl 

CoA, the key bottleneck. A second benefit stems from their use of biology-specific 

glyphs – that is, glyphs that allow for a quick understanding of the types of compounds 

present in a pathway.  

Disadvantages. The main disadvantage of SBGN, at least with respect to the needs of the 

metabolic experiment, is lack of a formal methodology for modeling flow. Metabolic flux 

is the key parameter for determining activity in metabolic networks. As a quick 
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workaround and for the time being, we were able to annotate some flow values, but there 

will need to be a formal abstraction for flux in order to actually model parameters and 

constraints. 

 

Figure 29 - SysML Visual Model for Pathways of Interest The target pathway for flux is highlighted and 
the suggested knockouts are crossed out.  
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Figure 30 - Parametric Diagram defining parameters and constraints between MICITD and HACNH reactions 

3.3.3 - SysML Abstraction 

In this section, we briefly describe the key visual abstractions, and advantages and 

disadvantages of SysML as a visual formalism for supporting metabolic experiments. 

Key Abstractions. SysML provides a wide range of diagram types for describing system 

structure, system behavior, requirements, and parametric relationships within a system. 

SysML is deliberately designed to be application neutral. For metabolic engineering, the 
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most useful types of diagram are black boxes and block diagrams. See, for example, 

Figure 29 and Figure 30. The key abstractions for the SysML visualization are the black 

boxes and the block diagram. Black boxes have a one to one relationship with the 

subgraphs of SBGN, thereby encapsulating a series of reactions together, and hiding the 

details of each individual reaction. The block diagram represents a reaction, with the 

reactants, products, catalyst listed as attributes, with :mf at each port representing 

metabolic flux. It should be noted that the decision to use reactants, products, and 

enzymes as attributes was not mandated by the SysML specification, but a decision on 

our end to show how SysML could add an additional layer of abstraction over the SBGN 

models, resulting in a fewer number of total entities.  

In order to show how SysML can model constraints and flows, we have also 

included a parametric diagram. For example, Figure 30 provides a detailed view of the 

constraints governing the MCITD and HACNH reactions. Using parametric diagrams we 

can set constraints based on the reaction stoichiometry (in this case 1:1), and 

experimental design (knockout indicates flux = 0). We were able to combine both 

constraints into one constraint using an if then statement and a block representing the 

external user. Since our purpose in creating the visualization prototype was only to make 

a point, we focused only on these two reactions. A more comprehensive example would 

attach constraints and parameters to every reaction in the network. The key point to note 

is that one can proceed through an entire pathway applying the rules and commands as 

set by the constraints, while outputting the associated parameters for tracking purposes. 

This capability would be an essential part of SysML becoming a central interface in a 

metabolic engineering design framework.  
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Advantages. As an established standard visual notation, SysML offers a lot of flexibility 

for the representation of metabolic networks. It has a formal methodology for 

representing flow, and it can show the topological connectivity of separate pathways. 

Looking ahead, BIOMEMS devices and systems are almost certain to become 

commonplace. Having a notation specific to machines also applied to biology may be 

useful for creating visual abstractions of machines interacting with living objects. 

Disadvantages. The main disadvantage of SysML is its lack of support for biology-

specific glyphs. To most straightforward compensation for this shortcoming is to write 

additional text (e.g., this is an enzyme) on the diagram. However, for all but the simplest 

systems, diagrams would quickly become cluttered, thereby obscuring a designer’s ability 

to understand the network structure and behavior. We suggest that this limitation can be 

overcome by integrating SysML with SBGN or whatever graphical user interface (GUI) 

the researcher prefers.  

3.4 - Systems Integration for Metabolic Engineering  

In Section 2.4, we discussed the possibility of using SysML as a centerpiece 

integrator, designed to link the four quadrants of the multilevel framework shown in 

Figure 5 and Figure 6. This section will discuss how the metabolic engineering 

experiment fits into the systems engineering framework (see Figure 31) and offer 

perspective on how a metabolic engineering experiment could fit into the framework 

through the use of SysML wrappers. 

Goals / Scenarios (Semi-Formal models) 

The pathway from goals and scenarios to requirements can be documented with Use Case 

and Requirements Diagrams. Requirements leads to the generation of experimental 
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objectives and constraints. For example, our metabolic experiment has the standard 

functional requirement to maintain a living state in the yeast cell, and the performance 

requirement of maximizing artemisinin production in the yeast metabolism. We 

hypothesize that once the standard functional requirements have been correctly expressed 

in SysML, theoretically, a researcher could automate the validation and verification of the 

requirement for every result generated in the formal models. By automating the back-

and-forth flow of data between the semi-formal and formal models, the time needed in 

order to determine the experimental feasibility of computational predictions will be 

reduced.  

Visual Abstraction (Semi-Formal models) 

As highlighted in Figure 21, there is a 1:1 relationship between many of the SBGN 

process diagram components and the components of a SysML internal block diagram. 

Recent research has shown that with XML representations for SysML and SBGN in 

place, it is certainly feasible to simultaneously display both types of diagrams, and 

synchronize user interface actions across the visualizations (Delgoshaei and Austin, 

2011). While there are no standards for displaying color/size based flows, constraints and 

parameters can certainly propagate through the SysML wrapper in the internal code and 

give output values for metabolic flux. Metabolic flux values can also be included as 

annotations in SBGN, or whatever visual format is preferred by the end user. With 

respect to the in silico experiment, no single diagram type provides superior visual 

support for understanding how choking the lysine pathway redirected flux to the 

artemisinin producing pathways. Therefore, for the time being, this means that multiple 

forms of visualization are essential.  
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Figure 31 - Systems Integration - Plugging the in silico metabolic engineering experiment into the Systems 
Engineering framework 
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Design Space Exploration and Simulation (Formal models) 

In the metabolic experiment both the design space exploration (OPTKNOCK) and 

simulation (FBA) were run using MATLAB and the COBRA Toolbox. Looking forward, 

we are not locked into this computational framework. There are, in fact, already 

interfaces on the market designed to wrap MATLAB code and scripts in a SysML 

interface (Bajaj et all, 2011). We note that because SysML provides support for flow-

based modeling, flows of data to and from the wrapper will be possible. Together, these 

features can work together to give researchers options. A technically experienced 

researcher may prefer to run the experiment at the MATLAB layer. Less technically 

experienced researchers will be provided with a way to access the same experiment by 

interacting with the graphical SBGN layer.  
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Chapter 4 – Conclusion 

4.1 - Summary 

This paper has served two purposes: (1) We have proposed a multi-level 

framework for the synthesis, analysis and design of metabolic systems, and (2) We have 

applied this framework to a metabolic engineering experiment.  

Design activities in the proposed framework are divided into four quadrants, and 

are based on formal models and semi-formal models for a network of linked system 

design and system analysis components. Goals and scenario analysis links semi-formal 

modeling to formal approaches to system design. Visual abstractions (e.g., SysML) are 

linked to formal approaches to system analysis. Design space exploration employs formal 

approaches to system design. Computer simulation employs formal approaches to system 

analysis. 

Various aspects of this framework have been exercised by working step by step 

through an in silico metabolic engineering experiment. The results indicate that 

interruption of the pathway driving carbon from alpha-keto glutarate and acetyl CoA 

towards lysine would maximize flux through our target pathways, increasing artemisinin 

production. This makes sense because interruption of the lysine production pathway 

causes a buildup of acetyl CoA, which feeds into the mevalonate pathway, the insertion 

site of the genetically engineered pathways for artemisinin production. Our framework 

corresponds to the following aspects of the in silico experiment:  

(1) Goals/scenarios involved maintaining a living state and maximizing 

production of the metabolite artemisinin;  
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(2) Visual abstraction involved ad hoc, SBGN, and SysML diagrams, which 

placed special emphasis on showing how reaction knockouts in the lysine pathway could 

redirect flux towards the artemisinin producing pathway;  

(3) Design space exploration took the form of running a yeast model through the 

OPTKNOCK algorithm; and 

(4) Computer simulation took the form of flux balance analysis.  

4.2 - Future Work 

 Biological systems are now considered to be the Holy Grail of systems 

complexity. This study has been a first step. Although the scope of this study has been 

restricted to single-celled organisms in the form of yeast, these systems are still complex 

systems, with massive numbers of components which interact in a combinatorial fashion. 

As we work with higher-level organisms, increase our technological capabilities, and 

learn more about biology, both observational complexity and system design complexity 

will increase. It is evident that without new approaches to design space exploration and 

metabolic systems simulation, this will result in a large gap between design and 

validation capabilities and what is required from a productivity standpoint.  

The software and systems engineering community has handled increasingly 

complex systems by developing the ability to solve problems at higher levels of 

abstraction. This strategy offers a pathway forward for the biological world to emulate. 

As of 2011, SysML is the benchmark visual modeling language for the field of systems 

engineering, and has been used as both a visual abstraction and interface for various 

portions of complex systems engineering projects.  
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Looking ahead, our proposed multilevel framework needs to take advantage of 

SysML, as a visual abstraction, as a construct for module wrapping, and as a mechanism 

for creating heterogeneous design environments composed from mixtures of formal and 

semi-formal models.  
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Appendices 

Appendix A – MATLAB code 
 

This is the MATLAB Code corresponding to the Schematic found in Figure 24 It loads 

an Excel Model of a Yeast Strain, modifies the model to represent the parameters and 

constraints of a simulated lab experiment, and outputs OPTKNOCK’s Suggested 

Reaction Knockouts, OPTKNOCK’s Flux Predictions with respect to biomass and the 

target reaction, PreKO FBA Simulation Results with respect to biomass and the target 

reaction, and PostKO FBA Simulation Results with respect to biomass and the target 

reaction.  
 

%% OPTKNOCK / FBA Scripts for the Production of Artemisinin 
%% 
clear all 
clc 
%% Initiate Cobra Toolbox 
initCobraToolbox; 

  
%% Load Model (>>USe Modified Strain Model in Excel Format Here<<) 
model = xls2model('imm904v51_120.xls','metimm904v51_120.xls'); 

  
%% change media to Synthetic Defined Dropout Media 
% refer to excel file 

  
% Carbon Source 
model = changeRxnBounds(model,'EX_glc(e)',0,'b'); %glucose 
model = changeRxnBounds(model,'EX_gal(e)',-11.1,'l'); %galactose 
% Aerobic Growth 
model = changeRxnBounds(model,'EX_o2(e)',-66.6,'l'); % oxygen uptake 
% 6*carbon flux (i.e. maximum feasible flux as opposed to arbitrarily 

large 
% flux...see Feist et al 2010. 

  
% Amino Acids/Bases 

  
model = changeRxnBounds(model,'EX_ade(e)',-0.01087,'l'); %adenine 
model = changeRxnBounds(model,'EX_ura(e)',0,'l'); %uracil (*DO) 

  
model = changeRxnBounds(model,'EX_trp-L(e)',-0.009803,'l'); %Tryptophan 
model = changeRxnBounds(model,'EX_his-L(e)',0,'l'); % histidine (*DO) 
model = changeRxnBounds(model,'EX_nh4(e)',0,'l'); %Arginine (Gene KO 

can1-100) (strain CY4) 
model = changeRxnBounds(model,'EX_met-L(e)',-0.0134,'l'); %Methionine 
model = changeRxnBounds(model,'EX_tyr-L(e)',-0.0165,'l'); % Tyrosine 
model = changeRxnBounds(model,'EX_leu-L(e)',0,'l'); % leucine (*DO) 
model = changeRxnBounds(model,'EX_ile-L(e)',-0.0229,'l'); %isoleucine 
model = changeRxnBounds(model,'EX_lys-L(e)',-0.0163,'l'); %lysine 
model = changeRxnBounds(model,'EX_phe-L(e)',-0.0303,'l'); 

%phenylalanine 
model = changeRxnBounds(model,'EX_glu-L(e)',-0.0676,'l'); %glutamate 
model = changeRxnBounds(model,'EX_asp-L(e)',-0.0746,'l'); %aspartic 

acid 



78 
 

model = changeRxnBounds(model,'EX_val-L(e)',-0.128,'l'); %valine 
model = changeRxnBounds(model,'EX_thr-L(e)',-0.168,'l'); %threonine 
model = changeRxnBounds(model,'EX_ser-L(e)',-0.381,'l'); %serine 

  
% Compounds 
model = changeRxnBounds(model,'EX_nh4(e)',-7.58,'l'); %ammonium 
model = changeRxnBounds(model,'EX_so4(e)',-4.22,'l'); %sulfate 
model = changeRxnBounds(model,'EX_k(e)',-0.797,'l'); %potassium 
model = changeRxnBounds(model,'EX_pi(e)',-0.711,'l'); %phosphate 
model = changeRxnBounds(model,'EX_btn(e)',-8.2*10^-6,'l'); %biotin 
model = changeRxnBounds(model,'EX_inost(e)',-0.00556,'l'); %inositol 
model = changeRxnBounds(model,'EX_4abz(e)',-0.000146,'l'); %4-

aminobenzoic acid 
model = changeRxnBounds(model,'EX_thm(e)',-0.000133,'l'); %thiamin 
model = changeRxnBounds(model,'EX_fe2(e)',-0.000123,'l'); % Iron 

(assuming fe3=fe2) 
model = changeRxnBounds(model,'EX_na1(e)',-0.1711,'l'); % Sodium Ions 
model = changeRxnBounds(model,'ATPM',1,'b'); % ATP Maintenance 

  

%% Remove some reactions from consideration 

  
ind = 1:length(model.rxns); 
last = find(ind,1,'last'); 

  
SpecRxnsRemove = {'biomass_SC5_notrace','ATPM', 'GRTT'}; %add ARTACID 

for strain 2 and DARTACID for strain 3 

  
clear TargRxnId TargInInd 
for i=1:length(SpecRxnsRemove) 
    rxn = SpecRxnsRemove{i}; 
    TargRxnId = find(strcmp(rxn,model.rxns)); 
    TargInInd = find(ind==TargRxnId); 
    ind(TargInInd) = 0; 
end 

  

  

  
%% find reactions with no genes (Feist optknock step c) 

  
clear TargRxnId TargInInd 
for i=1:length(model.grRules) 
    k(i) = strcmp(model.grRules(i),''); 
    if k(i) == 1 
        k2(i) = 1; 
    else 
        k2(i) = 0; 
    end 
end 

  
Nogenes_ind = find(k2); 
clear k 
for i = 1:length(Nogenes_ind) 
    TargRxnId = Nogenes_ind(i); 
    TargInInd = find(ind==TargRxnId); 
    ind(TargInInd) = 0; 
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end 

  

  
%% find Exchange rxns %% Redundant (no genes associated with EX rxns) 
% reactions) 
% k = strfind(model.rxns,'EX_'); 
% clear TargRxnId TargInInd 
% for i=1:length(k) 
%     if k{i} == 1 
%         k2(i) = 1; 
%     else 
%         k2(i) = 0; 
%     end 
% end 
% 
% Ex_ind = find(k2); 
% clear k 
% for i = 1:length(Ex_ind) 
%     TargRxnId = Ex_ind(i); 
%     TargInInd = find(ind==TargRxnId); 
%     ind(TargInInd) = 0; 
% end 

  
%% find Transport Rxns 
clear TargRxnId TargInInd 
Trans = strfind(model.subSystems,'Transport'); 

  
for i=1:length(Trans) 
    if Trans{i} == 1 
        k2(i) = 1; 
    else 
        k2(i) = 0; 
    end 
end 

  
Trans_ind = find(k2); 
clear k 
for i = 1:length(Trans_ind) 
    TargRxnId = Trans_ind(i); 
    TargInInd = find(ind==TargRxnId); 
    ind(TargInInd) = 0; 
end 
%% Find other subsystems that are difficult to modify (Feist Optknock 

step d2) 

  
% Use Find transport rxn script 

  

%% Find high carbon molecules, with 7 or more carbons (Feist optknock 

step E) 

  
% no code yet, here's an idea 
% Search metabolite formulas with strcmp for c7 c8 c9 c10 c11 c12 
% store met name 
% searche rxns for rxns involving met name (maybe use model.S) 
% store index of rxns 
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%% find rxns with zero flux (Remove dead-ends feist optknock step a1) 
Sol = optimizeCbModel(model); 
zeroflux_ind = find(Sol.x==0); 
for i = 1:length(zeroflux_ind) 
    ind(zeroflux_ind(i)) = 0; 
end 

  
ind = find(ind); 

  

%% Find reactions corresponding to lethal gene deletion (feist opknock 

step b) 

  
% Lethal gene deletion is deletion growth rate less than 5% of preKO 

GR. 
% No script yet 

  
%% Remove all reactions found 
selectedRxns={model.rxns{ind}}; % ignore bracket error here, needs to 

be {ind} 

  
%% Constrain reactions for Optknock 

  
constrOptInputs = { 

     
% Biomass 
'biomass_SC5_notrace',0.01,'G'; 

  
% Carbon Source 
'EX_glc(e)',0,'E'; %glucose 
'EX_gal(e)',-11.1,'G'; %galactose %   

  
% Aerobic Growth 
'EX_o2(e)',-66.6,'G'; % oxygen uptake % 
% 6*carbon flux (i.e. maximum feasible flux as opposed to arbitrarily 

large 
% flux...see Feist et al 2010. 

  

% Amino Acids/Bases 

  
'EX_ade(e)',-0.01087,'G'; %adenine % 
'EX_ura(e)',0,'G'; %uracil (*DO) 

  
'EX_trp-L(e)',-0.009803,'G'; %Tryptophan % 
'EX_his-L(e)',0,'G'; % histidine (*DO) 
'EX_nh4(e)',0,'G'; %Arginine (Gene KO can1-100) (strain CY4) 
'EX_met-L(e)',-0.0134,'G'; %Methionine 
'EX_tyr-L(e)',-0.0165,'G'; % Tyrosine 
'EX_leu-L(e)',0,'G'; % leucine (*DO) 
'EX_ile-L(e)',-0.0229,'G'; %isoleucine 
'EX_lys-L(e)',-0.0163,'G'; %lysine 
'EX_phe-L(e)',-0.0303,'G'; %phenylalanine 
'EX_glu-L(e)',-0.0676,'G'; %glutamate 
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'EX_asp-L(e)',-0.0746,'G'; %aspartic acid 
'EX_val-L(e)',-0.128,'G'; %valine 
'EX_thr-L(e)',-0.168,'G'; %threonine 
'EX_ser-L(e)',-0.381,'G'; %serine 
% Compounds 
'EX_nh4(e)',-7.58,'G'; %ammonium 
'EX_so4(e)',-4.22,'G'; %sulfate 
'EX_k(e)',-0.797,'G'; %potassium 
'EX_pi(e)',-0.711,'G'; %phosphate 
'EX_btn(e)',-8.2*10^-6,'G'; %biotin 
'EX_inost(e)',-0.00556,'G'; %inositol 
'EX_4abz(e)',-0.000146,'G'; %4-aminobenzoic acid 
'EX_thm(e)',-0.000133,'G'; %thiamin 
'EX_fe2(e)',-0.000123,'G'; % Iron (assuming fe3fe2) 
'EX_na1(e)',-0.1711,'G'; % Sodium Ions 
'ATPM',1,'E'; % ATP Maintenance 

  
% please note that GRTT is NOT part of the media but a rxn constraint 
'GRTT',.1,'G'; % GRTT min (added 7-23) 
};     

  
% Must set at least two rxns here because optKnock is poorly written 
for i = 1:length(constrOptInputs) 
constrOpt.rxnList{i}=constrOptInputs{i,1}; 
constrOpt.values(i)=constrOptInputs{i,2}; 
constrOpt.sense(i)= constrOptInputs{i,3}; %G = greater %E is equal to; 

L is for less than 
end 

   
%% Options for optKnock (>>SET TARGET RXN and Number of KOs here<<<) 
options.targetRxn = 'GRTT'; 
options.vMax=120; %Set bound to feasible value instead of 'arbitrarily 

large' i.e. 1000, 80 is 6*the carbon-6 source flux in case all flux 

goes through 1 carbon compounds (feist optknock step a2) 
options.numDel =2; 
options.numDelSense = 'L'; 

  
%% Solve OptKnock 
disp('OptKnock Starts') 
optKnockSol = OptKnock(model, selectedRxns, options, constrOpt, [], 

'true'); 
disp(['Optknock objective = ' num2str(optKnockSol.obj)]) 
disp(['OptKnock Growth rate =' num2str(optKnockSol.fluxes(1))]) 

  
%% Pre KO FBA 
tol = 1e-7; 
premodelKO = model; 
targetRxn=options.targetRxn; 
preKOsol = optimizeCbModel(model); 
pregrowthRate = preKOsol.f; 
disp(['preKO growth rate = ' num2str(preKOsol.f)]) 
targrxnind = find(strcmp(model.rxns,options.targetRxn)); 
disp(['preKO target rxn flux = ' num2str(preKOsol.x(targrxnind))]); 

  
if (preKOsol.stat == 1) 
    % Max & min production of the metabolite at the optimal growth rate 
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    grRounded = floor(preKOsol.f/tol)*tol; 
    premodelKO = 

changeRxnBounds(premodelKO,premodelKO.rxns(premodelKO.c==1),grRounded,'

l'); 
    premodelKO = changeObjective(premodelKO,targetRxn); 
    presolMax = optimizeCbModel(premodelKO,'max'); 
    presolMin = optimizeCbModel(premodelKO,'min'); 
    premaxProd = presolMax.f; 
    preminProd = presolMin.f; 
else 
    premaxProd = 0; 
    preminProd = 0; 
end 

   
%% Test optKnock Solution 
%b stands for both lower and upper bound 

  
tol = 1e-7; 
deletions = optKnockSol.rxnList; 
nDel = length(deletions); 
modelKO = model; 
targetRxn=options.targetRxn; 
for i = 1:nDel 
    modelKO = changeRxnBounds(modelKO,deletions{i},0,'b'); 
end 
% Calculate optimal growth rate 
postKOsol = optimizeCbModel(modelKO); 
growthRate = postKOsol.f; 

  
if (postKOsol.stat == 1) 
    % Max & min production of the metabolite at the optimal growth rate 
    grRounded = floor(postKOsol.f/tol)*tol; 
    modelKO = 

changeRxnBounds(modelKO,modelKO.rxns(modelKO.c==1),grRounded,'l'); 
    modelKO = changeObjective(modelKO,targetRxn); 
    solMax = optimizeCbModel(modelKO,'max'); 
    solMin = optimizeCbModel(modelKO,'min'); 
    maxProd = solMax.f; 
    minProd = solMin.f; 
else 
    maxProd = 0; 
    minProd = 0; 
end 

  
disp(['postKO growth rate = ' num2str(postKOsol.f)]) 
targrxnind = find(strcmp(model.rxns,options.targetRxn)); 
disp(['postKO target rxn flux FBA = ' 

num2str(postKOsol.x(targrxnind))]); 
disp(['preKO solmax target rxn flux = ' num2str(premaxProd)]); 
disp(['preKO solmin target rxn flux = ' num2str(preminProd)]); 
disp(['postKO solmax target rxn flux = ' num2str(maxProd)]); 
disp(['postKO solmin target rxn flux = ' num2str(minProd)]); 
  

%% Script Written by Joseph Johnnie, Matt Conway, and Ashish Misra 

 


